七年级数学下册《不等式的性质》练习题及答案(人教版)
- 格式:docx
- 大小:130.62 KB
- 文档页数:5
2021年人教版数学七下9.1.2《不等式的性质》课后练习1若x >y ,则下列式子中错误的是( )A.x -3>y -3B.>x 3y 3C.x +3>y +3D.-3x >-3y2.若a>b ,则a -b>0,其依据是( )A.不等式性质1B.不等式性质2C.不等式性质3D.以上都不对3.下列变形不正确的是( )A.由b>5得4a +b>4a +5B.由a>b 得b<aC.由-x>2y 得x<-4y 12D.-5x>-a 得x>a 54.若a >b ,am <bm ,则一定有( )A.m=0B.m <0C.m >0D.m 为任何实数5.不等式x -2>1的解集是( )A.x>1B.x>2C.x>3D.x>46.在数轴上表示不等式x -1<0的解集,正确的是( )7.不等式5x ≤-10的解集在数轴上表示为( )8.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)x +3<-2; (2)9x>8x +1;(3)x ≥-4; (4)-10x ≤5.129.设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( )A.■、●、▲B.▲、■、●C.■、▲、●D.●、▲、■10.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x 千米时,乘坐出租车合算,请写出x 的范围.11.a 、b 都是实数,且a<b ,则下列不等式的变形正确的是( )A.a +x>b +xB.-a +1<-b +1C.3a<3bD.>a 2b 212.不等式2x -6>0的解集是( )A.x >1B.x <-3C.x >3D.x <313.下列说法不一定成立的是( )A.若a>b ,则a +c>b +cB.若a +c>b +c ,则a>bC.若a>b ,则ac 2>bc 2D.若ac 2>bc 2,则a>b14.若式子3x +4的值不大于0,则x 的取值范围是( )A.x <-B.x ≥C.x <D.x ≤-4343434315.利用不等式的基本性质求下列不等式的解集,并写出变形的依据.(1)若x +2 016>2 017,则x ;( )(2)若2x>-,则x ; ( )13(3)若-2x>-,则x ;( )13(4)若->-1,则x . ( )x 716.利用不等式的性质填空(填“>”或“<”).(1)若a>b ,则2a +1 2b +1;(2)若-1.25y<-10,则y 8;(3)若a<b ,且c<0,则ac +c bc +c ;(4)若a>0,b<0,c<0,则(a -b)c 0.17.指出下列各式成立的条件:(1)由mx<n ,得x<;n m(2)由a<b ,得ma>mb ;(3)由a>-5,得a 2≤-5a ;(4)由3x>4y ,得3x -m>4y -m.18.利用不等式的性质解下列不等式.(1)8-3x <4-x ; (2)2(x -1)<3(x +1)-2.(3)≥x -1.x -131219.现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变;②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变.请解决以下两个问题:(1)利用性质①比较2a 与a 的大小(a ≠0);(2)利用性质②比较2a 与a 的大小(a ≠0).参考答案1若x >y ,则下列式子中错误的是(D)A.x -3>y -3B.>x 3y 3C.x +3>y +3D.-3x >-3y2.若a>b ,则a -b>0,其依据是(A)A.不等式性质1B.不等式性质2C.不等式性质3D.以上都不对3.下列变形不正确的是(D)A.由b>5得4a +b>4a +5B.由a>b 得b<aC.由-x>2y 得x<-4y 12D.-5x>-a 得x>a 54.若a >b ,am <bm ,则一定有(B)A.m=0B.m <0C.m >0D.m 为任何实数知识点2 利用不等式的性质解不等式5.(梧州中考)不等式x -2>1的解集是(C)A.x>1B.x>2C.x>3D.x>46.(临夏中考)在数轴上表示不等式x -1<0的解集,正确的是(C)7.(崇左中考)不等式5x ≤-10的解集在数轴上表示为(C)8.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)x +3<-2;解:利用不等式性质1,两边都减3,得x<-5.在数轴上表示为:(2)9x>8x +1;解:利用不等式性质1,两边都减8x ,得x>1.在数轴上表示为:(3)x ≥-4;12解:利用不等式性质2,两边都乘以2,得x ≥-8.在数轴上表示为:(4)-10x ≤5.解:利用不等式性质3,两边都除以-10,得x ≥-.12在数轴上表示为:知识点3 不等式的简单应用9.(绵阳中考)设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为(C)A.■、●、▲B.▲、■、●C.■、▲、●D.●、▲、■10.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x 千米时,乘坐出租车合算,请写出x 的范围.解:根据题意,得1 500+x>2x ,解得x<1 500.∵单位每月用车x(千米)不能是负数,∴x 的取值范围是0<x<1 500.中档题11.(滨州中考)a 、b 都是实数,且a<b ,则下列不等式的变形正确的是(C)A.a +x>b +xB.-a +1<-b +1C.3a<3bD.>a 2b 212.(云南中考)不等式2x -6>0的解集是(C)A.x >1B.x <-3C.x >3D.x <313.(乐山中考)下列说法不一定成立的是(C)A.若a>b ,则a +c>b +cB.若a +c>b +c ,则a>bC.若a>b ,则ac 2>bc 2D.若ac 2>bc 2,则a>b14.若式子3x +4的值不大于0,则x 的取值范围是(D)A.x <-B.x ≥4343C.x <D.x ≤-434315.利用不等式的基本性质求下列不等式的解集,并写出变形的依据.(1)若x +2 016>2 017,则x>1;(不等式两边同时减去2_016,不等号方向不变)(2)若2x>-,则x>-;1316(不等式两边同时除以2,不等号方向不变)(3)若-2x>-,则x<;1316(不等式两边同时除以-2,不等号方向改变)(4)若->-1,则x<7.x 7(不等式两边同时乘以-7,不等号方向改变)16.利用不等式的性质填空(填“>”或“<”).(1)若a>b ,则2a +1>2b +1;(2)若-1.25y<-10,则y>8;(3)若a<b ,且c<0,则ac +c>bc +c ;(4)若a>0,b<0,c<0,则(a -b)c<0.17.指出下列各式成立的条件:(1)由mx<n ,得x<;n m(2)由a<b ,得ma>mb ;(3)由a>-5,得a 2≤-5a ;(4)由3x>4y ,得3x -m>4y -m.解:(1)m>0.(2)m<0.(3)-5<a ≤0.(4)m 为任意实数.18.利用不等式的性质解下列不等式.(1)8-3x <4-x ;解:不等式两边同加x ,得8-2x <4.不等式两边同减去8,得-2x <-4.不等式两边同除以-2,得x>2.(2)2(x -1)<3(x +1)-2.解:去括号,得2x -2<3x +3-2.不等式两边加上2,得2x<3x +3.不等式两边减去3x ,得-x<3.不等式两边乘以-1,得x>-3.(3)≥x -1.x -1312解:不等式两边都乘以6,得2(x -1)≥3x -6.去括号,得2x -2≥3x -6.不等式两边都加2,得2x ≥3x -4.不等式两边都减去3x ,得-x ≥-4.不等式两边除以-1,得x ≤4.综合题19.(佛山中考)现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变;②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变.请解决以下两个问题:(1)利用性质①比较2a 与a 的大小(a ≠0);(2)利用性质②比较2a 与a 的大小(a ≠0).解:(1)若a >0,则a +a >0+a ,即2a >a.若a <0,则a +a <0+a ,即2a <a.(2)若a >0,由2>1得2·a >1·a ,即2a >a.若a <0,由2>1得2·a <1·a ,即2a <a.。
人教版七年级数学下册第九章第一节不等式、不等式的性质习题(含答案)阅读下面题目的解法,判断是否正确,如果有错误,请改正过来. 已知x y >,比较32x -与32y -的大小,并说明理由.解:3232x y ->-.理由如下:x y >,22x y ∴->-,3232x y ∴->-.【答案】解法错误.正确的解法:3232x y -<-.理由见解析.【解析】【分析】先在不等式的两边同时乘以-2,不等式方向改变;然后在不等式的两边同时加上3,不等式方向不变,即可解答.【详解】解:解法错误.正确的结论是3232x y -<-.正确的解法如下:x y >,在不等式的两边同时乘以-2,不等式方向改变,22x y ∴-<-,在不等式的两边同时加上3,不等式方向不变,3232x y ∴-<-.【点睛】本题考查了不等式的性质的应用,特别要注意性质3,很容易出错.不等式两边乘(或除以)同一个负数,不等号的方向改变.灵活运用不等式的性质进行变形是关键.72.根据不等式的性质,把下列不等式化为“x a >”或“x a <”的形式.(1)162x x >-;(2)0.3 1.5x -<-. 【答案】(1)12x >-;(2)5x >.【解析】【分析】(1)将不等式两边同时减去12x ,再两边同时乘2即可解答; (2)将不等式两边同时除以0.3-,即可解答.【详解】解:(1)原不等式的两边同时减去12x , 得162x >-, 不等式的两边同时乘2,得12x >-.(2)在原不等式的两边同时除以0.3-,不等号的方向改变,即5x >.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.灵活运用不等式的性质进行变形是关键.73.根据不等式的性质,将下列不等式化成“x a >”或“x a <”的形式.(1)175x -<-;(2)5243x x +>-.【答案】(1)12x <,(2)5x >-.【解析】【分析】(1)根据不等式的性质1进行分析.将不等式两边都加上17;(2)根据不等式的性质1进行分析.将不等式两边都加上-2,两边再减去4x .【详解】解:(1)将不等式两边都加上17,得517x <-+,即12x <.(2)将不等式两边都加上2-,得545x x >-.将不等式两边都减去4x ,得5x >-.【点睛】本题考查了不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.灵活运用不等式的性质1进行变形是关键.74.下列数值:76,73,79,80,74.9,75.1,90,哪些是不等式2150x >的解?你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?【答案】76,79,80,75.1,90是不等式2150x >;还有其它的解;该不等式的解有无数个;所有大于75的数均是该不等式的解.【解析】【分析】根据不等式的解的定义解答即可.【详解】解:把76,73,79,80,74.9,75.1,90代入不等式2150x >,使之成立的有76,79,80,75.1,90,该不等式的解还有77,78,81,83…该不等式的解有无数个,发现所有大于75的数均是该不等式的解.【点睛】本题主要考查不等式的解集,掌握不等式解的概念是解题根本:能使不等式成立的未知数的值叫做不等式的解,所有这些解的全体叫做不等式的解集.三、填空题75.若0a <,10b -<<,则,a ,ab 2ab 的大小关系是________.【答案】2a ab ab <<【解析】【分析】首先易得ab 是正数,a ,2ab 都是负数,然后利用不等式的性质求出2ab a >即可.【详解】解:∵0a <,10b -<<,∴ab 是正数,a ,2ab 都是负数,∵10b -<<,∴21b <,两边都乘以负数a ,得2ab a >,∴2a ab ab <<,故答案为:2a ab ab <<.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.76.比较下列各对代数式的值的大小.(1)已知x y <,则112x -________112y -. (2)已知2323x y ->-,则x ___y .【答案】< <【解析】【分析】(1)根据不等式的性质进行判断;(2)根据不等式的性质进行判断;【详解】(1)先在不等式x y <两边同时乘以12,再同时减去1,不等号方向不变,应填“<”号;(2)先在不等式2323x y ->-两边同时减去2,再同时除以-3,不等号改变方向,应填“<”号.故答案为:(1)<;(2)<.此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.77.根据不等式的基本性质,用“<”或“>”号填空(1)若a b >,则2a _____2b .(2)若a b >,则4a -_____4b -.(3)若362->x ,则x _____4-. (4)若a b >,0c >,则ac _____bc .(5)若0,x <0,y >0z <,则()-x y z _____0.【答案】> < < > >【解析】【分析】(1)根据不等式的性质可得答案;(2)根据不等式的性质可得答案;(3)根据不等式的性质可得答案;(4)根据不等式的性质可得答案;(5)首先判断出x-y 的符号,然后根据不等式的性质可得答案.【详解】解:(1)若a b >,则2a >2b ;(2)若a b >,则4a -<4b -;(3)若362->x ,则x <4-; (4)若a b >,0c >,则ac >bc ;(5)若0x <,0y >,则0x y -<,∴()-x y z >0;故答案为:(1) >;(2)<;(3)<;(4)>;(5)>.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.78.(1)若a b >,则2a a b >+,是根据________.(2)若a b >,则33a b >,是根据________.(3)若a b >,则a b -<-,是根据________.(4)若1a >,则2a a >,是根据________.(5)若1a <-,则2a a >-,是根据________.【答案】不等式两边都加上同一个数,不等号方向不变. 不等式两边都乘同一个正数,不等号的方向不变. 不等式两边都乘同一个负数,不等号的方向改变. 不等式两边都乘同一个正数,不等号的方向不变. 不等式两边都乘同一个负数,不等号的方向改变.【解析】【分析】(1)根据不等式的性质可得答案;(2)根据不等式的性质可得答案;(3)根据不等式的性质可得答案;(4)根据不等式的性质可得答案;(5)根据不等式的性质可得答案;【详解】解:(1)若a b >,则2a a b >+,是根据不等式两边都加上同一个数,不等号方向不变;(2)若a b >,则33a b >,是根据不等式两边都乘同一个正数,不等号的方向不变;(3)若a b >,则a b -<-,是根据不等式两边都乘同一个负数,不等号的方向改变;(4)若1a >,则2a a >,是根据不等式两边都乘同一个正数,不等号的方向不变;(5)若1a <-,则2a a >-,是根据不等式两边都乘同一个负数,不等号的方向改变,故答案为:(1)不等式两边都加上同一个数,不等号方向不变;(2)不等式两边都乘同一个正数,不等号的方向不变;(3)不等式两边都乘同一个负数,不等号的方向改变;(4)不等式两边都乘同一个正数,不等号的方向不变;(5)不等式两边都乘同一个负数,不等号的方向改变.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.79.若a >b ,则3-2a__________3-2b (用“>”、“=”或“<”填空).【答案】<【解析】【分析】根据不等式的性质进行判断即可【详解】解:∵a >b ,∴-2a <-2b∴3-2a <3-2b故答案为:<【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.80.如a b >,则1a --______1b --.【答案】<【解析】【分析】根据不等式的基本性质判断即可.【详解】解:,,11a b a b a b >∴-<-∴--<--.故答案为:<【点睛】本题考查了不等式的基本性质,①不等式的两边都加(或减)同一个整式,不等号方向不变;②不等式的两边都乘(或除以)同一个正数,不等号方向不变;③不等式的两边都乘(或除以)同一个负数,不等号方向改变,灵活利用这三条不等式的基本性质是解题的关键.。
人教版七年级数学下册第九章第一节不等式、不等式的性质习题(含答案)10.02<的最小正整数n=_____.【答案】25.【解析】【分析】本题可对不等式进行移项,然后令不等式两边同时平方、化简,找出最小正整数即为n的值.【详解】10.02<得:0.02+1,∴1nn+<1.0404,∴1+1n<1.0404,∴1n<0.0404,∴n>1 0.0404因此n=25.故答案为25.【点睛】本题考查了不等式和平方根的求解.关键是由1n <0.0404到n>10.0404,不等号要改变.92.已知实数x,y,a满足x+3y+a=4,x﹣y﹣3a=0.若﹣1≤a≤1,则2x+y的取值范围是_____.【答案】0≤2x+y≤6【解析】【分析】把a当作参数,联立方程组求出x,y的值,然后用x表示出2x+y,利用不等式的性质求解.【详解】联立方程组3430x y ax y a++=⎧⎨--=⎩①②,将a作为参数解得:121x ay a=+⎧⎨=-⎩,∵﹣1≤a≤1,∴2x+y=3a+3,可得:0≤2x+y≤6.故答案为0≤2x+y≤6.【点睛】本题主要考查不等式的性质和解二元一次方程组,解题时要把a当作参数,联立方程组求出x,y的值,然后利用不等式的性质求解.93.下列四个判断:①若ac2>bc2,则a>b;②若a>b,则a|c|>b|c|;③若a>b,则ba<1;④若a>0,则b-a<b.其中正确的是______.(填序号)【答案】①④【解析】【分析】根据不等式的基本性质判断即可得答案. 【详解】∵ac 2>bc 2∴c 2>0,∴两边同时除以c 2得到a >b ,故①正确;若a >b ,如果c=0则a|c|=b|c|,故②错误;若a >b ,a ,b 异号时b a<1不成立,故③错误; 若a >0,则b-a <b .一定成立,故④正确;故答案为:①④【点睛】本题考查不等式的性质,不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;不等式的两边都乘以或除以同一个负数,不等号的方向改变.94.不等号填空:若a>b>0 则5a -_____;1a____1b ;21a -_____21b -. 【答案】< < >【解析】【分析】由题意可知:a>b>0,再根据不等式的基本性质1、基本性质2和基本性质3即可判断各式的大小关系.【详解】解:∵a>b>0,∴-a<-b ;根据不等式两边乘(或除以)同一个正数,不等号的方向不变,即不等式-a<-b 两边同时除以5,不等号方向不变,所以55a b -<-, ∴11a b <; 再根据不等式两边乘(或除以)同一个正数,不等号的方向不变和不等式两边加(或减)同一个数(或式子),不等号的方向不变可得:2a-1>2b-1.【点睛】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.95.若a b <,则3___3a b (填“<”或“>”).【答案】<.【解析】【分析】根据不等式的性质2,把a b <的两边都乘以3即可得出答案.【详解】把a b <的两边都乘以3,得33a b <.故答案为<.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.96.写出一个不等式,使它的正整数解为1、2、3:__________________【答案】x<4等,答案不唯一.【解析】【分析】可借助数轴,把它的正整数解在数轴上找到,据此写出不等式即可.【详解】根据题意,把不等式的正整数解在数轴上表示为如图所示,故满足条件的不等式有x<4等.【点睛】此题答案不唯一,有无数个,但只要写出其中一个即可,本题属于开放类型题,逆向考查了不等式解集的概念,这是本题的创新之处.97.命题“2x是非负数”用不等式表示出来是___________.【答案】x2≥0【解析】【分析】表示非负数是:≥0,故“2x是非负数”用不等式表示出来是x2≥0【详解】解:由题意得:x2≥0.故答案为:x2≥0.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,要抓住题目中的关键词“非负数”正确选择不等号.98.“x 的 2 倍与 y 的和不大于 1” 用不等式表示为_______.【答案】2x+y ≤1【解析】【分析】x 的2倍就是2x ,2x 与y 的和就是2x+y ,2x+y 的和不大于1就是说2x+y ≤1【详解】根据题意,可得:2x+y ≤1故答案为2x+y ≤1【点睛】本题考查了列二元一次不等式,根据题意得出关系式是解题的关键.99.用不等式表示:a 与3的差不小于b 与4的和____________.【答案】34a b -≥+【解析】【分析】a 与3的差可表示为a -3,不小于b 与4的和可表示为4b ≥+,即可解答.【详解】解:a 与3的差可表示为a -3,不小于b 与4的和可表示为4b ≥+,即不等式可表示为:34a b -≥+,故答案为34a b -≥+.【点睛】本题考查了由实际问题抽象出二元一次不等式,正确列出不等关系是解题的关键.三、解答题100.已知4x-y=6,x -12y<2,求x 的取值范围.【答案】x的取值范围是x>1.【解析】【分析】求x的范围,只需要将y换成x的表达式,就可以得到关于x的一元一次不等式【详解】∵4x-y=6,∴y=4x-6,∵x-12y<2,∴x-12(4x-6)<2,解得:x>1,即x的取值范围是x>1.【点睛】本题主要考查一元一次不等式的性质,解题的关键是将y换成x.。
人教版七年级数学下册不等式的性质同步测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题是真命题的是( )A .相等的两个角是对顶角B .相等的圆周角所对的弧相等C .若a b <,则22ac bc <D .在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是132.对于任意的11x -,230ax a +->恒成立,则a 的取值范围为( )A .1a >或0a =B .3a >C .3a >或0a =D .13a << 3.关于x 的不等式1ax b x -≥-在条件2(1)0a +=且|1|1b b +=--下的解( ) A .11b x a +≥+ B .11b x a +≤+ C .任一个数 D .无解 4.不等式3x +1<2x 的解在数轴上表示正确的是( )A .B .C .D .5.若关于x 的方程()251x m +=-有两个实数根,则m 的取值范围是( )6.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 7.不等式523x -->的非负整数解的个数是A .5个B .4个C .3个D .2个8.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论: ①20a b +<;①当1x >时,y 随x 的增大而增大;①关于x 的方程2()0ax bx b c +++=有两个不相等的实数根.其中,正确结论的个数是( )A .0B .1C .2D .39.已知关于x 的一元二次方程2104x x m -+=有实数根,设此方程得一个实数根为t ,令24454y t t m =--+,则( )A .2y >-B .2y ≥-C .2y ≤-D .2y <-10.下列不是不等式5x -3<6的一个解的是( )A .1B .2C .-1D .-2二、填空题11.如图所示,在①ABC 中,DE ,MN 是边AB 、AC 的垂直平分线,其垂足分别为D 、M ,分别交BC 于E 、N ,若AB =8,AC =9,设①AEN 周长为m ,则m 的取值范围为_____.12.不等式112943x x ->+的正整数解的个数为___________________. 13.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________.14.二次函数y =ax 2﹣2ax +c (a <0)的图象过A (﹣3,y 1),B (﹣1,y 2),C (2,y 3),D (4,y 4)四个点.(1)y 3=____(用关于a 或c 的代数式表示);(2)若y 4•y 2<0时,则y 3•y 1____0(填“>”、“<”或“=”)15.不等式312x -≥的解集为________. 16.方程()2314x y z x y z ++=<<的正整数解是________.17.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____18.定义:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,例如:[]2.32=,()2.33=,[]2.33-=-,()2.32-=-.则[]()1.7 1.7+-=___________.19.用四个不等式①a >b ,①a +b >2b ,①a >0,①a 2>ab 中的两个不等式作为题设,余下的两个不等式中选择一个作为结论,组成一个真命题:_______________________________.20.比大小:﹣17___﹣0.14,|5|--_______(4)--.三、解答题21.定义新运算为:对于任意实数a 、b 都有()1a b a b b ⊕=--,等式右边都是通常的加法、减法、乘法运算,比如()1212213⊕=-⨯-=-.(1)求23⊕的值.(2)若27x ⊕<,求x 的取值范围.(3)若不等式组1223x x a⊕≤⎧⎨⊕>⎩恰有三个整数解,求实数a 的取值范围. 22.关于x 的一元一次方程3132x m -+=,其中m 是正整数. (1)当2m =时,求方程的解;(2)若方程有正整数解,求m 的值.23.在班级元旦联欢会上,主持人邀李强、张华两位向学参加一个游戏.游戏规则是每人每次抽取四张卡片.如果抽到白色卡片,那么加上卡片上的数字;如果抽到黑色卡片,那么减去卡片上的数字,比较两人所抽4张卡片的计算结果,结果较小的为同学们唱歌,李强同学抽到如图(1)所示的四张卡片,张华同学抽到如图(2)所示的四张卡片.李强、张华谁会为同学们唱歌?参考答案:1.D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意;若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.2.B【分析】分类讨论求出不等式230ax a +->的解集,再根据对于任意的11x -≤≤,230ax a +->恒成立,即可列出关于a 的不等式,解出a 即可.【详解】解:由230ax a +->,得32ax a >-,当0a >时,不等式的解集为32a x a->, 对于任意的11x -≤≤,230ax a +->恒成立, ∴321a a-<-, 解得,3a >;当0a =时,不等式无解,舍去;当0a <时,不等式的解集为32a x a-<, 对于任意的11x -≤≤,230ax a +->恒成立, ∴321a a->, 解得,1a >(与0a <矛盾,舍去);综上,3a >.故选:B .【点睛】本题考查解不等式和不等式的解集的应用.利用分类讨论的思想是解答本题的关键.3.C【分析】根据题意,先确定a 的值,进而解不等式即可. 【详解】2(1)0a +=,1a ∴=-,1ax b x -≥-,()11a x b ∴+≥+,即10b +≤由已知条件|1|1b b +=--,即10b +≤恒成立.∴不等式的解与x 的值无关,则关于x 的不等式1ax b x -≥-的解为任意一个数故选C .【点睛】本题考查了不等式的解集,非负数的性质,求得1a =-是解题的关键. 4.B【分析】先解不等式,得到不等式的解集,再在数轴上表示即可.【详解】解:3x +1<2x解得:1,x <-在数轴上表示其解集如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“小于向左拐”是解本题的关键.5.B【分析】令该一元二次方程的判根公式240b ac =-≥,计算求解不等式即可.【详解】解:①()251x m +=-①2102510x x m ++-+=①()2241042510b ac m =-=-⨯-+≥ 解得1m ≥故选B .【点睛】本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.6.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根. 7.B【分析】根据不等式的性质,解不等式即可,再根据非负整数解确定个数.【详解】解: 523x -->28284x x x ->-<<因此非负整数解有0,1,2,3.故选B【点睛】本题主要考查不等式的性质,注意0也是非负整数.8.C【详解】由题意可知:0a b c ++=,()b a c =-+,b c a +=-,0a c <<,2a c a ∴+>,即()2b a c a =-+<-,得出20b a +<,故①正确;20b a +<,∴对称轴012b x a=->,0a >,01x x ∴<<时,y 随x 的增大而减小,0x x >时,y 随x 的增大而增大,故①不正确; 22224()4()40b a b c b a a b a -+=-⨯-=+>,∴关于x 的方程2()0ax bx b c +++=有两个不相等的实数根,故①正确.故选:C .【点睛】本题考查二次函数的图象与性质及一元二次方程根的判别式,解题的关键是熟练掌握二次函数的性质并能应用求解.9.B【分析】由一元二次方程根的判别式先求解1,m ≤再利用根与系数的关系可得21,4t t m 从而可得64,y m 再利用不等式的性质可得答案. 【详解】解: 关于x 的一元二次方程2104x x m -+=有实数根, 2410,b ac m解得:1,m ≤设方程的两根分别为1,,t t111,14t t t t m 解得:41,m t t21,4t t m ∴ 24454y t t m =--+245464,t t m m1,m642,m 即 2.y故选B【点睛】本题考查的是一元二次方程根的判别式,根与系数的关系,一次函数的性质,不等式的性质,熟练的运用一元二次方程根的判别式与根与系数的关系是解本题的关键. 10.B【解析】略11.1<m <17【分析】根据线段垂直平分线的性质得到EA =EB ,NC =NA ,根据三角形的三边关系解答即可.【详解】解:①DE ,MN 是边AB 、AC 的垂直平分线,①EA =EB ,NC =NA ,①①AEN 周长为m =EA +EN +NA =EB +EN +NC =BC ,在①ABC 中,9-8<BC <9+8,①1<m <17,故答案为:1<m <17.【点睛】本题主要考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.2个【分析】先求出一元一次不等式的解,再找出其正整数解即可得. 【详解】112943x x ->+, 112943x x -->-, 152543x ->-, 209x <, 则不等式的正整数解为1,2,共2个,故答案为:2个.【点睛】本题考查了解一元一次不等式,熟练掌握不等式的解法是解题关键.13.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根, ①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.14.c<【分析】将x=2代入抛物线解析式可得y3=c,根据抛物线解析式可得抛物线开口方向及对称轴,根据各点到对称轴的距离可判断y3>y2>y4>y1,再由y4•y2<0判断出原点位置,进而求解.【详解】解:将x=2代入y=ax2﹣2ax+c得y=c,①y3=c,①y=ax2﹣2ax+c(a<0),①抛物线开口向下,对称轴为直线212axa-==-,①与抛物线对称轴距离越近的点的纵坐标越大,①A点离对称轴距离为4,B点离对称轴距离为2,C点离对称轴距离为1,D点离对称轴距离为3,①y3>y2>y4>y1,若y4•y2<0,则y3>y2>0>y4>y1,①y3•y1<0,故答案为:c,<.【点睛】本题考查二次函数图象的性质,根据二次函数的对称性求出y3>y2>y4>y1再由不等式的性质找出原点位置是解题关键.15.5x≥【分析】根据解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1可得答案.【详解】解:31 2x-≥去分母,得x-3≥2,移项,得x≥2+3,合并同类项,系数化1,得,x≥5,故答案为:x≥5.【点睛】本题考查了解一元一次不等式,解题的关键掌握解一元一次不等式的方法步骤.16.123x y z =⎧⎪=⎨⎪=⎩【分析】由()2314x y z x y z ++=<<,可得出73x <,73z >,又由,,x y z 均为正整数,分析即可得到正确答案.【详解】解:①x y z <<, ①2233x y x z <⎧⎨<⎩①62314x x y z <++= ①73x <, 同理可得:73z > 又①,,x y z 均为正整数①满足条件的解有且只有一组,即123x y z =⎧⎪=⎨⎪=⎩故答案为:123x y z =⎧⎪=⎨⎪=⎩【点睛】本题考查三元一次方程的变式,牢记相关的知识点并能够灵活应用是解题关键.17.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2, ①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b -∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 18.0【分析】根据题意,[1.7]中不大于1.7的最大整数为1,(-1.7)中不小于-1.7的最小整数为-1,则可解答【详解】解:依题意:[1.7]=1,(-1.7)=-1①[]()1.7 1.711=0+-=-故答案为:0【点睛】此题主要考查有理数大小的比较,读懂题意,即可解答.19.题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >【分析】根据题意写出命题,根据不等式的性质1、性质2证明即可.【详解】题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >,是真命题.证明:①a b >,①a b b b +>+,即2a b b +>,①a b >,且0a >,①2a ab >,故答案为:题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >.【点睛】本题考查了命题和定理,掌握真命题的概念、不等式的性质是解题的关键. 20. < <【分析】根据两个负数比较大小,其绝对值大的反而小比较即可;先化简符号,再比较即可. 【详解】解:﹣17=15049,0.147350350-=-=, ①5049350350>, ①﹣17<﹣0.14; ①|5|--=-5<0,(4)--=4,①|5|--<(4)--,故答案为:<,<.【点睛】本题考查了绝对值,有理数的大小比较,能熟记有理数的大小比较法则和绝对值的意义是解此题的关键.21.(1)4-(2)6x <(3)42a -≤<【分析】(1)利用新运算的规则直接进行计算即可;(2)利用新运算的规则对不等式转化,再进行求解;(3)利用新运算的规则对不等式组进行转化,然后解不等式组,再结合该不等式组恰有3个整数解确定a 的取值范围.(1)解:23(23)314⊕=-⨯-=-.(2) 解:27x ⊕<,∴(2)217x -⨯-<,∴6x <.(3)解:由1223x x a ⊕≤⎧⎨⊕>⎩,得(1)112(23)31x x a -⨯-≤⎧⎨-⨯->⎩①②, 解不等式①,得4x ≤;解不等式①,得106a x +>. ∴原不等式组的解集为1046a x +<≤. 又原不等式组恰有3个整数解,∴原不等式的整数解为2,3,4. ∴10126a +≤<, 解得42a -≤<.【点睛】本题考查了对定义新运算理解与运用,解不等式(组),解决本题的关键是将新运算转化为普通四则运算进行求解.22.(1)1x =(2)2m =【分析】(1)把m =2代入方程,求解即可;(2)把m 看做常数,求解方程,然后根据方程解题正整数,m 也是正整数求解即可. (1)解:当2m =时,原方程即为31232x -+=. 去分母,得3146x -+=.移项,合并同类项,得33x =.系数化为1,得1x =.∴当2m =时,方程的解是1x =. (2)解:去分母,得3126x m -+=.移项,合并同类项,得372x m =-.系数化为1,得723m x -=. m 是正整数,方程有正整数解,2m ∴=.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程是解题的关键.23.张华为同学们唱歌.【分析】首先根据游戏规则,分别求出李强、张华同学抽到的四张卡片的计算结果各是多少;然后比较大小,判断出结果较小的是哪个即可.【详解】解:李强同学抽到的四张卡片的计算结果为:13(5)422⎛⎫-+---+ ⎪⎝⎭ 135422=--++ 7=张华同学抽到的四张卡片的计算结果为:7110563⎛⎫----+ ⎪⎝⎭ 78566=-++ 156= ①1756>,①张华为同学们唱歌.答:张华为同学们唱歌.【点睛】本题以游戏为载体考查了有理数的加减运算以及有理数的比较大小,还是那个知识点但出题的形式变了,题目较为新颖.。
人教版七年级下册数学《9.1.2不等式的性质》课时练一、选择题1.下列4种说法:①x =是不等式4x -5>0的解;②x =是不等式4x -5>0的一个解;③x >是不等式4x -5>0的解集;④x >2中任何一个数都可以使不等式4x -5>0成立,所以x >2也是它的解集,其中正确的有()A .1个B .2个C .3个D .4个2.已知χ>y 且χy <0,a 为任意有理数,下列式子中正确的是﹙﹚A .-χ>-yB .a 2χ>a 2yC .-χ+a <-y +aD .χ>-y3.下列说法中正确的是﹙﹚A .χ=1是不等式-2χ<1的解集B .χ=1是不等式-2χ<1的解C .χ=是不等式-2χ<1的解D .不等式-2χ<1的解是χ=14.在下列各不等式中,错误..的是()A .若,则B .若,则C .若,则D .若,则5.如果关于x 的不等式的解集为,那么a 的取值范围是()A .B .C .D .6.已知b <a <0,下列不等式正确的是﹙﹚A .7-a >bB .>1C .>D .a 2>b 27.若a <b ,则下列结论不一定成立的是()A .a -1<b -1B .2a <2bC .-a 3>-b3D .a 2<b 28.有下列四个命题:①若a >b ,则a +1>b +1;②若a >b ,则a -1>b -1;③若a >b ,则-2a <-2b ;④若a >b ,则2a <2b .其中正确的有()A .1个B .2个C .3个D .4个9.若实数a ,b ,c 在数轴上的对应位置如图所示,则下列不等式成立的是()A .ab >bcB .ac >bcC .a +c >b +cD .a +b >c +b10.由x <y 得到ax >ay 的条件应是()A .a ≥0B .a ≤0C .a >0D .a <0二、填空题11.如果x >y ,且(a-1)x <(a-1)y ,那么a 的取值范围是______.12.若不等式(a-2)x <1,两边除以a-2后变成x <,则a 的取值范围是______.13.若>0,<0,则ac________0。
专题04 不等式及其基本性质专题测试一、单选题1.(2019·湖南省初一期中)关于代数式1x +的结果,下列说法一定正确的是( )A .比1大B .比1小C .比x 大D .比x 小 【答案】C【解析】解:∵1>0,∴x +1>x ,故选:C .2.(2018·湖南省雅礼中学初一期中)利用不等式的性质,将43x -≤变形得( )A .34x ≤-B .34x ≥-C .43x ≤-D .43x ≥- 【答案】B【解析】解:∵43x -≤,∴根据不等式的性质3得,34x ≥-. 故选B .3.(2018·浙江省初二期中)给出下面5个式子:①30>;②430x y +≠;③3x =;④1x -;⑤23x +≤,其中不等式有( ).A .2个B .3个C .4个D .5个 【答案】B【解析】根据不等式的定义,只要有不等符号的式子就是不等式,所以①②⑤为不等式,共有3个。
故选:B .4.“数x 不大于3,可以表示为”( )A .3x ≤B .3x <C .3x =D .3x ≥ 【答案】A【解析】不大于3,意即小于或等于3,故选A .5.(2019·四川省初一期中)已知x =4是不等式mx -3m +2≤0的解,且x =2不是这个不等式的解,则实数m 的取值范围为( )A .m 2≤-B .m 2<C .2m 2-<≤D .2m 2-≤<【答案】A【解析】∵x =4是不等式mx -3m +2≤0的解,∴4m -3m +2≤0,解得:m ≤-2,∵x =2不是这个不等式的解,∴2m -3m +2>0,解得:m <2,∴m ≤-2,故选:A .6.(2019·重庆第二外国语学校初二期中)已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围( )A .a >2B .a ≥2C .a <2D .a ≤2 【答案】C【解析】∵不等式(a ﹣2)x >1的解集为x <12a - ,∴a ﹣2<0,∴a 的取值范围为:a <2.故选C . 7.(2019·河南省初一期中)已知abc >0,a >c ,ac <0,下列结论正确的是( )A .a <0,b <0,c >0B .a >0,b >0,c <0C .a >0,b <0,c <0D .a <0,b >0,c >0【答案】C【解析】ac <0, a >c,所以a >0,b <0,又因为abc >0,所以c <0.所以选C .8.(2017·浙江省高照实验学校初一期中)如图,点A 表示的数是a ,则数a ,–a ,2a 的大小顺序是( )A .a <–a <2aB .2a < a <–aC .–a <a <2aD .–a < 2a <a 【答案】B【解析】根据数轴图判断出a 的范围为-1<a <0,∴0<-a <1,∴a <-a ,∵1<2,∴a >2a ,∴2a < a <–a . 故选B .9.(2020·河北省育华中学初一期中)若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n > 【答案】D【解析】解:A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以﹣3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选:D .10.(2019·内蒙古自治区初一期中)若01m <<,m 、2m 、1m 的大小关系是( ). A .21m m m <<B .21m m m <<C .21m m m <<D .21m m m << 【答案】B【解析】∵0<m <1,可得m ²<m ,1m >1, ∴可得:m ²<m <1m . 故选B .二、填空题11.(2019·吉林省长春外国语学校初三期中)用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.【答案】2 3 -1【解析】详解:根据不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.满足a b <,0c ≤即可,例如:2,3,1-.故答案为:2,3,1-.12.(2018·湖南省雅礼中学初一期中)实数a b 、在数轴上的位置如图所示,则①0a b +<;②0a b ->;③a b <;④22a b <;⑤2ab b >.以上说法正确的有____________.(在横线上填写相应的序号)【答案】①⑤【解析】解:由图可知,a <b <0,a b >①0a b +<,正确;②0a b ->,错误;③a b <,错误;④22a b <,错误;⑤2ab b >,正确故答案为①⑤.13.(2020·河北省育华中学初一期中)根据不等式的基本性质,将“mx <3”变形为“3x m>”,则m 的取值范围是_______.【答案】m <0【解析】详解:∵将“mx <3”变形为“x >3m”,不等式符号发生了改变, ∴m 的取值范围是m <0.故答案为m <0. 14.(2020·监利县新沟新建中学初一期中)若a >b ,则a +5_____ b +5;-2a ____-2 b ;5a _____ 5b【答案】> < >【解析】解:若a >b ,则a +5>b +5,-2a <-2b ,5a >5b故答案为:>,<,>15.(2020·黄石市教育局初二期中)若a >b ,且c <0,则ac +1_____bc +1(填“>”或“<”).【答案】<【解析】∵a >b ,c <0,∴ac <bc ,∴ac +1<bc +1,故答案为:<.三、解答题16.(2019·浙江省初二期中)(1)若x >y ,比较-3x +5与-3y +5的大小,并说明理由.(2)若x <y ,且(a -3)x >(a -3)y ,求a 的取值范围.【答案】(1)-3x +5<-3y +5;(2)a <3【解析】解:(1)∵x >y ,∴-3x <-3y ,∴-3x +5<-3y +5;(2)∵x <y ,且(a -3)x >(a -3)y ,∴a -3<0,∴a <3.17.(2017·北京初一期中)阅读下列材料:解答“已知2x y -=,且1x >,0y <,确定x y +的取值范围”有如下解,解:∵2x y -=,∴2x y =+.又∵1x >,∴21y +>.∴1y >-.又∵0y <,∴10y -<<,①同理得:12x <<.② 由①+②得1102y x -+<+<+.∴x y +的取值范围是02x y <+<.请按照上述方法,完成下列问题:(1)已知3x y -=,且2x >,1y <,求x y +的取值范围.(2)已知1x <-,1y >,若x y a -=,且2a <-,求x y +得取值范围(结果用含a 的式子表示).【答案】(1) 1<x +y <5;(2) a +2<x +y <-a -2.【解析】解:(1)∵x -y =3,∴x =y +3.∵x >2,∴y +3>2,∴y >-1.∵y <1,∴-1<y <1.…①同理得:2<x <4.…②由①+②得-1+2<y +x <1+4,∴x +y 的取值范围是1<x +y <5.(2)∵x -y =a ,∴x =y +a .∵x <-1,∴y +a <-1,∴y <-a -1.∵y >1,∴1<y <-a -1.…①同理得:a +1<x <-1.…②由①+②得1+a +1<y +x <-a -1+(-1),∴x +y 的取值范围是a +2<x +y <-a -2.。
人教版七年级数学不等式练习题姓名___________班级__________学号__________分数___________一、选择题1.(6396-点津)下列按要求列出的不等式中,不正确的是( )A .m 是非负数:m >0B .m 是正数:m >0C .m 不是零:m ≠0D .m 不小于零:m ≥02.(1809)当0<a 时,下列不等式中正确的是( )A .02<a ;B .a a 3445<; C .a a 32<; D .a a 14.3>π; 3.(2577)若b a >,则下列不等式一定成立的是( )A .1<ab B .1>b a C .b a ->- D .0>-b a 4.(1785)若m >n ,则下列不等式中成立的是( )A .m + a <n + b ;B .ma <nb ;C .ma 2>na 2;D .a -m <a -n ;5.(1762)无论x 取什么数,下列不等式总成立的是( )A .x +5>0;B .x +5<0;C .-(x +5)2<0;D .(x -5)2≥0;6.(3051)a 是任意有理数,下列各式正确的是( )A .a a 43>;B .43a a <;C .a a ->;D .a a ->-211; 7.(1757)下列不等式一定成立的是( )A .5a >4a ;B .x +2<x +3;C .-a >-2a ;D .aa 24>; 8.(3054)无论x 取什么数,下列不等式总成立的是( )A .x +5>0;B .x +5<0;C .-(x +5)2<0;D .(x -5)2≥09.(1744)如果b a >,且c 为实数,那么下列不等式一定成立的是( )A .bc ac >;B .bc ac <;C . 22bc ac >;D . 22ac bc ≥;10.(3049)设01x <<,则x ,2x ,x 2的大小是( )A .x x x >>22;B .x x x >>22;C .22x x x >>;D ..22x x x >>二、填空题11.(1727)不等式451>+x 的两边都加上 ,得35>x .12.(1771)若x ≠y ,则x 2+|y |_________0.13.(1728)不等式4125x -≤的两边都除以 ,得15x -≥. 14.(1686)当b <0时a ,a -b ,a +b 的大小顺序是____________. 15.(3045)设a <b ,则c _____0时,.bc ac <16.(1806)当0<<a x 时,2x 与ax 的大小关系是 _______________.17.(1444)当m >0时,关于x 的不等式 -mx > m 的解集是____________.18.(1691)如果12<x <1,则(2x -1)(x -1)________0.( 填“>”“<”或“=”) 19.(3177)在关于1x 、2x 、3x 的方程组⎪⎩⎪⎨⎧=+=+=+313232121a x x a x x a x x 中,已知321a a a >>,那么将1x 、2x 、3x 从大到小排列起来应该是_____.20.(1445)关于x 的方程2x +3k =1的解是负数,则k 的取值范围是_______.三、解答题21.(6406-点津)小明将不等式3x <2x 的两边都除以x ,得到3<2,显然不正确,请说明其中的道理,并将原不等是正确变形为“x >a ”或“x <a ”的形式.22.(3061)如果不等式组⎩⎨⎧>>nx m x 的解集是m x >,则m 与n 的关系是?人教版七年级数学第九章不等式的性质答案一、选择题1.(6396)A ;2.(1809)A .;3.(2577)D .;4.(1785)D .;5.(1762)C .;6.(3051)B .;7.(1757)B .;8.(3054)D .;9.(1744)C .;10.(3049)A ;二、填空题11.(1727)-1;12.(1771)≥;13.(1728)-45; 14.(1686)a +b <a <a -b ;15.(3045)>; 16.(1806)2x ax ;17.(1444)x <-1; 18.(1691)<;19.(3177)x 3<x 1<x 2;20.(1445)k >13; 三、解答题21.(6406)因为根据不等式的性质,要先判断x 的符号才能在不等式的两边同时除以x ,如果x 为正数,结果不改变符号,如果x 为负数,结果要改变符号.x <0.22.(3061)m >n ;人教版七年级数学第九章练习题2姓名___________班级__________学号__________分数___________一、选择题1.(1703)已知α,β都是钝角,甲、乙、丙、丁四位同学在计算16(α+β)时的结果一次为50°,26°,72°,90°其中,计算可能正确的是( )A .甲;B .乙;C .丙;D .丁;2.(1810)已知三角形的两边长分别是3、5,则第三边a 的取值范围是( )A .82<<aB .2≤ a ≤ 8C .2>aD .8<a3.(1754)现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆;B .5辆;C .6辆;D .7辆 ;4.(3134)学校总务处与教务处各领了同样数量的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用3 张信笺.结果总务处用掉了所有的信封,但余下50 张信笺,而教务处用掉了所有的信笺,但余下50 个信封.则两处所领的信笺张数、信封个数分别为( )A .150、100B . 125、75C .120、70D .100、1505.(2327)小芳和爸爸、妈妈三人玩跷跷板,三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小芳和妈妈一同坐在跷跷板的另一端,这时,爸爸的那一端仍然着地.请你猜一猜小芳的体重应小于( )A .49千克B .50千克C .24千克D .25千克6.(3036)三个连续自然数的和小于15,这样的自然数组共有( )A .6组B .5组C .4组D .3组二、填空题7.(3562-08宁夏)学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下:已知该校七年级学生有800名,那么中号校服应订制 套.8.(1776)已知三角形的两边为3和4,则第三边a 的取值范围是________.9.(1794)阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为_____________________.10.(3081)某公司去年的总收入比总支出多50 万元,今年比去年的总收人增加10% ,总支出节约20 % .如果今年的总收人比总支出多100 万元,那么去年的总收入是_______万元,总支出是_______万元.11.(3140)王大伯承包了25 亩王地,今年春季改种茄子和西红柿两种大棚蔬莱,共用去了 44 000 元,其中种茄子每亩用了 1700 元,获纯利 2400 元;种西红柿每亩用了 1800 元,获纯利 2600 元,则王大伯共获纯利______元.12.(3165)有大、小两种货车,2 辆大车与3 辆小车一次可运货15.5吨;5 辆大车与6 辆小车一次可运货35 吨,则3 辆大车与5 辆小车一次可运货____吨.13.(4414-点津)小明用100元钱购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多买______支钢笔.14.(4417-点津)某商品的金价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么,商店最多降_________元出售此商品.15.(7399)以三条线段3、4、x-5为这组成三角形,则x的取值为____________.三、解答题16.(3206)某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000 元,经粗加工后销售,每吨利润可达4500 元;经精加工后销售,每吨利润涨至7500 元,当地一家农工商公司收获这种蔬菜140 t,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16 t;如果进行精加工,每天可加工6 t,但两种加工方式不能同时进行,受季节条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15 天完成.你认为哪种方案获利最多?17.(6993-08新疆)某社区计划购买甲、乙两种树苗共600棵,甲、乙两种树苗单价及成活率见下表:(1)若购买树苗资金不超过44000元,则最多可购买乙树苗多少棵?(2)若希望这批树苗成活率不低于90%,并使购买树苗的费用最低,应如何选购树苗?购买树苗的最低费用为多少?18.(7071-08鹤岗)某工厂计划为震区生产A、B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用。
《不等式的性质》同步练习题(1)知识点:1 、不等式的性质 1:不等式的两边加上 ( 或减去 ) 同一个数 ( 或式子 ) ,不等号的方向不变,用式子表示:假如 a>b,那么 a±c>b±c.2 、不等式的性质 2:不等式的两边乘以 ( 或除以 ) 同一正数,不等号的方向不变,a b>c.用式子表示:假如 a > b , c>0,那么 ac > bc或 c3 、不等式的性质 3:不等式两边乘以 ( 或除以 ) 同一个负数,不等号的方向改变,a b用式子表示: a>b,c<0,那么, ac < bc或c<c.。
二、知识观点1. 用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的全部解,构成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,而且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,对于同一未知数的几个一元一次不等式合在一同,就构成6.了一个一元一次不等式组。
7.定理与性质不等式的性质:不等式的基天性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基天性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基天性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
本章内容要修业生经历成立一元一次不等式(组)这样的数学模型并应用它解决实质问题的过程,领会不等式(组)的特色和作用,掌握运用它们解决问题的一般方法,提升剖析问题、解决问题的能力,加强创新精神和应用数学的意识。
同步练习:1. 用 a >b ,用“<”或“>”填空:⑴ a + 2 b +2⑵ 3a 3b⑶ - 2a - 2b ⑷ a -b 0 ⑸ -a -4-b -4 ⑹ a -2b - 2;2. 用“<”或“>”填空:⑴若 a - b <c -b ,则 a c⑵若 3a > 3b ,则 a b ⑶若- a <- b ,则 a b ⑷若 2a + 1< 2b +1,则 a b3. 已知 a > b ,若 a <0 则2a ,若 a > 则2a ;a b 0 ab4. 用“<”或“>”填空:⑴ 若 a -b >a 则 b 0 ⑵ 若 ac 2 > bc 2 则 a b ⑶ 若 a<- b 则a- b⑷ 若 a <b 则 a - b 0⑸ 若 a <0,b 0时 ab ≥ 05. 若 a <a,则 a 必定知足( )32A 、 a >0B 、 a < 0C 、 a ≥0D 、 a ≤06. 若 x >- y ,则以下不等式中成立的有( )A 、 x + y < 0B 、 x - y > 0C 、2x >2yD 、>a a 3x+3y 7. 若 0<x <1,则以下不等式成立的是()A 、 x 2> 1> xB、 1> x 2 > xxxC 、 x > 1> x 2D、 1> x > x 2xx8. 若方程组 3x yk 1的解为 x ,y ,且 x+y >0,则 k 的范围是( )x 3y 3A 、k >4B 、 k >- 4C 、k <4D 、k <- 49. 用不等式表示以下各式,并利用不等式性质解不等式。
人教版七年级数学下册第九章第一节不等式、不等式的性质习题(含答案)有下列表达式:①-m2≤0,②x+y>0,③a2+2ab+b2,④(a-b)2≥0,⑤-(y+1)2<0.其中不等式有()A.1个B.2个C.3个D.4个【答案】D【解析】根据不等式的定义可知③不是不等式,①②④⑤是不等式.22.下列说法中错误的是()A.2x<6的解集是x<3B.-x<-4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个【答案】B【解析】【分析】根据不等式的性质和解集的概念判断.【详解】不等式两边同乘负数,则不等号改变方向,B中-x<-4的解集是x>4.故选B.【点睛】本题考查不等式的性质和解集,熟记不等式的性质是关键.23.设A、B、C表示三种不同物体,先用天平称了两次,情况如图所示,则这三个物体按质量从大到小应为()A.A>B>CB.C>B>AC.B>A>CD.A>C>B【答案】A【解析】观察天平知A>B,且3C=B+C,即B=2C,故A>B>C.24.有下列数:5,-4,23,0,113,-a2+1,2,223.其中是不等式8-4x>0的解的有()A.4个B.5个C.6个D.3个【答案】B【解析】把各个数分别代入不等式中验证即可.25.表示a,b两数的点在数轴上的位置如图所示,下列结论不正确的是()A.a>0B.ab<0C.2a-b>0D.b-a>0【答案】D【解析】由题图可知a>0,b<0,a>b,所以b-a>0不正确.26.下列不等式中,属于一元一次不等式的是()<2 D.4x–3<2y–7A.4>1 B.3x–2<4 C.1x【答案】B【解析】【分析】根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.【详解】A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.27.如果a>b,那么下列结论一定正确的是()A.a―3<b—3 B.3―a<3—b C.ac2>bc2D.a2>b2【答案】B【解析】【分析】利用不等式的基本性质判断即可.【详解】如果a>b,那么a-3>b-3,选项A不正确;如果a>b,那么3-a<3-b,选项B正确;如果a>b,c>0,那么ac>bc,选项C错误;如果a>b>0,那么a2>b2,选项D错误,故选B.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.28.已知a>b,c≠0,那么下列结论一定正确的是()A.ac2<bc2B.ac<bc C.ac>bc D.ac2>bc2【答案】D【解析】试题分析:求出c2>0,根据不等式的性质2(不等式的两边都乘以一个正数,不等号的方向不变),即可判断A、D;根据当c>0时,ac>bc,当c<0时,ac<bc,即可判断B、C.解:A、∵a>b,c≠0,∵c2>0,∵ac2>bc2,故本选项错误;B、当c>0时,ac>bc,故本选项错误;C、当c<0时,ac<bc,故本选项错误;D、∵a>b,c≠0,∵c2>0,∵ac2>bc2,故本选项正确;故选D.点评:本题考查了有理数的乘法和不等式的性质的应用,主要考查学生的判断能力,题目比较好,但是一道比较容易出错的题目.29.数学表达式中:①–5<7,②3y–6>0,③a=6,④x–2x,⑤a≠2,⑥7y–6>5y+2中是不等式的有( )A.2个B.3个C.4个D.5个【答案】C【解析】试题分析:用不等号表示不相等关系的式子是不等式,根据定义即可解题.解:①﹣5<7 ②3y﹣6>0 ③a=6 ④x﹣2x ⑤a≠2 ⑥7y﹣6>5y+2中,只有③a=6、④x﹣2x不含不等号,不是不等式,所以不等式有4个.故选C.点评:本题考查不等式的识别,一般地,用不等号表示的不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.30.若成立,则下列不等式成立的是()A.B.C.D.【答案】B【解析】试题分析:,两边同时乘以-3可得;两边同时减去2可得;等式两边同时减去2,再乘以-1可得-(x-2)>-(y-2);等式两边都乘以-1后,再加3可得.考点:等式的性质.。
9.1.2不等式的性质作业一、选择题1.若3x >–3y ,则下列不等式中一定成立的是()A .x +y >0B .x –y >0C .x +y <0D .x –y <02.已知实数a ,b 满足a +1>b +1,则下列选项错误的为()A.a >bB .a +2>b +2C .–a <–bD .2a >3b 3.若a <b ,则下列不等式成立的是()A.a +c <b +dB .a +c <b +cC .a –c <b +cD .a –c <b –d4.如果不等式(a –1)x <a –1的解集是x >1,那么有()A.a ≠1B .a >1C .a <1D .a 为任意有理数5.若x >y ,则下列式子错误的是()A.X –3>y –3B .–3x >–3yC .x +3>y +3D .33x y >6.若32a a-<-,则a 一定满足()A.a >0B .a <0C .a ≥0D .a ≤07.若x >–y ,则下列不等式中成立的有()A.X +y <0B .x –y >0C .a 2x >–a 2yD .3x +3y >08.下列不等式的变形不正确的是()A.若a >b ,则a +3>b +3B .若–a >–b ,则a <b C .若12x y -<,则x >–2y D .若–2x >a ,则12x a >-9.下列说法不一定成立的是()A.若a <b ,则a +c <b +c B .若a +c <b +c ,则a <b C .若a <b ,则a 2c <b 2cD .若ac 2<bc 2,则a <b 10.若a >b ,则下列不等式变形正确的是()A.ac 2>bc 2B .1a b>C .–ca <–cb D .3a –c >3b –c二、填空题11.若a <b <0,则ab ____a 212.已知a>b,试比较3a____3b13.若a>b,则(x2+1)a_____(x2+1)b14.已知a>b,则3.5b+1____3.5a+1三、解答题15.把下列不等式化成“x>a”或“x≥a”或“x<a”或“x≤a”的形式(1)x–10<–6(2)12 3x ->-(3)13 2x>-(4)1–x≥2+x16.有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a与b哪个大?17.赵军说不等式2a>3a永远不会成立,因为如果在这个不等式两边同除以a,就会出现2>3这样的错误结论,你同意他的说法对吗?若同意说明其依据,若不同意说出错误的原因。
一、选择题1.若关于x 的一元一次不等式组3210x x a ->⎧⎨->⎩恰有3个整数解,那么a 的取值范围是( )A .21a -<<B .32a -<≤-C .32a -≤<-D .32a -<<-2.若整数a 使关于x 的不等式组125262x x x a++⎧≤⎪⎨⎪->⎩至少有4个整数解,且使关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,那么所有满足条件的整数a 的值的和是( ).A .-3B .-4C .-10D .-143.从-2,-1,0,1,2,3,5这七个数中,随机抽取一个数记为m ,若数m 使关于x 的不等式组22141x m x m >+⎧⎨--≥+⎩无解,且使关于x 的一元一次方程(m -2)x =3有整数解,那么这六个数所有满足条件的m 的个数有( ) A .1B .2C .3D .44.若实数x 和y 满足x >y ,则下列式子中错误的是( ) A .x +1>y +1B .2x -6>2y -6C .-3x >-3yD .-3x<-3y5.已知3a >-,关于x 的不等式组1212x ax x +<⎧⎨-≥+⎩无解,那么所有符合条件的整数a 的个数为( ) A .6个B .7个C .8个D .9个6.已知关于x 的一元一次不等式组10,20.x x a ->⎧⎨-<⎩有2个整数解,若a 为整数,则a 的值为( ) A .5B .6C .6或7D .7或87.如果关于x 的不等式组3021x a x b -≥⎧⎨+<⎩的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(),a b 共有( )A .4个B .6个C .8个D .9个8.下列说法错误..的是( ) A .由20x +>,可得2x >- B .由102x <,可得0x < C .由24x >-,可得2x <-D .由312x ->-,可得23x <9.若关于x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( )A .a ≤﹣1B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a ≤﹣110.一个物体在天平上两次称重的情况如图所示,则这个物体的质量的取值范围在数轴上表示正确的是()A .B .C .D .二、填空题11.已知2153+132x xx--≥-,则代数式23x x--+最大值与最小值的差是________.12.按图中程序计算,规定:从“输入一个值x”到“结果是否17≥”为一次程序操作,如果程序操作进行了两次才停止,则x的取值范围为_______________________.13.关于x的不等式组23284a xx a->⎧⎨+>⎩的解集中每一个值均不在18x≤≤的范围内,则a的取值范围是____________.14.已知关于x的不等式组114()324x mx x+>⎧⎪⎨-≤+⎪⎩有2019个整数解,则m的取值范围是_______.15.运行程序如图所示,规定:从“输入一个值x"”到“结果是否19≥为次程序如果程序操作进行了三次才停止,那么x的取值范围是______________16.已知15325x y zx y z++=⎧⎨--+=-⎩,x、y、z为非负数,且54N x y z=++,则N的取值范围是__________.17.植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有_____棵.18.已知关于x ,y 的方程组24223x y kx y k +=⎧⎨+=-+⎩,的解满足x ﹣y >0,则k 的最大整数值是______________.19.若关于x 的一元一次不等式组3136xx x m-⎧<-⎪⎨⎪<⎩的解集是3x <,那么m 的取值范围是______.20.用{}a 表示不小于数a 的最小整数.例如:{}4.25=,{}5.35-=-,{}00=,{}33-=-.在此规定下:数a 都能满足{}a a b =-,其中01b ≤<.则方程{}13222x x -=+的解是__________.三、解答题21.我们定义,关于同一个未知数的不等式A 和B ,若A 的解都是B 的解,则称A 与B 存在“雅含”关系,且A 不等式称为B 不等式的“子式”.如:0A x <,:1B x <,满足A 的解都是B 的解,所以A 与B 存在“雅含”关系,A 是B 的“子式”.(1)若关于x 的不等式:21A x +>,:3B x >,请问A 与B 是否存在“雅含”关系,若存在,请说明谁是谁的“子式”; (2)已知关于x 的不等式11:23x a C -+<,():233D x x --<,若C 与D 存在“雅含”关系,且C 是D 的“子式”,求a 的取值范围; (3)已知2m n k +=,3m n -=,12m ≥,1n <-,且k 为整数,关于x 的不等式:64P kx x +>+,():62142Q x x -≤+,请分析是否存在k ,使得P 与Q 存在“雅含”关系,且Q 是P 的“子式”,若存在,请求出k 的值,若不存在,请说明理由.22.如图,数轴上两点A 、B 对应的数分别是﹣1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)﹣3,0,2.5是连动数的是 ;(2)关于x 的方程2x ﹣m =x +1的解满足是连动数,求m 的取值范围 ;(3)当不等式组11212()3x x a +⎧>-⎪⎨⎪+-⎩的解集中恰好有4个解是连动整数时,求a 的取值范围.23.某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表:数量范围(千克) 不超过50的部分 50以上但不超过150的部分 150以上的部分 价格(元)零售价的95%零售价的85%零售价的75%(1)如果师傅要批发240千克苹果选择哪家批发更优惠?(2)设批发x 千克苹果(100x >),问师傅应怎样选择两家批发商所花费用更少? 24.某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润 = 销售收入-进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.定义:如果一个两位数a 的十位数字为m ,个位数字为n ,且m n ≠、0m ≠、0n ≠,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()W a .例如:14a =,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为411455,和与11的商为55115,所以(14)5W .根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________; ②计算:(36)W ________;(10)W mn ________;(m 、n 分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b 的十位数字是x ,个位数字是y ,且()7W b ;另一个“互异数”c的十位数字是2x +,个位数字是21y -,且()13W c ,请求出“互异数”b 和c ;(3)如果一个“互异数”d 的十位数字是x ,个位数字是3x +,另一个“互异数”e 的十位数字是2x -,个位数字是3,且满足()()25W d W e ,请直接写出满足条件的所有x 的值________;(4)如果一个“互异数”f 的十位数字是4x +,个位数字是x ,且满足()W f t 的互异数有且仅有3个,则t 的取值范围________. 26.阅读理解:例1.解方程|x |=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x﹣1|>2,在数轴上找出|x﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.参考阅读材料,解答下列问题:(1)方程|x﹣2|=3的解为;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)对于任意数x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范围.27.某加工厂用52500元购进A、B两种原料共40吨,其中原料A每吨1500元,原料B 每吨1000元.由于原料容易变质,该加工厂需尽快将这批原料运往有保质条件的仓库储存.经市场调查获得以下信息:①将原料运往仓库有公路运输与铁路运输两种方式可供选择,其中公路全程120千米,铁路全程150千米;②两种运输方式的运输单价不同(单价:每吨每千米所收的运输费);③公路运输时,每吨每千米还需加收1元的燃油附加费;④运输还需支付原料装卸费:公路运输时,每吨装卸费100元;铁路运输时,每吨装卸费220元.(1)加工厂购进A、B两种原料各多少吨?(2)由于每种运输方式的运输能力有限,都无法单独承担这批原料的运输任务.加工厂为了尽快将这批原料运往仓库,决定将A原料选一种方式运输,B原料用另一种方式运输,哪种方案运输总花费较少?请说明理由.28.我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”.(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;①240 523xx-=⎧⎨-⎩<;②5323233124x xx x--⎧=-⎪⎪⎨+-⎪-⎪⎩<.(2)若关于x的组合515032xx aa+=⎧⎪⎨-⎪⎩>是“有缘组合”,求a的取值范围;(3)若关于x的组合5323212a xx ax ax a-⎧-=-⎪⎪⎨-⎪+≤+⎪⎩是“无缘组合”;求a的取值范围.29.定义一种新运算“a ※b ”:当a ≥b 时,a ※b =2a +b ;当a <b 时,a ※b =2a ﹣b . 例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24. (1)填空:(﹣2)※3= ;(2)若(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),则x 的取值范围为 ; (3)已知(2x ﹣6)※(9﹣3x )<7,求x 的取值范围;(4)小明在计算(2x 2﹣2x +4)※(x 2+4x ﹣6)时随意取了一个x 的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由. 30.如图,在平面直角坐标系中,已知,0,0,A a B b 两点,且a 、b 满足()224210a b a b ++++-=点(),0C m 在射线AO 上(不与原点重合).将线段AB 平移到DC ,点D 与点A 对应,点C 与点B 对应,连接BC ,直线AD 交y 轴于点E .请回答下列问题:(1)求A 、B 两点的坐标;(2)设三角形ABC 面积为ABC S ∆,若4<ABC S ∆≤7,求m 的取值范围; (3)设,BCA AEB αβ∠=∠=,请给出,αβ,满足的数量关系式,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可. 【详解】解不等式3﹣2x >1,得:x <1, 解不等式x ﹣a >0,得:x >a , 则不等式组的解集为a <x <1,∵不等式组恰有3个整数解, ∴不等式组的整数解为﹣2、﹣1、0, 则﹣3≤a <﹣2, 故选C . 【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式组.2.D解析:D 【分析】根据不等式组求出a 的范围,然后再根据关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数得到26a -=-或12-,从而确定所有满足条件的整数a 的值的和. 【详解】解:125262x x x a++⎧⎪⎨⎪->⎩, 不等式组整理得:22x x a ⎧⎨>+⎩,由不等式组至少有4个整数解,得到21a +<-, 解得:3a <-,解方程组206ax y x y +=⎧⎨+=⎩,得12262x a a y a ⎧=-⎪⎪-⎨⎪=⎪-⎩,又关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,26a ∴-=-或12-,解得4a =-或10a =-,∴所有满足条件的整数a 的值的和是14-.故选:D . 【点睛】本题考查解一元一次不等式组,学生的计算能力以及推理能力,解题的关键是根据不等式组以及二元一次方程组求出a 的范围,本题属于中等题型.3.D解析:D 【分析】不等式组整理后,根据无解确定出m 的范围,进而得到m 的值,将m 的值代入检验,使一元一次方程的解为整数即可. 【详解】解:解:不等式组整理得:221x m x m >+⎧⎨--⎩,由不等式组无解,得到221m m +--, 解得:1m -,即1m =-,0,1,2,3,5;当m=-1时,一元一次方程(m -2)x =3解为x=-1,符合题意; 当m=0时,一元一次方程(m -2)x =3解为x=-1.5,不合题意; 当m=1时,一元一次方程(m -2)x =3解为x=-3,符合题意; 当m=2时,一元一次方程(m -2)x =3无解,不合题意; 当m=3时,一元一次方程(m -2)x =3解为x=3,符合题意; 当m=5时,一元一次方程(m -2)x =3解为x=1,符合题意. 故选:D 【点睛】本题考查根据不等式组的解集确定字母取值及一元一次方程解法,理解好求不等式组的解集的口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题关键.4.C解析:C 【分析】直接利用不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;分别分析得出答案. 【详解】 解:A .∵x >y ,∴x +1>y +1,故此选项不合题意; B .∵x >y , ∴2x >2y ,∴2x −6>2y −6,故此选项不合题意; C .∵x >y ,∴−3x <−3y ,故此选项符合题意; D .∵x >y ,∴-3x<-3y ,故此选项不合题意;故选:C . 【点睛】本题主要考查了不等式的性质,掌握不等式的基本性质是解题关键.5.B解析:B 【分析】分别求得不等式组中每一个不等式的解集,再根据不等式组无解以及3a >-解答即可 【详解】解不等式1x a +<,得1x a <-, 解不等式212x x -≥+,解得3x ≥,关于x 的不等式组1212x ax x +<⎧⎨-≥+⎩无解,13a ∴-≤解得4a ≤又3a >-,且a 为整数,34a ∴-≤≤且为整数∴a 的值为2,1,0,1,2,3,4--共7个故选B 【点睛】本题考查了接一元一次不等式组,根据不等式的解集求参数的范围,求不等式组的整数解,掌握不等式组的解法是解题的关键.6.D解析:D 【分析】先解出每个不等式的解集,即可得到该不等式组的解集,然后根据该不等式组有2个整数解确定a 的取值范围,从而求出a 的整数值. 【详解】10,20.x x a ->⎧⎨-<⎩解不等式①,得:x > 1, 解不等式②,得:2ax <, ∴不等式组的解集为12a x <<, 又该不等式组有2个整数解,∴2个整数解为2和3,342a∴<≤, 解得:68a <≤,∴整数a 的值为7或8,故选:D . 【点睛】本题考查的是解一元一次不等式组,不等式组的整数解,属于基础题,难度一般,熟知“同大取大;同小取小;大小小大中间找,大大小小找不到”的原则是解题的关键.7.B解析:B 【分析】解不等式组,然后根据不等式组的整数解仅有1,2即可确定a ,b 的范围,即可确定a ,b 的整数解,即可求解.【详解】解:3021x a x b -⎧⎨+<⎩①②,解不等式①,得:3ax , 解不等式②,得:12bx -<, ∴不等式组的解集为132a b x -<, 不等式组的整数解仅有1、2,013a ∴<,1232b-<, 解得:03a <,53b -<-,∴整数a 有1;2;3,整数b 有4-;3-,整数a 、b 组成的有序数对(,)a b 有(1,4)-;(2,4)-;(3,4)-;(1,3)-;(2,3)-;(3,3)-,共6个, 故选:B . 【点睛】此题主要考查了不等式组的整数解,根据不等式组整数解的值确定a ,b 的取值范围是解决问题的关键.8.C解析:C 【分析】根据不等式的性质求解判断即可. 【详解】解:A .由20x +>,可得2x >-,故A 说法正确,不符合题意; B .由102x <,可得0x <,故B 说法正确,不符合题意; C .由24x >-,可得2x <-,故C 说法错误,符合题意; D .由312x ->-,可得,23x <,故D 说法正确,不符合题意; 故选:C . 【点睛】本题考查了不等式的性质,熟记不等式的性质是解题的关键.9.B【分析】先确定不等式组的整数解,再求出a 的范围即可.【详解】解:∵关于x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解, ∴a<x<2∴整数解为1,0,﹣1,∴﹣2≤a <﹣1,故选:B .【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a 的取值范围是解此题的关键.10.C解析:C【分析】根据已知可看出物体质量的取值范围,再在数轴上表示.【详解】有已知可得,设物体的质量为xg ,则40<x <50在数轴表示为故选C【点睛】考核知识点:在数轴表示不等式组的解集.利用数轴表示不等式的解集是关键.二、填空题11.【分析】首先解一元一次不等式,解题时要注意系数化一时:系数是-11,不等号的方向要改变.在去绝对值符号时注意:当a 为正时,|a|=a ;当a 为0时,|a|=0;当a 为负时,|a|=-a .【详解】 解析:10411【分析】首先解一元一次不等式,解题时要注意系数化一时:系数是-11,不等号的方向要改变.在去绝对值符号时注意:当a 为正时,|a |=a ;当a 为0时,|a |=0;当a 为负时,|a |=-a .解:2153+132x x x --≥-, 去分母得:22166353x x x -+≥--()(), 去括号得:4266159x x x -+≥-+,移项得:4691526x x x --≥-+-,合并同类项得:1119x -≥-, 解不等式组得:1911x ≤; (1)当19311x -≤≤时,()23232312x x x x x x x --+=--+=---=--, 当1911x=时有最小值4911-, 当=3x -时有最大值5;(2)当3x -<时,()2323235x x x x x x --+=-++=-++=,∴当3x -<时23x x --+的值恒等于5(最大值);∴最大值与最小值的差是494910455111111==⎛⎫--+ ⎪⎝⎭. 故答案为:10411. 【点睛】 此题考查了一元一次不等式的求解与绝对值的性质.解题时要注意一元一次不等式的求解步骤,绝对值的性质.12.【分析】根据题意得到第一次运算结果小于17,第二次运算结果大于等于17,列出不等式组,解不等式组即可求解.【详解】解:由题意得解不等式①得 ,解不等式②得,∴不等式组的解集为.故答案 解析:763x ≤<【分析】根据题意得到第一次运算结果小于17,第二次运算结果大于等于17,列出不等式组,解不等式组即可求解.【详解】解:由题意得()3117331117x x -⎧⎪⎨--≥⎪⎩<①② 解不等式①得 6x <,解不等式②得73x ≥, ∴不等式组的解集为763x ≤<. 故答案为:763x ≤< 【点睛】 本题考查了一元一次不等式组的应用,理解运算程序并根据题意列出不等式组是解题关键.13.或【分析】先求出不等式组的解集,根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:∵解不等式①得,解不等式②得,∴不等式组的解集是.∵关于x 的不等式组的解集中每一个值均解析:6a ≥或2a ≤【分析】先求出不等式组的解集,根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:23284a x x a ->⎧⎨+>⎩①②∵解不等式①得23x a <-,解不等式②得24x a >-,∴不等式组的解集是2423a x a -<<-.∵关于x 的不等式组23284a x x a->⎧⎨+>⎩的解集中每一个值均不在18x ≤≤的范围内, ∴248a -≥或231a -≤,解得6a ≥或2a ≤.【点睛】本题考查了解一元一次不等式组,能根据不等式组的解集和已知得出关于a 的不等式组是解此题的关键.注意理解:解集中每一个值均不在18x ≤≤的范围内的意义.14.【分析】先求出不等式组的解集为,又知小于等于3且大于-2016的整数有2019个,结合不等式组的解集特征可得1-m 的取值范围,从而确定m 的范围.【详解】解:解不等式①得, ,解不等式②得解析:20162017m【分析】先求出不等式组的解集为13m x ,又知小于等于3且大于-2016的整数有2019个,结合不等式组的解集特征可得1-m 的取值范围,从而确定m 的范围.【详解】 解:114()324x m x x ①②+>⎧⎪⎨-≤+⎪⎩解不等式①得,1x m >- ,解不等式②得,3x ≤,∴不等式组的解集为13m x ,∵原不等式组有2019个整数解,分别为3,2,1,0,-1…-2014,-2015,共2019个,∴201612015m∴20162017m .故答案为:20162017m .【点睛】本题考查不等式组的整数解,理解解集的意义及处理临界点值是解答此题的关键. 15.【分析】由输入的数运行了三次才停止,即可得出关于x 的一元一次不等式组,解之即可得到x 的取值范围【详解】解:根据题意前两次输入值都小于19,第三次值大于19可得不等式组为: ,解得故答案为 解析:342x ≤<【分析】由输入的数运行了三次才停止,即可得出关于x 的一元一次不等式组,解之即可得到x 的取值范围【详解】解:根据题意前两次输入值都小于19,第三次值大于19可得不等式组为:()()211922111922211119x x x ⎧+<⎪⎪++<⎨⎪⎡⎤+++≥⎪⎣⎦⎩,解得342x ≤< 故答案为342x ≤< 【点睛】本题考查程序框图以及不等式的解法,理解程序框图为解题关键16.【解析】【分析】由,可得到y 和z 的关于x 的表达式,再根据y ,z 为非负实数,列出关于x 的不等式组,求出x 的取值范围,并将N 转化为关于x 的表达式,将x 的最大值和最小值代入解析式即可得到N 的最大值和解析:5565N ≤≤【解析】【分析】由15325x y z x y z ++=⎧⎨--+=-⎩,可得到y 和z 的关于x 的表达式,再根据y ,z 为非负实数,列出关于x 的不等式组,求出x 的取值范围,并将N 转化为关于x 的表达式,将x 的最大值和最小值代入解析式即可得到N 的最大值和最小值.【详解】解:∵15325x y z x y z ++=⎧⎨--+=-⎩, ∴解关于y ,z 的方程可得:2025y x z x =-⎧⎨=-⎩, ∵x 、y 、z 为非负数,∴2020500y x z x x =-≥⎧⎪=-≥⎨⎪≥⎩, 解得510x ≤≤,∴54N x y z =++=54(202)(5)x x x +-+- =275x -+,∵-2<0,∴N 随x 增大而减小,∴故当x=5时,N 有最大值65;当x=10时,N 有最小值55.∴55≤N≤65.故答案为55≤N≤65.【点睛】本题主要考查一次函数的性质的知识,解决本题的关键是根据题目方程组,求得用N 表示的x 、y 、z 表达式,进而根据x 、y 、z 皆为非负数,求得N 的取值范围.17.121【分析】设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【详解】设市团委组织部分中学的团员有x人,则解析:121【分析】设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【详解】设市团委组织部分中学的团员有x人,则树苗有(4x+37)棵,由题意得1≤(4x+37)-6(x-1)<3,去括号得:1≤-2x+43<3,移项得:-42≤-2x<-40,解得:20<x≤21,因为x取正整数,所以x=21,当x=21时,4x+37=4⨯21+37=121,则共有树苗121棵.故答案为:121.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.18.0【分析】方程组两方程相减表示出,代入已知不等式即可求出的范围,进而确定出最大整数值即可.【详解】解:,②①得:,∵x﹣y>0,∴,解得:,∴的最大整数值为0.故答案为:0.【解析:0【分析】-,代入已知不等式即可求出k的范围,进而确定出最大整数方程组两方程相减表示出x y值即可.【详解】解:24223x y k x y k +=⎧⎨+=-+⎩①②, ②-①得:63x y k -=-+,∵x ﹣y >0,∴630k -+>, 解得:12k <, ∴k 的最大整数值为0.故答案为:0.【点睛】此题考查了解一元一次不等式以及解二元一次方程组,熟练掌握各自的解法是解本题的关键.19.【分析】先根据解一元一次不等式的步骤逐个求解不等式,再根据不等式组解集“同小取小”求参数m 的范围.【详解】解:,解不等式,,解得:,因为不等式组的解集是,所以,故答案为:.【点解析:3m ≥【分析】先根据解一元一次不等式的步骤逐个求解不等式,再根据不等式组解集“同小取小”求参数m 的范围.【详解】 解:3136x x x m-⎧<-⎪⎨⎪<⎩, 解不等式3136x x -<-, ()263x x <--,解得:3x <,因为不等式组3136x x x m-⎧<-⎪⎨⎪<⎩的解集是3x <, 所以3m ≥,故答案为:3m ≥.【点睛】本题主要考查由不等式组解集求参数的取值范围,解决本题的关键是要熟练掌握不等式组解集确定.20.或【分析】根据题意得出,其中,即,将转化为,且为整数,解出不等式组,再求出的范围,取整数再解方程即可求得.【详解】解:∵,其中,∴,其中,∴,∴可以转化为:,且为整数,解得,,∴ 解析:74x =或94x = 【分析】根据题意得出{}a a b =+,其中01b ≤<,即{}1a a a ≤<+,将{}13222x x -=+转化为1322(32)12x x x -≤+<-+,且122x +为整数,解出不等式组,再求出122x +的范围,取整数再解方程即可求得.【详解】解:∵{}a a b =-,其中01b ≤<,∴{}a a b =+,其中01b ≤<,∴{}1a a a ≤<+,∴{}13222x x -=+可以转化为: 1322(32)12x x x -≤+<-+,且122x +为整数, 解得,3522x <≤,∴13.52 5.52x <+≤, ∴整数122x +为4或5, 解得,74x =或94x =, 故答案为:74x =或94x =. 【点睛】本题考查了一元一次不等式组的解法和不等式的性质,解题关键是读懂题意,正确转换题意得到一元一次不等式组.三、解答题21.(1)A 与B 存在“雅含”关系,B 是A 的“子式”;(2)12a ≤;(3)存在,0k =. 【分析】(1)根据“雅含”关系的定义即可判断;(2)先求出C D ,解集,根据“雅含”关系的定义得出2423a +≤,解不等式即可; (3)首先解关于m n ,的方程组即可求得m n ,的值,然后根据12m ≥,1n <-,且k 为整数即可得到一个关于k 的范围,从而求得k 的整数值.【详解】解:(1)不等式A :x +2>1的解集为1x >-,∵:3B x >∴A 与B 存在“雅含”关系,B 是A 的“子式”;(2)不等式:C 1123x a -+<,解得:253a x +<, 不等式D :()233x x --<,解得:2x <,∵C 与D 存在“雅含”关系,且C 是D 的“子式”, ∴2523a +≤,解得:12a ≤, (3)存在;由23m n k m n +=⎧⎨-=⎩解得:3363k m k n +⎧=⎪⎪⎨-⎪=⎪⎩, ∵12m ≥,1n <-,即:3132613k k +⎧≥⎪⎪⎨-⎪<-⎪⎩,解得:332k -≤<, ∵k 为整数,∴k 的值为10,1,2-,, 解不等式:64P kx x +>+得:()12k x ->-,解不等式():62142Q x x -≤+得:1x ≤,∵P 与Q 存在“雅含”关系,且Q 是P 的“子式”,∴不等式:64P kx x +>+的解集为:21x k -<-, ∴10k -<,且211k ->-, 解得:11k -<<,∴0k =.【点睛】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小无解.22.(1)﹣3,2.5;(2)﹣4<m <﹣2或0<m <2;(3)1≤a <2.【分析】(1)根据连动数的定义逐一判断即得答案;(2)先求得方程的解,再根据连动数的定义得出相应的不等式组,解不等式组即可求出结果;(3)先解不等式组中的每个不等式,再根据连动整数的概念得到关于a 的不等式组,解不等式组即可求得答案.【详解】解:(1)设点P 表示的数是x ,则11x -≤≤,若点Q 表示的数是﹣3,由2PQ =可得()32x --=,解得:x =﹣1或﹣5,所以﹣3是连动数;若点Q 表示的数是0,由2PQ =可得02x -=,解得:x =2或﹣2,所以0不是连动数; 若点Q 表示的数是2.5,由2PQ =可得 2.52x -=,解得:x =﹣0.5或4.5,所以2.5是连动数;所以﹣3,0,2.5是连动数的是﹣3,2.5,故答案为:﹣3,2.5;(2)解关于x 的方程2x ﹣m =x +1得:x =m +1,∵关于x 的方程2x ﹣m =x +1的解满足是连动数,∴112112m m ---<⎧⎨-->⎩或112112m m +-<⎧⎨++>⎩, 解得:﹣4<m <﹣2或0<m <2;故答案为:﹣4<m <﹣2或0<m <2;(3)()112123x x a +⎧>-⎪⎨⎪+-≤⎩①②,解不等式①,得x >﹣3,解不等式②,得x ≤1+a ,∵不等式组()112123x x a +⎧>-⎪⎨⎪+-≤⎩的解集中恰好有4个解是连动整数, ∴四个连动整数解为﹣2,﹣1,1,2,∴2≤1+a <3,解得:1≤a <2,∴a 的取值范围是1≤a <2.【点睛】本题是新定义试题,以数轴为载体,主要考查了一元一次不等式组,正确理解连动数与连动整数、列出相应的不等式组是解题的关键.23.(1)在乙家批发更优惠;(2)当x=200时他选择任何一家批发所花费用一样多;当100<x <200时,师傅应选择甲家批发商所花费用更少;当x >200时,师傅应选择乙家批发商所花费用更少.【分析】(1)分别求出在甲、乙两家批发240千克苹果所需费用,比较后即可得出结论;(2)分两种情况:①若100<x≤150时,②若x>150时,分别用含x 的代数式表示出在甲、乙两家批发x 千克苹果所需费用, 再比较大小,列出不等式,求出x 的范围,即可得到结论.【详解】(1)在甲家批发所需费用为:240×8×85%=1632(元),在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(240−150)×8×75%=1600(元), ∵1632>1600,∴在乙家批发更优惠;(2)①若100<x≤150时,在甲家批发所需费用为:8×85%x=6.8x ,在乙家批发所需费用为:50×8×95%+(x−50)×8×85%=6.8x+40,∵6.8x <6.8x+40,∴师傅应选择甲家批发商所花费用更少;②若x>150时,在甲家批发所需费用为:8×85%x=6.8x ,在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(x−150)×8×75%=6x+160,当6.8x=6x+160时,即x=200时,师傅选择两家批发商所花费用一样多,当6.8x >6x+160时,即x >200时,师傅应选择乙家批发商所花费用更少,当6.8x <6x+160时,即150<x <200时,师傅应选择甲家批发商所花费用更少.综上所得:当x=200时他选择任何一家批发所花费用一样多;当100<x <200时,师傅应选择甲家批发商所花费用更少;当x >200时,师傅应选择乙家批发商所花费用更少.【点睛】本题主要考查代数式,一元一次方程,一元一次不等式的综合实际应用,理清数量关系,列出代数式,不等式或方程,是解题的关键.24.(1)A、B两种型号电风扇的销售单价分别为250元、210元;(2)超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)超市不能实现利润1400元的目标;【分析】(1)根据第一周和第二周的销售量和销售收入,可列写2个等式方程,再求解二元一次方程组即可;(2)利用不多于5400元这个量,列写不等式,得到A型电风扇a台的一个取值范围,从而得出a的最大值;(3)将B型电风扇用(30-a)表示出来,列写A、B两型电风扇利润为1400的等式方程,可求得a的值,最后在判断求解的值是否满足(2)中a的取值范围即可【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:3518004103100x yx y+=⎧⎨+=⎩,解得:250210xy=⎧⎨=⎩,答:A、B两种型号电风扇的销售单价分别为250元、210元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台.依题意得:200a+170(30-a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250-200)a+(210-170)(30-a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.【点睛】本题是二元一次方程和一元一次不等式应用题的综合考查,解题关键是依据题意,找出等量关系式(不等关系式),然后按照题目要求相应求解25.(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W(b)=7,W(c)=13,列出二元一次方程组,即可求x和y;(3)根据题意W(d)+W(e)<25可列出不等式,即可求x的值;(4)根据“互异数”f的十位数字是x+4,个位数字是x,分类讨论f,根据满足W(f)<t 的互异数有且仅有3个,求出t的取值范围.【详解】解:(1)①∵如果一个两位数a的十位数字为m,个位数字为n,且m≠n、m≠0、n≠0,那么这个两位数叫做“互异数”,∴“互异数”为21,故答案为:21;②W(36)=(36+63)÷11=9,W(10m+n)=(10m+n+10n+m)÷11=m+n;。
9.1.2 不等式的性质(2)1、会依据“不等式性质1 " 解简单的一元一次不等式,并能在数轴上表示其解集;2、学会运用类比思想来解不等式,培育学生察看、剖析和归纳的能力;教课目的3、在踊跃参加数学活动的过程中,培育学生勇敢猜想、勇于讲话与合作沟通的意识和脚踏实地的态度以及独立思虑的习惯.教课难点 依据“不等式性质 1”正确地解一元一次不等式。
知识要点依据“不等式性质 1”正确地解一元一次不等式。
教课过程(师生活动)设计理念小希就读的学校上午第一节课上课时间是8 点开始. 小希家距学设里一个学生很熟 校有 2 千米,而他的步行速度为每小时 10 千米.那么,小希上午几悉的问题情境, 能增点从家里出发才能保证不迟到?强亲和力.经历由具1、 若设小希上午 x 点从家里出发才能不迟到,则x 应知足如何的关体的实例成立不等系式?式模型的过程, 既可 提出问题让学生感觉不等式 2、 你会解这个不等式吗?请谈谈解的过程. 3、 你能把这个不等式的解集在数轴上表示出来吗?在实质生活中的应 用,又特别自然地引入新课.1、 分组商讨:对上述三个问题,你是如何考虑的?先独立思虑而后组内沟通,作出记录,最后各组派代表发主。
2、 在学生充足议论的基础上,师生共同归纳得出:培育学生主动参加、 ( 1) x 应知足的关系是:x1合作沟通的意识, 提≤ 851,得: x主同学生的察看、 分 ( 2) 依据“不等式性质1” , 在不等式的两边减去析、归纳和抽象能力重申“≤” 与“<” + 1 - 1≤ 8- 1 ,即 x ≤ 745在乎义上和数轴表( 3) 55 5 5示上的差别。
这个不等式的解集在数轴上表示以下:研究新知我们在表示 74的点上画实心圆点, 意思是取值范围包含这个数。
53、 例题解以下不等式,并在数轴上表示解集: ( 1)3x < 2x + 1(2) 3- 5x ≥ 4 - 6x 师生共同商讨后得出:上述求解过程相当于由3x<2x+1,得 3x-2x < 1 ;由 3- 5x ≥ 4- 6x ,得- 5x+6x ≥ 4-3. 这近似于解方程中的“移项” .可见,解不等式也能够“移项” ,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.最后由教师完好地板书解题过程.稳固新知1、解以下不等式,并在数轴上表示解集:类比解方程的方法,让学生初步感觉不等式与方程的关系。
《不等式的性质》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣2.(5分)已知a<b,则下列不等式变形不正确的是()A.4a<4b B.﹣2a+4<﹣2b+4C.﹣4a>﹣4b D.3a﹣4<3b﹣43.(5分)下列式子一定成立的是()A.若ac2=bc2,则a=bB.若ac>bc,则a>bC.若a>b,则ac2>bc2D.若a<b,则a(c2+1)<b(c2+1)4.(5分)已知a<b,则下列不等式一定成立的是()A.a﹣b>0B.a+b<0C.2﹣a<2﹣b D.5.(5分)若a>b,则下列不等式变形正确的是()A.a+7<b+7B.C.﹣5a>﹣5b D.9a﹣2>9b﹣2二、填空题(本大题共5小题,共25.0分)6.(5分)某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是.7.(5分)已知a>b,则﹣4a+5﹣4b+5.(填>、=或<)8.(5分)若x>y,则﹣x﹣2﹣y﹣2(填“<”、“>”或“=”)9.(5分)比较大小:如果a<b,那么2﹣3a2﹣3b.(填“>”“<”或“=”)10.(5分)非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=.三、解答题(本大题共5小题,共50.0分)11.(10分)有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a与b哪个大?12.(10分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.13.(10分)根据不等式的基本性质,把﹣2x<15化成“x>a”或“x<a”的形式.14.(10分)若x<y,比较2﹣3x与2﹣3y的大小,并说明理由.15.(10分)根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.(1)10x﹣1>7x;(2)﹣x>﹣1.《不等式的性质》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣【分析】根据不等式的基本性质对各选项分析后利用排除法求解.【解答】解:A、不等号的方向不变,故本选项正确;B、不等式小的一边加上3,大的一边加上4,不等号方向改变,故本选项正确;C、对不等式两边都乘以c,再加上3,不等式不一定还成立,故本选项错误;D、不等式两边都除以﹣2,不等号方向改变,故本选项正确.故选:C.【点评】主要考查不等式的基本性质,需要熟练掌握并灵活运用.2.(5分)已知a<b,则下列不等式变形不正确的是()A.4a<4b B.﹣2a+4<﹣2b+4C.﹣4a>﹣4b D.3a﹣4<3b﹣4【分析】根据不等式的性质:不等式左右两边都加上或减去同一个数或整式,不等号方向不变;不等式左右两边都乘以或除以同一个正数,不等号方向不变;不等式左右两边都乘以或除以同一个负数,不等号方向改变,即可做出判断.【解答】解:A、由a<b知4a<4b,此选项正确;B、由a<b知﹣2a>﹣2b,继而得﹣2a+4>﹣2b+4,此选项错误;C、由a<b知﹣4a>﹣4b,此选项正确;D、由a<b知3a<3b,继而得3a﹣4<3b﹣4,此选项正确;故选:B.【点评】此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.3.(5分)下列式子一定成立的是()A.若ac2=bc2,则a=bB.若ac>bc,则a>bC.若a>b,则ac2>bc2D.若a<b,则a(c2+1)<b(c2+1)【分析】直接利用不等式的基本性质进而分析得出答案.【解答】解:A、∵ac2=bc2,∴a=b(c≠0),故此选项错误;B、∵ac>bc,∴a>b(c>0),故此选项错误;C、∵a>b,∴ac2>bc2(c≠0),故此选项错误;D、∵a<b,∴a(c2+1)<b(c2+1),故此选项正确;故选:D.【点评】此题主要考查了不等式的性质,正确把握不等式的基本性质是解题关键.4.(5分)已知a<b,则下列不等式一定成立的是()A.a﹣b>0B.a+b<0C.2﹣a<2﹣b D.【分析】直接利用不等式的基本性质进而分析得出答案.【解答】解:A、∵a<b,∴a﹣b<0,故此选项错误;B、∵a<b,∴a+b符号不能确定,故此选项错误;C、∵a<b,∴2﹣a>2﹣b,故此选项错误;D、∵a<b,∴﹣>﹣,故此选项正确;故选:D.【点评】此题主要考查了不等式的性质,正确把握不等式的基本性质是解题关键.5.(5分)若a>b,则下列不等式变形正确的是()A.a+7<b+7B.C.﹣5a>﹣5b D.9a﹣2>9b﹣2【分析】直接利用不等式的性质分别分析得出答案.【解答】解:A、∵a>b,∴a+7>b+7,故此选项错误;B、∵a>b,∴>,故此选项错误;C、∵a>b,∴﹣5a<﹣5b,故此选项错误;D、∵a>b,∴9a﹣2>9b﹣2,故此选项正确.故选:D.【点评】此题主要考查了不等式的性质,正确把握相关性质是解题关键.二、填空题(本大题共5小题,共25.0分)6.(5分)某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是x≤.【分析】通过找到临界值解决问题.【解答】解:由题意知,令3x﹣1=x,x=,此时无输出值当x>时,数值越来越大,会有输出值;当x<时,数值越来越小,不可能大于10,永远不会有输出值故x≤,故答案为x≤.【点评】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.7.(5分)已知a>b,则﹣4a+5<﹣4b+5.(填>、=或<)【分析】根据不等式的基本性质即可解决问题.【解答】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点评】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.8.(5分)若x>y,则﹣x﹣2<﹣y﹣2(填“<”、“>”或“=”)【分析】直接利用不等式的性质分析得出答案.【解答】解:∵x>y,∴﹣x<﹣y,∴﹣x﹣2<﹣y﹣2.故答案为:<.【点评】此题主要考查了不等式的性质,正确把握不等式的性质是解题关键.9.(5分)比较大小:如果a<b,那么2﹣3a>2﹣3b.(填“>”“<”或“=”)【分析】先利用不等式的性质3,得到﹣3a与﹣3b的大小,再根据不等式的性质1,得结论.【解答】解:∵a<b,∴﹣3a>﹣3b∴2﹣3a>2﹣3b.故答案为:>【点评】本题主要考查了不等式的性质.在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.10.(5分)非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=9.【分析】由于已知a,b,c为非负数,所以m、n一定≥0;根据a+b=9和c﹣a =3推出c的最小值与a的最大值;然后再根据a+b=9和c﹣a=3把y=a+b+c 转化为只含a或c的代数式,从而确定其最大值与最小值.【解答】解:∵a,b,c为非负数;∴y=a+b+c≥0;又∵c﹣a=3;∴c=a+3;∴c≥3;∵a+b=9;∴y=a+b+c=9+c;又∵c≥3;=12,即n=12;∴c=3时y最小,即y最小∵a+b=9;∴a≤9;∴y=a+b+c=9+c=9+a+3=12+a;=21,即m=21;∴a=9时y最大,即y最大∴m﹣n=21﹣12=9,故答案为:9【点评】本题考查了一元一次不等式组的应用,解答本题的关键是熟练掌握不等式的性质,求出y的最大值及最小值,难度较大.三、解答题(本大题共5小题,共50.0分)11.(10分)有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a与b哪个大?【分析】根据题意得到不等式10b+a<10a+b,通过解该不等式即可比较它们的大小.【解答】解:根据题意,得10b+a<10a+b,所以,9b<9a,所以,b<a,即a>b.【点评】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.(10分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.【分析】仿照给出的阅读材料、根据不等式的性质计算.【解答】解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.【点评】本题考查的是不等式的性质,正确理解阅读材料、掌握不等式的性质是解题的关键.13.(10分)根据不等式的基本性质,把﹣2x<15化成“x>a”或“x<a”的形式.【分析】根据不等式的性质求解即可.【解答】解:两边都除以﹣2,得x>﹣.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.14.(10分)若x<y,比较2﹣3x与2﹣3y的大小,并说明理由.【分析】根据不等式的性质,由x<y,可得:﹣x>﹣y,据此判断出2﹣3x与2﹣3y的大小即可.【解答】解:∵x<y,∴﹣x>﹣y,∴﹣3x>﹣3y,∴2﹣3x>2﹣3y.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.15.(10分)根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.(1)10x﹣1>7x;(2)﹣x>﹣1.【分析】根据不等式的性质,可得答案.【解答】解:(1)10x﹣1>7x,两边都减7x、加1,得10x﹣7x﹣1+1>7x﹣7x+1,3x>1,两边都除以3,得x>;(2)﹣x>﹣1,两边都乘以﹣2,得x<2.【点评】本题考查了不等式的性质,熟记不等式的性质是解题关键.。
9.1.2不等式的性质讲义[教学目标]1.理解不等式的性质,掌握不等式的解法2.培养学生的数感,渗透数形结合的思想.[教学重点与难点]重点:不等式的性质和解法.难点:不等号方向的确定.[教学过程]一.问题探知发现规律 :问题1 用”>””<”填空并总结规律: 请1)5>3 , 5+2 3+2, 5-2 3-22)-1<3, -1+2 3+2, -1-3 3-33)6>2, 6×5 2×5, 6×(-5) 2×(-5)4)-2<3, (-2)×6 3×6, (-2)×(-6) 3×(-6)由上面规律填空:(1)当不等式两边加上或减去同一个数(正数或负数)时,不等号的方向 ;(2)当不等式两边乘同一个正数时,不等号的方向 ;而乘同一个负数时,不等号的方向 .不等式性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向 .(2)不等式两边乘(或除以)同一个 ,不等号的方向不变.(3)不等式来年改变乘(或除以)同一个 ,不等号的方向二.举例:例1 利用不等式的性质,填”>”,:<”(1)若a>b,则2a+1 2b+1;(2)若-1.25y<10,则y -8;(3)若a<b,且c>0,则ac+c bc+c;(4)若a>0,b<0,c<0,则(a-b)c 0.例2 利用不等式性质解下列不等式,并把解集在数轴上表示出来.(1)x-7>26; (2)3x<2x+1;(3)32x>50; (4)-4 x >3.三.课堂巩固:1.下列哪些是不等式x +3 > 6的解?哪些不是?-4,-2. 5,0,1,2.5,3,3.2,4.8,8,122.判断(1)∵a < b ∴ a -b < b -b(2)∵a < b ∴ 33b a < (3)∵a < b ∴ -2a < -2b(4)∵-2a > 0 ∴ a > 0(5)∵-a < 0 ∴ a < 33.填空(1)∵ 2a > 3a ∴ a 是 数(2)∵ 23a a < ∴ a 是 数 (3)∵ax < a 且 x > 1 ∴ a 是 数4.根据下列已知条件,说出a 与b 的不等关系,并说明是根据不等式哪一条性质。
七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-234210-1A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
9 1 2㊀不等式的性质㊀1.掌握不等式的基本性质,体会不等式与等式性质的联系与区别.2.能根据不等式的性质将不等式变形.3.能解数字系数的一元一次不等式,并能在数轴上表示出解集.㊀开心预习梳理,轻松搞定基础.1.(1)在不等式两边同时加上(或减去)同一个数或整式,不等号方向㊀㊀㊀㊀; (2)在不等式两边同时乘以(或除以)同一个正数,不等号方向㊀㊀㊀㊀; (3)在不等式两边同时乘以(或除以)同一个负数,不等号方向㊀㊀㊀㊀.2.(1)要使不等式x+3>0成立,则x的取值范围是㊀㊀㊀㊀;(2)若x>4,则x+3㊀㊀㊀㊀4+3;若-3x<9,则x㊀㊀㊀㊀-3;若x2<-y4,则2x ㊀㊀㊀㊀-y.㊀重难疑点,一网打尽.3.由不等式a x>b,得到x<b a,则(㊀㊀).A.a=0B.a<0C.a>0D.aʂ04.若a<b,则下列各式中一定成立的是(㊀㊀).A.a-1<b-1B.a3>b3C.-a<-b D.a c<b c5.a是任意有理数,下列各式正确的是(㊀㊀).A.3a>4a B.a3<a4C.a>-a D.1-a>12-a6.利用不等式的性质解下列不等式,并将解集在数轴上表示出来:(1)5x-1<9;(2)-45x>-1.不等式两边加(或减)同一个数(或式子),不等号的方向不变.㊀源于教材,宽于教材,举一反三显身手.7.若0<x<1,则x,1x,x2的大小关系是(㊀㊀).A.1x<x<x2B.x<1x<x2C.x2<x<1x D.1x<x2<x8.关于x的不等式(2m+1)x<2m+1的解集是x>1,则m的取值范围是㊀㊀㊀㊀.9.用 > < 或 = 填空.(1)若x>-2,则x-m㊀㊀㊀㊀-2-m;(2)若7m-5b<7n-5b,则7m㊀㊀㊀㊀7n,1-7m㊀㊀㊀㊀1-7n;(3)若|a|a=-1,则a㊀㊀㊀㊀0.10.探究题:(1)①如果a-b<0,那么a㊀㊀㊀㊀b;②如果a-b=0,那么a㊀㊀㊀㊀b;③如果a-b>0,那么a㊀㊀㊀㊀b.(2)由(1)中的结论你能归纳出比较a,b大小的方法吗?请你用文字语言叙述出来; (3)试用(1)中的方法比较3x2-2x+7与4x2-2x+7的大小.㊀瞧,中考曾经这么考!11.(2012 广东广州)已知a>b,若c是任意实数,则下列不等式中总是成立的是(㊀㊀).A.a+c<b+c B.a-c>b-cC.a c<b c D.a c>b c12.(2012 贵州六盘水)已知不等式x-1ȡ0,则此不等式的解集在数轴上表示为(㊀㊀).9.1.2㊀不等式的性质1.(1)不变㊀(2)不变㊀(3)改变2.(1)x>-3㊀(2)>㊀>㊀<3.B㊀4.A㊀5.D6.(1)x<2㊀(2)x<54,在数轴上表示略.7.C㊀8.m<-129.(1)>㊀(2)<㊀>㊀(3)<10.(1)<㊀=㊀>(2)比较a,b两数的大小,如果a与b的差大于0,则a>b;如果a与b的差等于0,则a=b;如果a与b的差小于0,则a<b.(3)(3x2-2x+7)-(4x2-2x+7)=-x2ɤ0,故3x2-2x+7ɤ4x2-2x+7.11.B㊀12.C。
《不等式的性质》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)若a>b,则下列不等式变形错误的是()A.a+3>b+3B.C.2a﹣3>2b﹣3D.3﹣2a>3﹣2b 2.(5分)若a<b,则下列各式中,一定成立的是()A.>B.a﹣1<b﹣1C.3a>3b D.a2<b23.(5分)已知实数a、b,若a>b,则下列结论错误的是()A.﹣3a>﹣3b B.C.3+a>b+3D.2a﹣5>2b﹣5 4.(5分)下列结果错误的是()A.若a﹣c>b﹣c,则a>b B.若a<b,则C.若﹣a,则a>b D.若a﹣b<0,则a<b5.(5分)下列不等式的变形中,正确的结论有()①若a>b,则a﹣3>b﹣3②若a>b,则﹣3a>﹣3b③若a>b,则(m2+1)a>(m2+1)b④若a>b且m≠0,则﹣ma<﹣mbA.1个B.2个C.3个D.4个二、填空题(本大题共5小题,共25.0分)6.(5分)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是.7.(5分)已知a>b,试比较3a3b.8.(5分)若关于x的不等式(1﹣a)x>2可化为x<,则a的取值范围是.9.(5分)若a>b,则2﹣a2﹣b(填“<”或“>”).10.(5分)不等式组的解集是.三、解答题(本大题共5小题,共50.0分)11.(10分)我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+23+1﹣3﹣1﹣5﹣21﹣24+1(2)一般地,如果那么a+c b+d(用“<”或“>”填空).请你说明上述性质的正确性.12.(10分)(1)①如果a﹣b<0,那么a b;②如果a﹣b=0,那么a b;③如果a﹣b>0,那么a b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2﹣3x+7与4x2﹣3x+7的大小?如果能,请写出比较过程.13.(10分)根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种比较大小的方法称为“求差法比较大小”.请运用这种方法尝试解决下面的问题:(1)比较4+3a2﹣2b+b2与3a2﹣2b+1的大小;(2)若2a+2b﹣1>3a+b,则a、b的大小关系(直接写出答案).14.(10分)已知a+1>0,2a﹣2<0.(1)求a的取值范围;(2)若a﹣b=3,求a+b的取值范围.15.(10分)赵军说不等式2a>3a永远不会成立,因为如果在这个不等式两边同除以a,就会出现2>3这样的错误结论.你同意他的说法对吗?若同意说明其依据,若不同意说出错误的原因.《不等式的性质》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)若a>b,则下列不等式变形错误的是()A.a+3>b+3B.C.2a﹣3>2b﹣3D.3﹣2a>3﹣2b 【分析】根据不等式的基本性质逐个判断即可.【解答】解:A、∵a>b,∴a+3>b+3,正确,故本选项不符合题意;B、∵a>b,∴>,正确,故本选项不符合题意;C、∵a>b,∴2a>2b,∴2a﹣3>2b﹣3,正确,故本选项不符合题意;D、∵a>b,∴﹣2a<﹣2b,∴3﹣2a<3﹣2b,错误,故本选项符合题意;故选:D.【点评】本题主要考查了不等式的基本性质,解题的关键是注意不等号的方向是否改变.2.(5分)若a<b,则下列各式中,一定成立的是()A.>B.a﹣1<b﹣1C.3a>3b D.a2<b2【分析】根据不等式的性质,可得答案.【解答】解:A、两边都除以3,不等号的方向不变,故A错误;B、两边都减1,不等号的方向不变,故B正确;C、两边都乘3,不等号的方向不变,故C错误;D、当a<b<0时,a2>b2,故D错误;故选:B.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.3.(5分)已知实数a、b,若a>b,则下列结论错误的是()A.﹣3a>﹣3b B.C.3+a>b+3D.2a﹣5>2b﹣5【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、将a>b两边都乘以﹣3,得:﹣3a<﹣3b,此选项错误;B、将a>b两边都除以5得:>,此选项正确;C、将a>b两边都加上3可得:a+3>b+3,此选项正确;D、将a>b两边都乘以2得2a>2b,再将两边都减去5得2a﹣5>2b﹣5,此选项正确;故选:A.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.(5分)下列结果错误的是()A.若a﹣c>b﹣c,则a>b B.若a<b,则C.若﹣a,则a>b D.若a﹣b<0,则a<b【分析】根据不等式的性质进行判断,可得答案.【解答】解:A、不等式a﹣c>b﹣c两边都加c,不等号的方向不变,故A正确;B、不等式a<b两边都乘,不等号的方向不变,故B正确;C、不等式﹣a两边都乘﹣2,不等号的方向需要改变,故C错误;D、不等式a﹣b<0两边都加上b,不等号的方向不变,故D正确;故选:C.【点评】本题主要考查了不等式的基本性质的运用,解题时注意:等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.5.(5分)下列不等式的变形中,正确的结论有()①若a>b,则a﹣3>b﹣3②若a>b,则﹣3a>﹣3b③若a>b,则(m2+1)a>(m2+1)b④若a>b且m≠0,则﹣ma<﹣mbA.1个B.2个C.3个D.4个【分析】直接利用不等式的基本性质分别分析得出答案.【解答】解:①若a>b,则a﹣3>b﹣3,正确;②若a>b,则﹣3a>﹣3b,错误;③若a>b,则(m2+1)a>(m2+1)b,正确;④若a>b且m≠0,则﹣ma<﹣mb错误.故选:B.【点评】此题主要考查了不等式的性质,正确把握不等式基本性质是解题关键.二、填空题(本大题共5小题,共25.0分)6.(5分)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是1<x+y<5.【分析】利用不等式的性质解答即可.【解答】解:∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;故答案为:1<x+y<5.【点评】本题考查了一元一次不等式组的应用,关键是先根据已知条件用一个量如y取表示另一个量如x,然后根据题中已知量x的取值范围,构建另一量y 的不等式,从而确定该量y的取值范围,同法再确定另一未知量x的取值范围.7.(5分)已知a>b,试比较3a>3b.【分析】根据不等式的性质求解即可.【解答】解:∵a>b,3>0,∴3a>3b.答案:>.【点评】本题考查了不等式的性质,不等式的两边都乘以同一个正数不等号的方不变.8.(5分)若关于x的不等式(1﹣a)x>2可化为x<,则a的取值范围是a>1.【分析】依据不等式的性质解答即可.【解答】解:∵不等式(1﹣a)x>2可化为x<,∴1﹣a<0,解得:a>1.故答案为:a>1.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.9.(5分)若a>b,则2﹣a<2﹣b(填“<”或“>”).【分析】根据不等式的性质:不等式两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加(或减)同一个数(或式子),不等号的方向不变,可得答案.【解答】解:两边都乘以﹣,不等号的方向改变,得﹣a<﹣b,两边都加2,不等号的方向不变,得2﹣a<2﹣b,故答案为:<.【点评】此题主要考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;注意不等式两边乘(或除以)同一个负数,不等号的方向改变.10.(5分)不等式组的解集是x>﹣2.【分析】在数轴上表示出各不等式的解集,再取其公共部分即可.【解答】解:如图所示,,故不等式组的解集为:x>﹣2.故答案为:x>﹣2.【点评】本题考查的是不等式的解集,熟知求不等式解集的方法是解答此题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+2>3+1﹣3﹣1>﹣5﹣21﹣2<4+1(2)一般地,如果那么a+c>b+d(用“<”或“>”填空).请你说明上述性质的正确性.【分析】(1)根据不等式的性质即可判断;(2)利用(1)中规律即可判断,根据不等式的性质即可证明;【解答】解:(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1;故答案为>,>,<;(2)结论:a+c>b+d.理由:因为a>b,所以a+c>b+c,因为c>d,所以b+c>b+d,所以a+c>b+d.故答案为>.【点评】本题考查不等式的性质、解题的关键是熟练掌握不等式的性质解决问题,属于中考常考题型.12.(10分)(1)①如果a﹣b<0,那么a<b;②如果a﹣b=0,那么a=b;③如果a﹣b>0,那么a>b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2﹣3x+7与4x2﹣3x+7的大小?如果能,请写出比较过程.【分析】根据不等式的基本性质(1)即可解答.【解答】解:(1)①<②=③>(2)比较a,b两数的大小,如果a与b的差大于0,则a大于b;a与b的差等于0,则a等于b;如果a与b的差小于0,则a小于b.(3)(3x2﹣3x+7)﹣(4x2﹣3x+7)=﹣x2≤0,∴3x2﹣3x+7≤4x2﹣3x+7.【点评】解答此题的关键是熟知不等式的基本性质:基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变.13.(10分)根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种比较大小的方法称为“求差法比较大小”.请运用这种方法尝试解决下面的问题:(1)比较4+3a2﹣2b+b2与3a2﹣2b+1的大小;(2)若2a+2b﹣1>3a+b,则a、b的大小关系(直接写出答案).【分析】根据作差法,差大于零被减数大,差小于零被减数小,可得答案.【解答】解:(1)4+3a2﹣2b+b2﹣(3a2﹣2b+1)=b2+3>0,∴4+3a2﹣2b+b2>3a2﹣2b+1;(2)两边都减(3a+b),得﹣a+b﹣1>0,b﹣a>1,∴a<b.【点评】本题考查了实数大小比较,利用作差法,差大于零被减数大,差小于零被减数小是解题关键.14.(10分)已知a+1>0,2a﹣2<0.(1)求a的取值范围;(2)若a﹣b=3,求a+b的取值范围.【分析】(1)解两个不等式组成的方程组即可求得a的范围;(2)根据a﹣b=3可得b=a﹣3,则a+b=2a﹣3,然后根据a的范围即可求解.【解答】解:(1)根据题意得,解①得a>﹣1,解②得a<1,则a的范围是﹣1<a<1;(2)∵a﹣b=3,∴b=a﹣3,∴a+b=2a﹣3,∴﹣5<2a﹣3<﹣1,即﹣5<a+b<﹣1.【点评】本题考查了不等式组的解法以及不等式的性质,把a+b利用a表示是关键.15.(10分)赵军说不等式2a>3a永远不会成立,因为如果在这个不等式两边同除以a,就会出现2>3这样的错误结论.你同意他的说法对吗?若同意说明其依据,若不同意说出错误的原因.【分析】根据不等式的性质2和3,不等式的两边都除以一个数时要考虑这个数是正数还是负数判断.【解答】解:他的说法不对.∵a的值不确定,∴解题时对这个不等式两边不能同时除以a,若2a>3a,则2a﹣3a>0,﹣a>0,则a<0.所以,赵军错误的原因是两边除以a时不等号的方向没有改变.【点评】本题考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.第11页(共11页)。