九年级数学《相似三角形的判定》(第4课时)导学案
- 格式:doc
- 大小:155.00 KB
- 文档页数:9
新苏科版九年级数学下册第六章《探索三角形相似的条件(4) 》导学案 学习重点、难点:会用三角形相似的条件,解决有关问题,有条理的推理能力.教学流程:一、复习导入、激发兴趣:探索两个三角形相似,可以从哪几个方面考虑找条件?两个全等三角形一定相似吗?如果相似,相似比是多少?两个相似三角形一定全等吗?对照判定两个三角形全等的方法,猜想判定两个三角形相似还可能有什么方法?二、自主探究、合作交流已知△ABC (1)画△A ′B ′C ,使2AB BC CA A B B C C A ===''''''. (2)比较∠A 与∠A '的大小. 由此,能判断△ABC 与△A ′B ′C ′相似吗?为什么?设AB BC CA k A B B C C A ==='''''',改变k 值的大小,再试一试,上述结论是否改变? 如图,在△ABC 与△A ′B ′C 中,如果AB BC CA A B B C C A =='''''',那么△ABC ∽△A ′B ′C ′ 你能说明这两个三角形相似的理由吗?归纳: 的两个三角形相似.几何语言:三、学以致用、巩固新知活动1、根据下列条件,判断△ABC 与△A ′B ′C 是否相似,并说明理由。
(1)∠A=100°,AB=5cm ,AC=10cm ,∠A′=100°,A ′B ′=8cm ,A ′C ′=12c m ;(2) AB=4cm ,BC=6cm ,AC=8cm ,A ′B ′=12cm ,B ′C =18cm ,A ′C ′=24cm学习目标: 1.类比三角形全等(边边边)的判定探索三角形相似的条件(3) ,并运用条件解决有关问题;C'A'B'C A C'A'B'C A活动2、如图:在四边形ABCD 中,AC 、BD 相交于点F ,点E 在BD 上,且ADAC ED BC AE AB ==. (1)∠1与∠2相等吗?为什么?(2)判断△ABE 与△ACD 是否相似,并说明理由.四、课堂检测1.图①~③中的各对三角形是否相似?为什么?2434.536A'B'B C AC' ② ③2.△ABC 和△DEF 满足下列条件,其中使△ABC 和△DEF 不相似的是( )A .∠A =∠D =45 o 38`,∠C =26 o 22`,∠E =108 oB .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =16C .BC =a ,AC =b ,AB =c ,DE = a ,EF = b ,DF = cD .AB =AC ,DE =DF ,∠A =∠D =40 o ,3.一个三角形3边长分别为6㎝、9㎝、7.5㎝,另一个三角形3边的长分别为12㎝、10㎝、8㎝. 这两个三角形相似吗?为什么?4.在边长为1的正方形网格中有A 、B 、C 、D 、E 五个点,问△ABC 与△ADE 是否相似?为什么?由此,你还能找出图中相似的三角形吗?若能,请找出来,并说明理由。
27.2.1 相似三角形的判定(一)学习目标1.掌握“两角对应相等,两个三角形相似”的判定方法.2.能够运用三角形相似的条件解决简单的问题.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”难点:三角形相似的判定方法3的运用.一、复习回顾(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.(3)如(2)题图,△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?二、新课学习1、三角形相似的判定方法3如果一个三角形的两个角与另一个三角形两个角对应相等,那么这两个三角形相似.2、例题讲解例1已知:如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F ,若AB=4,AD=5,AE=6,求DF 的长.分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.3、课堂练习1 、填一填(1)如图3,点D 在AB 上,当∠=∠时,△ACD ∽△ABC 。
(2)如图4,已知点E 在AC 上,若点D 在AB 上,则满足条件,就可以使△ADE 与原△ABC 相似。
2.已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .3. 如图,△ABC 中, DE ∥BC ,EF ∥AB ,试说明△ADE ∽△EFC .ABD图 3 ● A BC E图 44.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形.三、拓展延伸1 、图1中DE ∥FG ∥BC ,找出图中所有的相似三角形。
27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。
湘教版数学九年级上册3.4《相似三角形的判定与性质》说课稿4一. 教材分析湘教版数学九年级上册3.4《相似三角形的判定与性质》是本册教材中的一个重要内容。
在这一节中,学生将学习到相似三角形的判定方法和性质,这是学生对几何知识体系的进一步拓展和深化。
教材通过详细的文字描述、图形示例和练习题目,帮助学生理解和掌握相似三角形的判定与性质,培养学生解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对几何图形的认识和理解也有一定的基础。
但是,对于相似三角形的判定与性质,学生可能还存在一些困惑和疑问。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生理解和掌握相似三角形的判定与性质。
三. 说教学目标1.知识与技能目标:使学生理解和掌握相似三角形的判定与性质,能够运用相似三角形的性质解决实际问题。
2.过程与方法目标:通过观察、分析和推理,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:相似三角形的判定方法和性质。
2.教学难点:相似三角形的判定条件的理解和运用,相似三角形性质的灵活运用。
五. 说教学方法与手段在本节课的教学过程中,我将采用讲授法、案例分析法、小组讨论法和实践活动法等多种教学方法。
同时,利用多媒体教学手段,如PPT、几何画板等,直观地展示相似三角形的判定与性质,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对相似三角形的思考,激发学生的学习兴趣。
2.知识讲解:讲解相似三角形的判定方法和性质,结合图形示例,让学生清晰地理解相似三角形的判定与性质。
3.案例分析:分析一些典型例题,让学生运用相似三角形的判定与性质解决问题,巩固所学知识。
4.小组讨论:让学生分组讨论,探讨相似三角形的判定与性质在实际问题中的应用,培养学生的团队合作意识和解决问题的能力。
沪科版数学九年级上册22.2《相似三角形的判定》(第4课时)教学设计一. 教材分析《相似三角形的判定》是沪科版数学九年级上册第22章第2节的内容,本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的性质等知识的基础上进行学习的。
本节课的主要内容是引导学生探究相似三角形的判定方法,让学生通过观察、操作、猜想、推理、交流等活动,体会数学的转化思想,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对三角形的基本概念、三角形的分类、三角形的性质等知识有一定的了解。
但是,学生对相似三角形的判定方法可能还比较陌生,需要通过实践活动来理解和掌握。
此外,学生可能对数学的转化思想、逻辑思维能力和空间想象能力等方面的要求还比较高,需要教师的引导和培养。
三. 教学目标1.知识与技能:使学生掌握相似三角形的判定方法,能够运用相似三角形的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、猜想、推理、交流等活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:使学生体验到数学学习的乐趣,培养学生对数学的兴趣和信心。
四. 教学重难点1.重点:相似三角形的判定方法。
2.难点:对相似三角形的判定方法的灵活运用。
五. 教学方法1.引导发现法:教师引导学生观察、操作、猜想、推理、交流,发现相似三角形的判定方法。
2.实践活动法:让学生通过实践活动,理解和掌握相似三角形的判定方法。
3.讲解法:教师对相似三角形的判定方法进行讲解,帮助学生理解和掌握。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.课件:相似三角形的判定方法的动画演示。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念、三角形的分类、三角形的性质等知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示相似三角形的判定方法,让学生初步感知相似三角形的判定方法。
3.操练(10分钟)教师引导学生用三角板、直尺、圆规等工具进行实践活动,让学生自己发现和总结相似三角形的判定方法。
BE D CA1.2怎样判定三角形相似学习目标:会应用三边对应成比例证明三角形相似 课前预习1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的 与原三角形相似。
2.相似三角形的判定定理:(1)判定定理1:(2)判定定理2:(3)判定定理3:符号语言: A B B C C A AB BC CA ''''''== ∴△A ´B ´C ´∽△ABC 3. 如图,已知AE 与CD 交于点B ,AC ∥DE , (1)求证:△ABC ∽△EBD(2)若AC=2,BC=3,BD=6,求DE 的长。
课中探究自主探究:例1:根据下列条件,判断△ABC 与△A ’B ’C ’是否相似,并说明理由.条件:AB=4 cm ,BC=6cm ,AC=8cm, A ’B ’=12cm,B ’C ’=18cm ,A ’C ’=24cm. 解:∵=''B A AB , =''C A AC ,=''C B BC 。
∴=''B A AB = . ∴ ∽ ( )跟踪练习:1.已知三角形三边的长分别为4,5,6,画出与它相似的另一个三角形,使它的一边长为2.你能画出几种符合要求的三角形?与同学交流.2.在△ABC 与△A ’B ’C ’中,已知AB=c ,BC=a, CA=b, B ’C ’=a ’, A ’ C ’=b ’,并且a: a ’=b: b ’.当A ’B ’为多少时(用a, a ’, c, 或b, b ’ ,c 表示),△ABC 与△A ’B ’C ’相似?3.如图,在大小为4×4的正方形网格中,是相似三角形的是( )A 、①和②B 、②和③C 、①和③D 、②和④4.已知:BCDE AC AE AB AD ==,求证:∠BAD =∠CAE .当堂检测: E AA B E D C5.如图,在△ABC中,已知AE=2,BE=3,DB=AE,BC=7.5(1)△ABC∽△DBE吗?为什么?(2)如果DE=2.5,那么AC的长是多少?6.大刚身高1.7米,测得他站立在阳光下的影子长为0.85米,他把一只手臂竖直向上举起来,测得影子长为1.1m,大刚举起手臂超过头顶多少米?课后延伸7.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(1)求证:△ABD∽△CAE;(2)如果AC=BD,,设BD=a,求BC的长.。
《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。
2、掌握相似三角形的对应线段(高、中线、角平分线)的比等于相似比。
3、了解相似三角形的周长比等于相似比,面积比等于相似比的平方。
二、学习重点1、相似三角形的性质及其应用。
2、相似三角形性质的推导过程。
三、学习难点相似三角形面积比与相似比的关系的推导及应用。
四、知识回顾1、什么是相似三角形?如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。
2、相似三角形的判定方法有哪些?(1)两角分别相等的两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
(3)三边成比例的两个三角形相似。
五、新课讲解(一)相似三角形的对应角相等,对应边成比例例 1:已知△ABC∽△DEF,∠A = 50°,∠B = 70°,则∠D =50°,∠E = 70°。
因为相似三角形的对应角相等,所以∠A =∠D,∠B =∠E。
(二)相似三角形的对应线段的比等于相似比1、相似三角形对应高的比等于相似比如图,△ABC∽△A'B'C',AD 和 A'D'分别是△ABC 和△A'B'C'的高。
因为△ABC∽△A'B'C',所以∠B =∠B',又因为∠ADB =∠A'D'B' = 90°,所以△ABD∽△A'B'D',所以\(\frac{AD}{A'D'}=\frac{AB}{A'B'}\),即相似三角形对应高的比等于相似比。
2、相似三角形对应中线的比等于相似比同理,可证明相似三角形对应中线的比等于相似比。
3、相似三角形对应角平分线的比等于相似比(三)相似三角形的周长比等于相似比已知△ABC∽△A'B'C',相似比为 k。
九年级数学《相似三角形的判定》(第4课时)导学案一、教学目标
知识与技能
初步掌握“两角对应相等,两个三角形相似”的判定方法.
过程与方法
能够运用三角形相似的条件解决简单的问题.
情感态度与价值观
经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.
二、重点难点
重点
掌握判定方法,会运用判定方法判定两个三角形相似.
难点
会准确的运用两个三角形相似的条件来判定三角形是否相似.
五、设计思路
本本节课主要是探究相似三角形的判定方法3,由于上两节课已经学习了探究两个三角形相似的判定引例﹑判定方法1﹑判定方法2,因此本课教学力求使探究途径多元化,把学生利用刻度尺、量角器等作图工具作静态探究与应用“几何画板”等计算机软件作动态探究有机结合起来,让学生充分感受探究的全面性,丰富探究的内涵。
协同式小组合作学习的开展不仅提高了数学实验的效率,而且培养了学生的合作能力。
27.2.1相似三角形的判定(第4课时)
主备人:李永辉 修订人:张以涛 审核人:尹纪强 编制时间:2010.8.12 一、自主探究 问题一
1、与同伴合作,一人先画△ABC,另一人再画△A`B`C`,使得∠A= ∠A`, ∠B= ∠B`.
2、比较你们所画的两个三角形, ∠C= ∠C`吗?
3、度量边长,计算'
'
A B A B
,
'
'
A C A C
,
'
'
B C B C
,你有什么发现?
4、猜想:两个三角形至少有几个角对应相等,才能保证这两个三角形相似?
5、已知: 如图,在△ABC 和△A ’B’C’中,∠A=∠A ’,∠B=∠B’。
求证:△ABC ∽△A ’B’C’。
C
B A
A '
B '
C '
问题二
思考:对于两个直角三角形,我们用“HL ”判定它们全等。
那么满足斜边之比等于一直角边的比两三角形相似吗?
二、尝试应用
1、下列图形中两个三角形是否相似?
(1) (2) (3)
2、判断题:
⑴所有的直角三角形都相似 . ( ) ⑵有一个锐角对应相等的两直角三角形相似. ( ) ⑶所有的等边三角形都相似. ( ) ⑷所有的等腰直角三角形都相似. ( ) ⑸顶角相等的两个等腰三角形相似. ( ) ⑹有一个角相等的两个等腰三角形相似
. ( )
C
B
A
A '
B '
C '
3、如图,弦AB 和CD 相交于OO 内一点P, 求证:PA ▪ PB = PC ▪PD
三、补偿提高
2、 已知如图直线BE 、DC 交于A , ∠E= ∠C 求证:DA·AC=AB·AE
2、已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .
四、小结与作业
学生小结: . 1.必做题:教材P 48练习1.2, 2.选做题:
(1)下列说法是否正确,并说明理由.
①有一个锐角相等的两直角三角形是相似三角形; ②有一个角相等的两等腰三角形是相似三角形.
D
E A B C
1 2
(2)已知:如图,△ABC 的高AD 、BE 交于点F . 求证:FD
EF BF
AF .。