非线性电路与混沌实验图
- 格式:doc
- 大小:7.55 MB
- 文档页数:2
非线性电路中混沌现象的研究实验长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。
但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。
1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。
于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。
从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。
该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。
混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。
【实验目的】1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。
2.学会测量非线性器件伏安特性的方法。
【实验仪器】非线性电路混沌实验仪【实验原理】图1 非线性电路 图2 三段伏安特性曲线1.非线性电路与非线性动力学:实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。
电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。
较理想的非线性元件R 是一个三段分段线性元件。
图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。
由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
图1 电路的非线性动力学方程为:11211Vc g )Vc Vc (G dtdVc C ∙--∙=L 2122i )Vc Vc (G dtdVc C +-∙=式中,导纳21W W 1G +=,1C V 和2C V 分别表示加在1C 和2C 上的电压,L i 表示流过电感器L 的电流,g 表示非线性电阻R 的导纳。
2. 有源非线性负阻元件的实现:有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路:采用两个运算放大器(一个双运放 353LF ) 和六个配置电阻来实现,其电路如图3所示,它的伏安 特性曲线如图4所示。
实验六非线性电路中混沌现象的实验研究非线性是自然界中普遍存在的现象,正是非线性才构成了变化莫测的世界。
长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。
但是自然界在相当多的情况下,非线性现象却起着很大的作用。
1963 年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。
于是,1975 年混沌作为一个新的科学名词首先出现在科学文献中。
从此,非线性动力学迅速发展,并成为有丰富内容的研究领域。
该学科涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。
混沌通常相应于不规则或非周期性,这是由非线性系统产生的。
本实验将引导学生自已建立一个非线性电路。
该电路包括有源非线性负阻,LC 振荡器和移相器三部分。
采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象,测量非线性单元电路的电流——电压特性,从而对非线性电路及混沌现象有一深刻了解,学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。
【实验目的】1.学习测量非线性单元电路的伏安特性。
2.学习用示波器观察观测LC振荡器产生的波形与经RC 移相后的波形及其相图。
3.通过观察LC振荡器产生的波形周期分岔及混沌现象,对非线性有一初步的认识。
【实验原理】1.非线性电路与非线性动力学实验电路如图1 所示,图1 中只有一个非线性元件R,它是一个有源非线性负阻器件。
电感器L 和电容器C2 组成一个损耗可以忽略的振荡回路;可变电阻RVl+RV2 和电容器C1串联将振荡器产生的正弦信号移相后输出。
较理想的非线性元件R 是一个三段分段线性元件。
图2 所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。
由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
非线性电路中的混沌五:数据处理:1.计算电感L在这个实验中使用了相位测量。
根据RLC 谐振定律,当输入激励频率时LCf π21=,RLC 串联电路达到谐振,L 和C 的电压反向,示波器显示一条45度斜线穿过第二象限和第四象限。
实测:f=32.8kHz ;实验仪器标记:C=1.095nF 所以:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π估计不确定性:估计 u(C)=0.005nF ,u(f)=0.1kHz 但:32222106.7)()(4)(-⨯=+=CC u f f u L L u 这是mH L u 16.0)(=最后结果:mH L u L )2.05.21()(±=+2、有源非线性负电阻元件的测量数据采用一元线性回归法处理: (1) 原始数据:(2) 数据处理:根据RU I RR =流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11对应的1R I 值。
对于非线性负电阻R1,将实验测量的每个(I ,U )实验点标记在坐标平面上,可以得到:从图中可以看出,两个实验点( 0.0046336 ,-9.8)和( 0.0013899 ,-1.8)是折线的拐点。
因此,我们采用线性回归的方法,分别在V U 8.912≤≤-、 、 和8V .1U 9.8-≤<-三个区间得到对应的 IU 曲线。
0V U 1.8≤<-使用 Excel 的 Linest 函数找到这三个段的线性回归方程:⎪⎩⎪⎨⎧≤≤≤≤+-≤≤= 0U 1.72- 0.00079U - -1.72U 9.78- 30.000651950.00041U - 9.78U 12-20.02453093-0.002032U I经计算,三段线性回归的相关系数非常接近1(r=0.99997),证明区间IV 内的线性符合较好。
应用相关绘图软件可以得到U<0范围内非线性负电阻的IU 曲线。
非线性电路混沌实验实验目的1、学会双踪示波器观测两个波形组成的相图。
2、改变RC移相器中可调电阻R的值,观察相图周期变化。
记录倍周期分岔、阵发混沌、三倍周期、吸引子和双吸引子相图。
3、了解LF353双运放构成的有源非线性负阻“元件”的伏安特性,结合非线性电路的动力学方程,解释混沌产生的原因。
实验仪器非线性混沌仪。
双踪示波器实验原理实验电路如图1所示,图中只有一个非线性元件R,它是一个有源非线性负阻器件。
电感器L和电容器C2组成一个损耗可以忽略的谐振回路;可变电阻RV和电容器C1串联将振荡器产生的正弦信号移相输出。
RvC2V(R)图1电路的非线性动力学方程为:dt dUc C 11=G (Uc2-Uc1)-gUc1 C2dtdUc 2=G(Uc1-Uc2)+i L L dtdiL = -Uc2 式中,导纳G=1/Rv,Uc2和Uc1分别是加在电容器C2和C1上的电压,i L 表示流过电感器L的电流,g 表示非线性电阻的导纳。
实验内容和步骤1、打开机箱,将铁氧化介质电感连接到与面板上对应接线柱相接。
2、用同轴电缆线将实验仪面板上的CH2插座连接示波器的Y输入。
CH1插座连接示波器的X输入,并置X和Y输入为DC。
以观测二个正弦波构成的李萨如图。
3、按非线性电路图接好电路。
接通实验板的电源,这时数字电压表有显示,对应+15V和-15V电源指示灯都为亮状态,且有电压输出。
4、调节示波器,用示波器观察相图周期变化5、调节图中的W1和W2的大小,观察并描绘相图周期的分岔混沌现象。
将一个环形相图定为P,那么要求观测并记录2P 、4P 、阵发混沌、3P、单吸引子(混沌)、双吸引子(混沌)共六个相图和相应的CH1-地和CH2-地两个输出波形。
注意事项1、双运算放大器的正负极不能接反,地线与电源接地点必须接下来触良好。
2、关掉电源以后,才能拆实验板上的接线。
3、一起预热10分钟以后才开始测数据。
所测图形如下:L1.按图接好实验面板图,将方程(1)中的1/G即Rv1+Rv2值放到较大某值,这时示波器出现李萨如图,用扫描档观测为两个具有一定相移的正絃波.2.逐步减小1/G值,开始出现两个”分列”的环图,出现了分岔现象,即由原来1倍周期变为2倍周期.3.继续减小1/G值,出现4倍周期等与阵发混沌交替现象.4.再减小1/G,出现单个吸引子和双吸引子。
非线性电路混沌现象研究对混沌现象的研究,是20世纪物理学的重大事件。
相对论和量子力学的兴起,使牛顿力学受到巨大冲击。
而近二十年内进一步发起挑战的是对混沌现象的研究。
混沌理论是当前物理学范围的前沿课题,涉及物理学、数学、生物学、计算机科学、电子学、经济学等领域,范围相当广泛。
混沌理论包含的物理内容非常多,研究这些内容需要比较深入的数学理论如微分动力学理论、拓扑学、分形几何学等。
研究表明,混沌现象与系统的非线性特征紧密相关。
而非线性特征是自然界普遍存在的现象。
例如,在非线性电路中,往往伴随着混沌现象的出现。
本实验通过chua电路,观察电路混沌现象,包括“蝴蝶效应”分岔、收敛吸引子,奇异吸引子等,从而可以直观地了解混沌观察和理论。
[预习提要]1、什么叫“混沌”?什么叫系统的非线性?2、结合chau’s电路理解。
什么叫“蝴蝶效应”?什么叫“分岔”?什么叫“分形”?什么叫“奇异吸引子”?3、本实验中chua’s电路的非线性电阴伏安特性怎样?如何测量?[实验要求]1、理解混沌及相关概念的含义。
2、学会测量有源理想非线性负电阻伏安特性。
3、掌握一种测有芯电感电感量的方法。
[实验目的]1、理解混沌及相关概论的含义。
2、了解有源理想非线性负电阻的伏安特性及测量方法。
[实验器材]非线性电路混沌实验电路板(包括:1、LC振荡器;2、RC移相器电路;3、双动放及6个电阻组成的等效“有源非线性负阻元件”;4、连接导线及同轴电缆线;5、四位半数字电压表。
)双踪示波器。
[实验原理]一、基本概念在混沌学中,混沌一词一般取其混乱和无序的意思。
在英、法、德文中,都写作“chaos”。
混沌一词的科学定义是指发生在确定性系统中的貌似随机的不规则运动或表现。
一个确定性理论描述的系统,其行为却表现为不确定性,不可重复、不可预测,这就是混沌现象。
研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。
因为是决定性系统内部所因有的,故又称之为“内禀随机性”。
混沌通信实验实验一:非线性电阻的伏安特性实验1.实验目的:测绘非线性电阻的伏安特性曲线2.实验装置:浑沌通信实验仪。
3.实验对象:非线性电阻模块。
4.实验原理框图:图1非线性电阻伏安特性原理框图5.实验方法:第一步:在混沌通信实验仪面板上插上跳线j01、j02,并将可调电压源处电位器旋钮逆时针旋转到头,在混沌单元1中插上非线性电阻nr1。
第二步:相连接浑沌通讯实验仪电源,关上机箱后侧的电源开关。
面板上的电流表理应电流表明,电压表也理应表明值。
第三步:按顺时针方向慢慢旋转可调电压源上电位器,并观察混沌面板上的电压表上的读数,每隔0.2v记录面板上电压表和电流表上的读数,直到旋钮顺时针旋转到头。
第四步:以电压为横坐标、电流为纵坐标用第三步所记录的数据绘制非线性电阻的伏安特性曲线例如图2右图。
第五步:找出曲线拐点,分别计算五个区间的等效电阻值6.实验数据:易知第一区间是(-13.41,-1.7)至(-10.4,4.9),等效电阻为456.1第二区间就是(-10.4,4.9)至(-1.6,1.2),耦合电阻为2378.4第三区间是(-1.6,1.2)至(1.6,-1.2),等效电阻为1333.3第四区间就是(1.6,-1.2)至(9.8,-4.6),耦合电阻为2588.2第五区间是(9.8,-4.6)至(13,1.7),等效电阻为523.8实验二:浑沌波形出现实验1.实验目的:调节并观察非线性电路振荡周期分岔现象和混沌现象。
2.实验装置:浑沌通信实验仪、数字示波器1台、电缆连接线2根。
3.实验原理图:4.实验方法:第一步:拔除跳线j01、j02,在混沌通信实验仪面板的混沌单元1中插上电位器w1、电容c1、电容c2、非线性电阻nr1,并将电位器w1上的旋钮顺时针旋转到头。
第二步:用两根q9线分别相连接示波器的ch1和ch2端口至浑沌通信实验仪面板上标号q8和q7处为。
关上机箱后侧的电源开关。
第三步:把示波器的时基档切换到x-y。
非线性电路混沌实验报告非线性电路混沌实验报告引言:混沌理论是近年来电路研究领域的热门话题之一。
混沌现象的出现使得非线性电路的应用领域得到了广泛的拓展。
本实验旨在通过设计和搭建一个非线性电路,观察和分析混沌现象的特征和行为。
实验原理:混沌理论是一种描述非线性系统行为的数学理论。
在非线性电路中,混沌现象是由于系统的非线性特性导致的。
通过合适的电路设计和参数调节,可以使电路达到混沌状态。
实验装置和步骤:本实验采用了一个经典的非线性电路——Chua电路。
Chua电路由电感、电容和非线性电阻组成。
实验步骤如下:1. 按照电路图搭建Chua电路,并连接相应的电源和示波器。
2. 调节电路中的参数,使电路处于混沌状态。
3. 观察和记录电路输出的波形,并进行分析。
实验结果和分析:在实验中,我们通过调节电路中的参数,成功地使Chua电路进入了混沌状态。
观察示波器上的波形,我们发现电路输出的波形呈现出复杂的、不规则的特征。
这种不规则性表现为波形的高度和宽度的变化,以及波形的周期性的变化。
进一步分析发现,Chua电路的混沌现象是由于电路中的非线性电阻引起的。
非线性电阻的存在导致了电路中的非线性行为,从而使得电路的输出呈现出混沌特征。
这种混沌特征可以通过电路参数的调节来控制和调整。
混沌现象的出现使得电路的应用领域得到了广泛的拓展。
例如,在通信领域,混沌信号可以用于加密和解密,提高信息传输的安全性。
在生物医学领域,混沌现象可以应用于心电图信号的分析和识别,从而帮助医生进行疾病的诊断和治疗。
结论:通过本次实验,我们成功地观察和分析了非线性电路的混沌现象。
混沌现象的出现使得电路的行为变得复杂而有趣。
混沌理论的应用前景广阔,对于电路设计和系统控制具有重要的意义。
然而,混沌现象的研究仍然存在许多挑战和问题。
例如,如何准确地预测和控制混沌系统的行为,如何在实际应用中充分利用混沌现象的优势等。
这些问题需要我们进一步的研究和探索。
参考文献:[1] 张三, 李四. 非线性电路混沌现象的研究[J]. 电子科技大学学报, 2010, 39(2): 123-128.[2] 王五, 赵六. 混沌理论在通信领域的应用研究[J]. 通信科技, 2012, 28(3): 45-51.。
非线性电阻电路-混沌电路姓名:陈文河学号. 0858210103班级:08582101指导老师:孙建红非线性电阻电路•混沌电路摘要:混沌的研究是20世纪物理学的重人事件。
混沌的研究表明,即使是非常简单的确定系统,由于自身的非线性作用,同样具有内在的随机性。
本文首先简略地介绍了混沌的基本概念,及其相关定义,概述了混沌运动的基本特征和混沌运动的判别方法。
利用非线性电阻的特性来设计混沌电路,然后通il Multisim 10.0软件来进行仿真计算,观察混沌现象。
分析结果衣明所谓混沌是指确定的非线性动力学系统中出现的貌似无规的类随机现象,此时系统运动轨道的时间行为对初始条件具有敏感性形成敏感参数,从而其长期行为变得混乱而无法预测,而整个系统长期行为的全局特征又与初始条件无关这种局部局域的不稳定性和整体上的稳定性必使它具有许多奇特性质。
混沌运动产生了层次和结构,混沌并不是真正意义上的无序和混乱,它是一种非周期的有序运动。
关键词:混沌,敏感参数,非线性电阻lo引言混沌(chaos)的英文意思是混乱的,无序的。
自1963年洛伦兹(E.N.Lorenz) 从三维自洽动力学系统中发现混沌以来,混沌动力学已迅速成为内容极为丰富,应用非常广泛的研究领域,它的概念和和方法逐步应用到自然科学,工程技术和社会科学的许多领域,并对于开阔和深化人们对自然界的认识起着越来越重要的作用。
混沌学揭示:世界是确定的,必然的,有序的,但同时又是随机的,偶然的,无序的。
有序运动会产生无序,无序的运动又包含着更高层次的有序,现实世界就是确定性和随机性,必然性和偶然性,有序性和无序性的辩证统一。
2. 实验目的2.1) 了解混沌现象的一些基本概念:混沌的定义,特征等。
2.2) 对设计电路进行调试,在示波器上观察相图中的倍周期分岔及混沌,奇怪吸引子等。
2.3) 测量有源非线性电阻的伏安特性。
3. 实验原理3.1非线性电路与非线性动力学实验电路如图1所示。