镁合金力学性能
- 格式:doc
- 大小:439.00 KB
- 文档页数:6
摘要挤压变形AZ31镁合金组织以绝热剪切条纹和细小的α再结晶等轴晶为基本特征。
挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能。
随挤压比的增大,晶粒细化程度增加,晶粒尺寸由铸态的d400μm减小到挤压态的d12μm(min);强度、硬度随挤压比的增大而增大,延伸率在挤压比大于16时呈单调减的趋势。
轧制变形使板材晶粒明显细化,硬度提高。
AZ31合金中添加Ce,其铸态组织中能够形成棒状Al4Ce相,并能改善合金退火态组织和力学性能;添加Ce可以改善AZ31的综合力学性能。
关键词:AZ31变形镁合金;强化机制;组织;性能绪论20世纪90年代以来,作为最轻金属结构材料的镁合金的用量急剧增长,在交通、计算机、通讯、消费类电子产品、国防军工等诸多领域的应用前景极为广阔,被誉为“21世纪绿色工程材料”,许多发达国家已将镁合金列为研究开发的重点。
大多数镁合金产品主要是通过铸造生产方式获得,变形镁合金产品则较少。
但与铸造镁合金产品相比,变形镁合金产品消除了铸造缺陷,组织细密,综合力学性能大大提高,同时生产成本更低,是未来空中运输、陆上交通和军工领域的重要结构材料。
目前,AZ31镁合金的应用十分广泛,尤其用于制作3C产品外壳、汽车车身外覆盖件等冲压产品的前景被看好,正成为结构镁合金材料领域的研究热点而受到广泛重视。
第1章挤压变形对AZ31镁合金组织和性能的影响1.1 挤压变形组织特征及挤压比的影响作用图1-1为动态挤压变形过程中的组织变化。
动态变形过程大致分为3个区域:初始区、变形区和稳态区,分别对应着不同的组织。
图1-1a为初始区挤压变形前的铸态棒料组织。
由粗大的α-Mg树枝晶和分布其间的α-Mg+Mg17Al12共晶体组成,枝晶形态十分发达,具有典型的铸造组织特征。
晶粒尺寸为112~400μm。
图1-1b为变形区近稳态区组织。
图中存在大量无序流线,流线弯曲度大、方向不定且长短不一,显然这种组织特征是在挤压力作用下破碎的树枝晶晶臂(α固溶体)发生滑移、转动的结果。
zk61镁合金成分一、引言zk61镁合金是一种具有良好力学性能和耐腐蚀性的轻质合金材料,广泛应用于航空、汽车、电子等领域。
本文将全面介绍zk61镁合金的成分。
二、zk61镁合金的基本信息1. zk61镁合金是一种铝、锌和锰等元素与镁混合而成的轻质合金材料。
2. zk61镁合金具有良好的机械性能,如高强度、高刚度和高耐疲劳性能等。
3. zk61镁合金还具有优异的耐腐蚀性能,可以在高温、高湿环境下长期使用。
三、zk61镁合金的成分详解1. 镁(Mg)zk61镁合金中最主要的成分是镁,其含量通常在93%以上。
镁是一种轻质金属,在自然界中广泛存在。
它具有良好的可塑性和热导率,可以制造各种形状复杂的零件。
2. 铝(Al)铝是zk61镁合金中第二大的成分,其含量通常在5%左右。
铝可以增加zk61镁合金的强度和硬度,同时还可以提高其耐腐蚀性能。
3. 锌(Zn)锌是zk61镁合金中第三大的成分,其含量通常在1%左右。
锌可以增加zk61镁合金的强度和硬度,同时还可以提高其耐腐蚀性能。
4. 锰(Mn)锰是zk61镁合金中的微量元素,其含量通常在0.2%以下。
锰可以提高zk61镁合金的强度和硬度,同时还可以改善其加工性能。
5. 其他元素除了上述主要元素外,zk61镁合金中还含有少量的铜、铝、锡等元素。
这些元素可以改善zk61镁合金的机械性能和耐腐蚀性能。
四、zk61镁合金的制备方法制备zk61镁合金通常采用熔炼法和轧制法两种方法。
熔炼法是将各种原材料按一定比例混合后,在高温下进行熔化、混合和冷却,得到均匀的合金坯料;轧制法则是将已经制备好的均匀的合金坯料通过冷轧或热轧等工艺形成所需厚度和规格的板材、棒材等。
五、zk61镁合金的应用领域zk61镁合金具有良好的机械性能和耐腐蚀性能,广泛应用于航空、汽车、电子等领域。
具体应用包括:1. 航空领域:制造飞机零部件、发动机部件等。
2. 汽车领域:制造车身结构件、发动机部件等。
一:镁合金的重要性能1:化学物理性能以镁为基加入其他元素组成的合金。
其特点是:密度小(1.8g/cm3左右),比强度高,弹性模量大,消震性好,承受冲击载荷能力比铝合金大,耐有机物和碱的腐蚀性能好。
主要合金元素有铝、锌、锰、铈、钍以及少量锆或镉等。
目前使用最广的是镁铝合金,其次是镁锰合金和镁锌锆合金。
主要用于航空、航天、运输、化工、火箭等工业部门。
在实用金属中是最轻的金属,镁的比重大约是铝的2/3,是铁的1/4。
它是实用金属中的最轻的金属,高强度、高刚性。
2:镁合金的特点其加工过程及腐蚀和力学性能有许多特点:质量轻、刚性好、具有一定的耐蚀性和尺寸稳定性、抗冲击、耐磨、衰减性能好及易于回收;另外还有高的导热和导电性能、无磁性、屏蔽性好和无毒的特点。
应用范围:镁合金广泛用于携带式的器械和汽车行业中,达到轻量化的目的。
镁合金的比重虽然比塑料重,但是,单位重量的强度和弹性率比塑料高,所以,在同样的强度零部件的情况下,镁合金的零部件能做得比塑料的薄而且轻。
另外,由于镁合金的比强度也比铝合金和铁高,因此,在不减少零部件的强度下,可减轻铝或铁的零部件的重量。
镁合金相对比强度(强度与质量之比)最高。
比刚度(刚度与质量之比)接近铝合金和钢,远高于工程塑料。
3:镁合金应用目前,镁合金在汽车上的应用零部件可归纳为2类。
(1)壳体类。
如离合器壳体、阀盖、仪表板、变速箱体、曲轴箱、发动机前盖、气缸盖、空调机外壳等。
(2)支架类。
如方向盘、转向支架、刹车支架、座椅框架、车镜支架、分配支架等。
根据有关研究,汽车所用燃料的60%是消耗于汽车自重,汽车自重每减轻10%,其燃油效率可提高5%以上;汽车自重每降低100 kg,每百公里油耗可减少0.7 L左右,每节约1 L燃料可减少CO2排放2.5 g,年排放量减少30%以上。
所以减轻汽车重量对环境和能源的影响非常大,汽车的轻量化成必然趋势。
手机电话,笔记本电脑上的液晶屏幕的尺寸年年增大,在它们的枝撑框架和背面的壳体上使用了镁合金。
热处理工艺对镁合金材料的力学性能和耐热性的优化热处理工艺对镁合金材料的力学性能和耐热性的优化镁合金由于其优异的性能,如低密度、高比强度、良好的自锁性能和抗冲击性能等,在航空、汽车、电子等领域得到广泛应用。
然而,由于镁合金材料的低熔点和高灵敏度,其力学性能和耐热性需要通过热处理工艺进行优化,以满足不同应用领域的需求。
热处理工艺是通过控制材料的温度和冷却速率来改变其组织和性能的过程。
对于镁合金材料来说,最常用的热处理工艺包括固溶处理、时效处理和退火处理。
固溶处理是将合金加热至固溶温度以上,使合金元素均匀溶解在溶液中,然后通过快速冷却来固定组织。
时效处理是在固溶处理完毕后,将合金加热至较低的温度,通过时间来调整组织和性能。
退火处理是将合金加热至较高的温度,然后在较慢的冷却速率下,使组织得到重新恢复。
热处理工艺对镁合金材料的力学性能的优化具有显著的影响。
通过固溶处理可以提高镁合金材料的塑性,使其具有更好的可加工性。
固溶处理可以消除材料中的残余应力和缺陷,从而提高其抗拉强度和延伸率。
时效处理可以通过组织的时效硬化来增加材料的强度和硬度。
退火处理可以通过消除材料中的应力和缺陷,使其具有更好的塑性和韧性。
热处理工艺对镁合金材料的耐热性的优化同样具有重要的作用。
镁合金材料具有低熔点和高活化能,容易在高温下发生蠕变和热裂敏化等问题。
通过热处理工艺,可以改变材料的晶粒尺寸和晶界的特性,从而提高材料的耐高温性能。
固溶处理可以减小晶粒尺寸,提高材料的界面密度,从而提高材料的耐蠕变性能。
时效处理可以通过析出相的形成来增加材料的强度和耐蠕变性能。
退火处理可以消除材料中的残余应力和缺陷,从而提高材料的抗热裂敏化性能。
总的来说,热处理工艺对镁合金材料的力学性能和耐热性的优化具有重要的作用。
通过合理的热处理工艺,可以提高镁合金材料的可加工性、强度、硬度、塑性和韧性,并增加材料的耐高温性能。
然而,热处理工艺的优化需要充分考虑材料的成分、组织和性能需求,确保最终的产品能够满足实际应用的要求。
am60b镁合金标准
一、化学成分
AM60B镁合金的化学成分应符合相关标准,以保证其性能和稳定性。
其中,主要元素包括镁、铝、锌、锰等,其含量应符合标准规定。
二、力学性能
AM60B镁合金应具备一定的力学性能,以满足不同应用场景的要求。
其抗拉强度、屈服强度、延伸率等指标应符合标准规定。
三、耐腐蚀性能
镁合金在某些环境中容易受到腐蚀,因此其耐腐蚀性能是一个重要的考虑因素。
AM60B镁合金应具备良好的耐腐蚀性能,如抗大气腐蚀、耐酸碱腐蚀等。
四、耐疲劳性能
在循环应力作用下,材料会发生疲劳破坏。
AM60B镁合金应具备一定的耐疲劳性能,以抵抗循环应力的作用。
五、耐缝隙腐蚀性
镁合金在缝隙中容易发生腐蚀,因此其耐缝隙腐蚀性也是一个重要的考虑因素。
AM60B镁合金应具备良好的耐缝隙腐蚀性,以减少腐蚀的发生。
六、与其他材料的相容性
镁合金与其他材料接触时,可能会发生化学反应或电化学反应,导致腐蚀或损坏。
因此,AM60B镁合金应具备良好的与其他材料的相容性,以避免不利的化学或电化学反应。
七、加工性能
镁合金的加工性能也是一个重要的考虑因素。
AM60B镁合金应具备良好的加工性能,如易于加工、不易变形等,以满足不同加工要求。
八、质量要求
为了保证AM60B镁合金的质量和稳定性,应采取一系列的质量控制措施,如严格的生产工艺控制、质量检验等。
同时,对于不合格的产品应及时进行返工或报废处理,以确保产品的质量和稳定性。
镁合金的热变形行为及力学性能研究镁合金是一种轻质高强度的金属材料,因其重量轻、强度高、耐腐蚀等优点,在航空航天、汽车、电子通讯、运动器材等领域得到广泛应用。
然而,由于其在高温下易于软化和破坏,热变形行为及力学性能的研究对于镁合金的发展至关重要。
1.热变形行为的研究热变形行为是指材料在热加工过程中的变形行为,包括变形应力、应变、应变速率等指标。
镁合金的热变形行为与其微观组织有着密切的联系。
研究表明,在温度为200℃~400℃范围内,镁合金的应变硬化效应较强,变形应力与应变率之间呈现出显著的正比关系。
随着温度的升高,镁合金中的细晶粒首先发生动态再结晶,从而导致材料的变形应力和应变率的降低。
当温度进一步升高时,材料会出现粗大晶粒的再生变形,其剪切带和孪晶的形成则可导致应变增大,导致材料的流动性能下降。
2.力学性能的研究力学性能是指材料在载荷作用下的力学特性,对于实际工程应用有着至关重要的影响。
针对镁合金的力学性能研究,主要包括硬度、韧性、塑性等方面。
研究发现,在一定的应变速率下,镁合金的硬度随温度升高而降低,这与材料的动态再结晶机制有着密切的关系。
此外,镁合金的韧性和塑性也受到温度的影响。
随着温度的升高,镁合金的塑性越来越强,断裂韧性也逐渐提高。
3.应用前景随着工业技术的不断进步和对材料强度重量比要求的提高,镁合金在航空航天、汽车、电子通讯等领域的应用前景越来越广阔。
而研究镁合金的热变形行为及力学性能则能够为材料的开发和应用提供重要的理论依据。
总之,镁合金的热变形行为及力学性能研究是镁合金发展和应用的重要基础研究之一。
通过深入研究材料的微观组织和宏观力学性能,可以为镁合金的优化设计、改良和应用提供重要的科学依据。
引伸计在金属拉力中的作用
如果需要做σ0.2,就需要引伸计。
一般结构钢机械性能试验不用引伸计。
引伸计一般用于屈服强度台阶不明显的材料。
不要引伸计的拉伸曲线,是把标距以外的变形等干扰都包含进曲线了。
试验的可靠性或称准确性值得商榷。
用引伸计才是最准确的。
引申计的量程小,一般用在屈服和屈服之前使用,如在屈服后继续使用,会损坏引申计,引申计用来测量弹性模量,如用一般的差动编码器测量,计算结果会和真实的弹性模量差一个数量级,由标距造成的,引伸计在测量中精度高,但是量程小,所以一般试验机进行拉伸压缩试验都不用引伸计,除非测量弹性模量和要求很高的精度时,而一般试验,一般的差动编码器测位移精度足够,引申计是用来测量变形部分延伸率的,如果不用引伸计就不能得到应力-应变曲线,因为此时得到的应变把拉伸机齿轮空转及位移和非测试部分的位移都算上了。
但是不用引伸计还是可以得到抗拉强度的,另外对于有屈服平台的材料也能得到屈服强度,但是对于没有屈服平台就是连续屈服的材料就没办法得到屈服强度了。
关于引伸计除了通产所见的机械引伸计外目前比较流行的是激光引伸计,测试时有激光打在样品上作为测量位移的标定。
应力-应变曲线。