最新苏教版七年级数学上册期末试卷及答案[1]
- 格式:doc
- 大小:269.50 KB
- 文档页数:13
苏教版七年级数学上册 期末试卷测试卷(含答案解析)一、选择题1.下列说法错误的是( ) A .对顶角相等 B .两点之间所有连线中,线段最短 C .等角的补角相等 D .不相交的两条直线叫做平行线 2.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( ) A .1B .2C .1-D .2-3.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养 4.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab5.下列比较大小正确的是( ) A .12-<13- B .4π-<2-C .()32--﹤0D .2-﹤5-6.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b -7.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为( )A .2aB .-2bC .-2aD .2b8.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行9.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A .115×103B .11.5×104C .1.15×105D .0.115×10610.下列叙述中正确的是( ) A .相等的两个角是对顶角B .若∠1+∠2+∠3 =180º,则∠1,∠2,∠3互为补角C .和等于90 º的两个角互为余角D .一个角的补角一定大于这个角11.二次三项式2x 2﹣3x ﹣1的二次项系数,一次项系数,常数项分别是( ) A .2,﹣3,﹣1 B .2,3,1C .2,3,﹣1D .2,﹣3,112.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=213.如图所示的几何体的左视图是( )A .B .C .D .14.在 3.14、 227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个15.如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是( ).A .-1B .0C .3D .4二、填空题16.在直线l 上有四个点A 、B 、C 、D ,已知AB =8,AC =2,点D 是BC 的中点,则线段AD =________.17.如图,若输入的x 的值为正整数,输出的结果为119,则满足条件的所有x 的值为_____.18.计算: x(x-2y) =______________19.已知关于x 的方程345m x -=的解是1x =,则m 的值为______.20.已知2x =是关于x 的不等式310x m -+≥的解,则m 的取值范围为_______. 21.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________22.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________. 23.﹣|﹣2|=____. 24.6的绝对值是___. 25.4215='︒ _________°三、解答题26.先化简,再求值:若x =2,y =﹣1,求2(x 2y ﹣xy 2﹣1)﹣(2x 2y ﹣3xy 2﹣3)的值. 27.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名? 28.如图所示的几何体是由若干个相同的小正方体组成的.(1)填空:这个几何体由 个小正方体组成; (2)画出它的三个视图.(作图必须用黑色水笔描黑) 29.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯-⎪⎝⎭. 30.已知:点A 、B 在数轴上表示的数分别是a 、b ,线段AB 的中点P 表示的数为m .请你结合所给数轴,解答下列各题:(1)填表:a 1- 1-2.5▲b13▲2-m▲▲4 4-(2)用含a 、b 的代数式表示m ,则m =___________. (3)当2021a =,2020m =时,求b 的值.31.如图①,在平整的地面上,用若干个完全相同的棱长为10 cm 的小正方体堆成一个几何体.(1)现已给出这个几何体的俯视图(如图②),请你画出这个几何体的主视图与左视图; (2)若现在你手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变. ①在图①所示的几何体中最多可以再添加几个小正方体? ②在图①所示的几何体中最多可以拿走几个小正方体?③在②的情况下,把这个几何体放置在墙角,如图③所示是此时这个几何体放置的俯视图,若给这个几何体表面喷上红漆,则需要喷漆的面积最少是多少?32.甲、乙两车都从A 地出发,在路程为360千米的同一道路上驶向B 地.甲车先出发匀速驶向B 地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B 地. (1)甲车的速度为 千米/时; (2)求乙车装货后行驶的速度;(3)乙车出发 小时与甲车相距10千米? 33.解方程:(1)523(2)x x -=-- (2)321143x x ---= 四、压轴题34.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.35.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?36.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”) (2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.37.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.38.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.39.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 40.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.41.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.42.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.43.设A、B、C是数轴上的三个点,且点C在A、B之间,它们对应的数分别为x A、x B、x C.(1)若AC=CB,则点C叫做线段AB的中点,已知C是AB的中点.①若x A=1,x B=5,则x c=;②若x A=﹣1,x B=﹣5,则x C=;③一般的,将x C用x A和x B表示出来为x C=;④若x C=1,将点A向右平移5个单位,恰好与点B重合,则x A=;(2)若AC=λCB(其中λ>0).①当x A=﹣2,x B=4,λ=13时,x C=.②一般的,将x C用x A、x B和λ表示出来为x C=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据各项定义性质判断即可.【详解】D选项应该为:同一平面内不相交的两条直线叫平行线.故选D.【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.2.C解析:C【解析】【分析】根据题意将解代入方程解出a即可.【详解】将x=-a代入方程得:-a-3a=4,解得:a=-1.故选C.【点睛】本题考查一元一次方程的解题方法,熟练掌握解题方法是关键. 3.D解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D.【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.4.A解析:A 【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.5.A解析:A 【解析】 试题分析:A.∵12>13∴12-<13-,故A 正确; B .4π-<2-;此选项错误;C .()32(8)8--=--=>0,故此选项错误; D .∵2<5∴-2>-5,故此选项错误. 故选A.考点:有理数的大小比较.6.A解析:A 【解析】 【分析】由展开图可知a 的相对面为1-,根据题意可得a 的值. 【详解】解:因为相对面上的数都互为相反数,由展开图可知a 的相对面为1-, 所以a 的值为1. 故选:A 【点睛】本题考查了正方体的展开图,熟练掌握展开图与立体图之间的关系是解题的关键.7.A解析:A 【解析】试题分析:根据有理数a 、b 在数轴上的位置,可得,a<0,b>0,所以∣a ∣<∣b ∣,所以可得,a+b>0,a-b<0则=(a+b )+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值8.C解析:C【解析】【分析】根据补角的定义、对顶角的定义、锐角的钝角的定义以及平行公理对每一项进行解答判断即可.【详解】根据补角的定义:两角之和等于180°,同角或等角的补角相等,A正确;对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,对顶角度数的大小相等,B正确;锐角的范围0°<锐角<90°,90°<钝角<180°,锐角的2倍不一定是钝角,C错误.平行公理:经过直线外一点,有且只有一条直线与已知直线平行.D正确.故答案选C.【点睛】本题考查了补角、对顶角、锐角钝角的定义及平行公理,熟练掌握它们的定义是解决本题的关键.9.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将115000用科学记数法表示为:1.15×105.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.C解析:C【解析】【分析】根据余角、补角、对顶角的定义进行判断即可.【详解】解:A、两个对顶角相等,但相等的两个角不一定是对顶角;故A错误;B、补角是两个角的关系,故B错误;C、如果两个角的和是一个直角,那么这两个角互为余角;故C正确;D、锐角的补角都大于这个角,而直角和钝角不符合这样的条件,故D错误.故选:C.【点睛】此题考查对顶角的定义,余角和补角.若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.11.A解析:A【解析】【分析】根据单项式的系数定义和多项式项的概念得出即可.【详解】二次三项式2x2﹣3x﹣1的二次项系数,一次项系数,常数项分别是2,﹣3,﹣1,故选A.【点睛】本题考查了多项式的有关概念,能熟记多项式的项和单项式的次数和系数定义的内容是解此题的关键.12.C解析:C【解析】【分析】将选项A,C,D合并同类项,判断出选项B中左边两项不是同类项,不能合并,即可得出结论,【详解】解:A、3a2+4a2=7a2,故选项A不符合题意;B、4m2n与2mn2不是同类项,不能合并,故选项B不符合题意;C.、2x-12x=32x,故选项C符合题意;D、2a2-a2=a2,故选项D不符合题意;故选C.【点睛】本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.13.C解析:C【解析】【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看是一个矩形,矩形的中间是一条横着的线,故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.14.A解析:A【解析】【分析】根据无理数的定义确定即可.【详解】解:在 3.14、227、 0、π、1.6这 5个数中,π为无理数,共1个.故选:A.【点睛】本题考查实数的分类,无限不循环的小数为无理数.15.C解析:C【解析】【分析】观察数轴根据点B与点A之间的距离即可求得答案.【详解】观察数轴可知点A与点B之间的距离是5个单位长度,点B在点A的右侧,因为点A表示的数是-2,-2+5=3,所以点B表示的数是3,故选C.【点睛】本题考查了数轴上两点间的距离,有理数的加法,准确识图是解题的关键.二、填空题16.3或5【解析】【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当C在线段AB的反向延长向上时,由线段的和差解析:3或5【解析】【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当C在线段AB的反向延长向上时,由线段的和差,得BC=AB+AC=8+2=10,由线段中点的性质,得BD=CD=12BC=12×10=5,AD=CD-AC=5-2=3;当C在线段AB上时,由线段的和差,得BC=AB-AC=8-2=6,由线段中点的性质,得BD=CD=12BC=12×6=3,所以AD=AC+CD=2+3=5.综上所述,AD=3或5.故答案为:3或5.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.17.24或5【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出119,可得方程5x-1=119,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解析:24或5【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出119,可得方程5x-1=119,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解:第一个数就是直接输出其结果的:5x-1=119,解得x=24,第二个数是(5x-1)×5-1=119,解得x=5,第三个数是:5[5(5x-1)-1]-1=119,解得x=65.(不符合题意,舍去)∴满足条件所有x的值是24或5.故答案为:24或5.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.18.x²-2xy【解析】【分析】根据单项式乘以多项式,直接去括号,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了单项式乘以多项式,解题的关键是掌握整式乘法的运算法则. 解析:x²-2xy【解析】【分析】根据单项式乘以多项式,直接去括号,即可得到答案.【详解】解:2(2)2x x y x xy -=-;故答案为:22x xy -.【点睛】本题考查了单项式乘以多项式,解题的关键是掌握整式乘法的运算法则. 19.3【解析】【分析】方程的解满足方程,所以将代入方程可得的值.【详解】解:将代入方程得解得.故答案为:3.【点睛】本题考查了一元一次方程,熟练掌握一元一次方程的解的定义是解题的关键 解析:3【解析】【分析】方程的解满足方程,所以将1x =代入方程可得m 的值.【详解】解:将1x =代入方程345m x -=得345m -=解得3m =.故答案为:3.【点睛】本题考查了一元一次方程,熟练掌握一元一次方程的解的定义是解题的关键.20.【解析】【分析】将代入不等式后解关于m 的一元一次不等式即可.【详解】将代入不等式得,解得:m≤1.【点睛】本题考查一元一次不等式的解得概念,解题的关键是将不等式的解代入不等式后再解关于解析:1m【解析】【分析】将2x =代入不等式后解关于m 的一元一次不等式即可.【详解】将2x =代入不等式得2310m -+≥,解得:m ≤1.【点睛】本题考查一元一次不等式的解得概念,解题的关键是将不等式的解代入不等式后再解关于m 的方程.21.-673【解析】【分析】直接利用已知得出|a|=2b ,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b ,∵点A (表示整数a )在原点O 的左侧,点B (表示整解析:-673【解析】【分析】直接利用已知得出|a|=2b ,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b ,∵点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,∴-a=2b ,-a+b=2019,解得:b=673,a=-1346,故a+b=-673.故答案为:-673.【点睛】此题主要考查了数轴上的点以及代数式求值,正确得出a,b之间的关系是解题关键.22.【解析】【分析】可以看出x=y-1,由此将数代入计算即可.【详解】由上述两个方程可以得出:x=y-1,将代入,解得y=5.故答案为:5.【点睛】本题考查一元一次方程与解的关系,关解析:【解析】【分析】可以看出x=y-1,由此将数代入计算即可.【详解】+=+x a x2020342019-+=-+2020(1)34(1)2019y a yx=代入,解得y=5.由上述两个方程可以得出:x=y-1,将4故答案为:5.【点睛】本题考查一元一次方程与解的关系,关键在于由题意看出x与y的关系.23.﹣2.【解析】【分析】计算绝对值要根据绝对值的定义求解,然后根据相反数的性质得出结果. 【详解】﹣|﹣2|表示﹣2的绝对值的相反数,|﹣2|=2,所以﹣|﹣2|=﹣2.【点睛】相反数的定解析:﹣2.【解析】【分析】-,然后根据相反数的性质得出结果.计算绝对值要根据绝对值的定义求解2【详解】﹣|﹣2|表示﹣2的绝对值的相反数,|﹣2|=2,所以﹣|﹣2|=﹣2.【点睛】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.24.【解析】【分析】根据绝对值的意义解答即可.【详解】解:6是正数,绝对值是它本身6.故答案为:6.【点睛】本题考查了绝对值的意义,属于应知应会题型,熟知绝对值的定义是解题关键. 解析:【解析】【分析】根据绝对值的意义解答即可.【详解】解:6是正数,绝对值是它本身6.故答案为:6.【点睛】本题考查了绝对值的意义,属于应知应会题型,熟知绝对值的定义是解题关键. 25.【解析】【分析】根据1'=,将15'化为然后与42°相加即可.【详解】解:.故答案为:.【点睛】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.解析:42.25︒【解析】【分析】根据1'=1()60︒,将15'化为15()60︒然后与42°相加即可.【详解】解:154215=42+()42.2560'︒︒︒=︒. 故答案为:42.25︒.【点睛】 考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.三、解答题26.xy 2+1,3【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:原式=2x 2y ﹣2xy 2﹣2﹣2x 2y+3xy 2+3=xy 2+1当x=2,y=﹣1时,原式=2×(-1)2+1=3【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.27.分配10人生产甲种零部件,12人乙种零部件【解析】【分析】设应分配x 人生产甲种零件,(22-x)人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套,根据每人每天平均能生产甲种零件12个或乙种零件15个,可列方程求解.【详解】设分配x 人生产甲种零部件根据题意,得()312x 21522x ⨯=⨯-解之得:x 10=22x 12-=答:分配10人生产甲种零部件,12人乙种零部件.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据题意列出方程.28.(1)7个,(2)图形见详解【解析】【分析】(1)前排有2个,后排有5个,据此解题,(2)主视图要将几何体从前往后压缩,使看到的面全部落在一个竖立的平面内;左视图要从正面的左面看,要正对着几何体,视线要与放置几何体的平面平行,并合理想象;俯视图要从正上方往下看,每一竖列的图形最顶的一个面,它们无高低之分使看到的面都落在同一个平面内.【详解】解:(1)前排有2个,后排有5个,∴这个几何体由7个小正方体组成,(2)如图【点睛】本题考查了图形的三视图,属于简单题,熟悉三视图的画法是解题关键.29.(1)-8;(2)60.【解析】【分析】(1)先计算乘方和乘法,再计算减法,即可得到答案;(2)利用乘法分配律进行计算,即可得到答案.【详解】(1)解:原式=4-12=-8;(2)解:原式=-30+40+50=60.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则.30.(1)详见解析;(2)2a b +;(3)2019b =. 【解析】【分析】(1)根据数轴即可求出各数的中点;(2)由(1)找到规律即可求解;(3)根据规律列出方程即可求解.【详解】解(1) a -1-1 2.5 6- b 13 5.5 -2 m 0 14 -4(2)用含a 、b 的代数式表示m ,则m =2a b + 故填:2a b +; (3)当2021a =,2020m =时由(2)可得202120202b +=则2019b =.【点睛】此题主要考查一元一次方程的应用,解题的关键是熟知数轴的性质及根据题意找到等量关系进行列方程求解.31.(1)见解析;(2)①2个;②2个;③需要喷漆的面积最少是1900cm 2.【解析】【分析】(1)根据物体形状即可画出左视图有三列与以及主视图三列;(2)①可在最左侧前端放两个,②可在最左侧最后面或最前面拿走两个,③分别从正面、右面、上面、左面求表面积即可.【详解】(1) 如图所示(2)①可在最左侧前端放两个;②可在最左侧最后面或最前面拿走两个两个;③根据每一个面的面积是10×10=100,∴需要喷漆的面积最少是:19×100=1900(cm 2).【点睛】此题主要考查了由实物画三视图,以及利用主视图和俯视图判断几何体的形状,主要培养同学们的空间想象能力,想象不出来可以亲手实验.32.(1)80;(2)60千米/时;(3)16或76或236. 【解析】【分析】(1)设甲车的速度为x 千米/时,根据甲车时间比乙车时间多用10分钟,路程为360千米,列方程求解即可;(2)设乙车装货后的速度为x 千米/时,根据“满载货物后,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时”列方程,求解即可; (3)分两种情况讨论:①装货前,设乙车出发x 小时两车相距10千米,列方程求解即可;②乙车装货后,设乙车又行驶了x 小时与甲车相距10千米.列方程求出x 的值,再加上3小时20分钟即可. 【详解】(1)设甲车的速度为x 千米/时,根据题意得:(1310360+)x =360 解得:x =80.答:甲车的速度为80千米/时.(2)设乙车装货后的速度为x 千米/时,根据题意得:13203(40)(3)360360x x ++--=解得:x =60.答:乙车装货后行驶的速度为60千米/时. (3)分两种情况讨论:①装货前,设乙车出发x 小时两车相距10千米,根据题意得:1010080()1060x x -+= 解得:x =16或x =76. ②乙车装货后,设乙车又行驶了x 小时与甲车相距10千米.此时乙车在前,甲车在后. 乙车装货结束时,甲车行驶的路程=80×(3+3060)=280(千米),乙车行驶的路程=100×3=300(千米).根据题意得: 280+80x +10=300+60x 解得:x =0.5乙车一共用了202330.5606++=(小时). 答:乙车出发16小时或76小时或236小时与甲车相距10千米.【点睛】本题考查了一元一次方程的应用.分类讨论是解答本题的关键.33.(1)1x =;(2)75x =【解析】 【分析】(1)根据解一元一次方程的步骤依次去括号、移项、合并同类项、系数化为1,据此计算可得;(2)根据解一元一次方程的步骤依次去分母、去括号、移项、合并同类项、系数化为1,据此计算可得. 【详解】解:(1)523(2)x x -=-- 去括号得:523+6x x -=- 移项得:5+36+2x x = 合并同类项得:88x = 系数化为1得:1x = (2)321143x x ---= 去分母得:()()1233421x x --=- 去括号得: 129+384x x -=- 移项得: 3-84-12+9x x =- 合并同类项得: -57x =- 系数化为1得: 75x = 【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.四、压轴题34.(1)125°;(2)ON 平分∠AOC ,理由详见解析;(3)∠BOM=∠NOC+40°,理由详见解析 【解析】 【分析】(1)根据∠MOC=∠MON+∠BOC 计算即可;(2)由角平分线定义得到角相等的等量关系,再根据等角的余角相等即可得出结论; (3)根据题干已知条件将一个角的度数转换为两个角的度数之和,列出等式即可得出结论. 【详解】解: (1) ∵∠MON=90° , ∠BOC=35°, ∴∠MOC=∠MON+∠BOC= 90°+35°=125°. (2)ON 平分∠AOC . 理由如下: ∵∠MON=90°,。
苏教版七年级上册数学 期末试卷测试卷(含答案解析)一、选择题1.下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .若 AC=BC ,则点 C 是线段 AB 的中点 2.有理数-53的倒数是( ) A .53 B .53-C .35D .353.若x 3=是方程3x a 0-=的解,则a 的值是( ) A .9B .6C .9-D .6-4.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒5.2019年12月15日开始投入使用的盐城铁路综合客运枢纽,建筑总面积约为324 000平方米.数据324 000用科学记数法可表示为( ) A .324×103B .32.4×104C .3.24×105D .0.324×1066.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .197.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直; ④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个B .2个C .3个D .4个8.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a9.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .13x ﹣1D .6x 2+13x ﹣1 10.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( )A .-2B .-1C .1D .211.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144° 12.下列计算正确的是( )A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab +=13.单项式24x y 3-的次数是( ) A .43-B .1C .2D .314.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .15.地球上陆地的面积约为1490000002km ,数149000000科学记数法可表示为( ) A .90.14910⨯,B .81.4910⨯C .714.910⨯D .614910⨯二、填空题16.2019上半年溧水实现GDP 为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP 为_________元.17.在0,1,π,227-这些数中,无理数是___________ . 18.有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线. 其中可用“两点之间,线段最短”来解释的现象有_____(填序号). 19.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.20.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______.21.若2|3|(2)0x y ++-=,则2x y +的值为___________.22.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.23. 当m = __时,方程21x m x +=+的解为4x =-. 24.已知∠α=28°,则∠α的余角等于___.25. 若3x 2k -3=5是一元一次方程,则k =________.三、解答题26.如图所示,O 为一个模拟钟面圆心,M 、O 、N 在一条直线上,指针 OA 、OB 分别从 OM 、ON 出发绕点 O 转动,OA 运动速度为每秒 30°,OB 运动速度为每秒10°,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:(1)如图①,若OA 顺时针转动,OB 逆时针转动,t = 秒时,OA 与OB 第一次重合;(2)如图②,若OA 、OB 同时顺时针转动, ①当t =3秒时,∠AOB = °;②当t 为何值时,三条射线OA 、OB 、ON 其中一条射线是另两条射线夹角的角平分线?27.先化简,再求值:()()222227a b ab 4a b 2a b 3ab+---,其中a 、b 的值满足2a 1(2b 1)0-++=28.如图1,∠MON =90°,点A ,B 分别在射线OM 、ON 上.将射线OA 绕点O 沿顺时针方向以每秒9°的速度旋转,同时射线OB 绕点O 沿顺时针方向以每秒3°的速度旋转(如图2).设旋转时间为t (0≤t ≤40,单位秒). (1)当t =8时,∠AOB = °;(2)在旋转过程中,当∠AOB =36°时,求t 的值.(3)在旋转过程中,当ON 、OA 、OB 三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,请求出t 的值.29.如图,点A 、点B 是数轴上原点O 两侧的两点,其中点A 在原点O 的左侧,且满足6AB =,2OB OA =.(1)点A 、B 在数轴上对应的数分别为______和______.(2)点A 、B 同时分别以每秒1个单位长度和每秒2个单位长度的速度向左运动. ①经过几秒后,3OA OB =;②点A 、B 在运动的同时,点P 以每秒1个单位长度的速度从原点向右运动,经过几秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点? 30.计算: (1)35|3|44⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(2)23151(32)21428⎛⎫---⨯-+⎪⎝⎭31.解方程(1)5x ﹣1=3(x +1)(2)2151136x x +--= 32.解方程:(1)523(2)x x -=--(2)321143x x ---= 33.先化简,后求值.(1)化简:()()22222212a b ababa b +--+-(2)当()221320b a -++=时,求上式的值.四、压轴题34.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.35.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?36.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.37.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.38.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.39.点O为直线AB上一点,在直线AB同侧任作射线OC、OD,使得∠COD=90°(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数40.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC是∠AOB的“奇分线”,如图2,∠MPN=42°:(1)过点P作射线PQ,若射线PQ是∠MPN的“奇分线”,求∠MPQ;(2)若射线PE绕点P从PN位置开始,以每秒8°的速度顺时针旋转,当∠EPN首次等于180°时停止旋转,设旋转的时间为t(秒).当t为何值时,射线PN是∠EPM的“奇分线”?41.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.42.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=.同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= . 43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点. ①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ; (2)若AC =λCB (其中λ>0). ①当x A =﹣2,x B =4,λ=13时,x C = .②一般的,将x C用x A、x B和λ表示出来为x C=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据线段公理,平行公理,垂线段最短等知识一一判断即可.【详解】A.两点之间,线段最短,正确;B.经过直线外一点,有且只有一条直线与这条直线平行,正确;C.直线外一点与这条直线上各点连接的所有线段中,垂线段最短,正确;D.当A、B、C三点在一条直线上时,当AC=BC时,点 C 是线段 AB 的中点;故错误;故选:D.【点睛】本题考查线段公理,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.D解析:D【解析】【分析】根据倒数的定义,即乘积是1的两数互为倒数可得答案.【详解】解:-53的倒数是-35,故选:D.【点睛】本题考查了倒数的定义,熟练掌握倒数的求法是解题的关键.3.A解析:A【解析】【分析】把x=3代入方程3x﹣a=0得到关于a的一元一次方程,解之即可.【详解】把x=3代入方程3x﹣a=0得:9﹣a=0,解得:a=9.故选A.【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.4.C解析:C【解析】【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.5.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】324 000=3.24×105.故选:C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.D解析:D【解析】【分析】根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程即可.【详解】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…x张长方形餐桌的四周可坐4x+2人;则依题意得:4x+2=78,解得:x=19,故选:D.【点睛】此题考查图形的变化规律和由实际问题抽象出一元一次方程,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.7.A解析:A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC,且A,B,C三点共线时,则点C是线段AB的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A.【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.8.C解析:C【解析】【分析】根据数轴得出-3<a <-2,再逐个判断即可.【详解】A 、∵从数轴可知:-3<a <-2,∴2<-a<3,故本选项不符合题意;B 、∵从数轴可知:-3<a <-2,∴2<a <3,故本选项不符合题意;C 、∵从数轴可知:-3<a <-2,∴2<a <3,∴1<|a|-1<2,故本选项符合题意;D 、∵从数轴可知:-3<a <-2,∴3<1 –a<4,故本选项不符合题意;故选:C .【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a <-2是解此题的关键.9.A解析:A【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】根据题意列得:(3x 2+4x−1)−(3x 2+9x )=3x 2+4x-1−3x 2−9x =−5x−1.故选A .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.C解析:C【解析】【分析】把2x =-代入250x a -+=即可求解.【详解】把2x =-代入250x a -+=得-4-a+5=0解得a=1故选C.【点睛】此题主要考查方程的解,解题的关键是熟知把方程的解代入原方程.11.B解析:B【解析】【分析】由折叠的性质及平角等于180°可求出∠BEH 的度数,由AB ∥CD ,利用“两直线平行,内错角相等”可求出∠DHE 的度数,再利用对顶角相等可求出∠CHG 的度数.【详解】由折叠的性质,可知:∠AEF =∠FEH .∵∠BEH =4∠AEF ,∠AEF +∠FEH +∠BEH =180°,∴∠AEF =16×180°=30°,∠BEH =4∠AEF =120°. ∵AB ∥CD ,∴∠DHE =∠BEH =120°,∴∠CHG =∠DHE =120°.故选:B .【点睛】 本题考查了四边形的折叠问题,掌握折叠的性质以及平行的性质是解题的关键.12.B解析:B【解析】【分析】根据合并同类项的法则和同类项的定义分别对每一项进行计算即可.【详解】A 、7a +a =8a ,故本选项错误;B 、22232x y yx x y -=,故本选项正确;C 、5y−3y =2y ,故本选项错误;D 、3a +2b ,不是同类项,不能合并,故本选项错误;故选:B .【点睛】此题考查了合并同类项,熟练掌握合并同类项的法则和同类项的定义是本题的关键.13.D解析:D【解析】【分析】直接利用单项式的次数的定义得出答案.【详解】 单项式43-x 2y 的次数是2+1=3. 故选D .【点睛】 本题考查了单项式的次数,正确把握定义是解题的关键.14.D解析:D【解析】【分析】根据余角、补角的定义计算.【详解】根据余角的定义,两角之和为90°,这两个角互余.D 中∠1和∠2之和为90°,互为余角.故选D .【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.15.B解析:B【解析】【分析】用科学记数法表示较大的数时,注意a ×10n 中a 的范围是1≤a <10,n 是正整数,n 与原数的整数部分的位数-1.【详解】解:8149000000 1.4910=⨯故选:B .【点睛】本题考查用科学记数法表示绝对值大于1的数. 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,能正确确定a 和n 是解决此题的关键.二、填空题16.203×1010【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.解析:203×1010【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:420.3亿=42030000000=4.203×1010故答案为:4.203×1010【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.【解析】【分析】根据无理数的定义,可得答案.【详解】是无理数,故答案为:.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,,0.80解析:π【解析】【分析】根据无理数的定义,可得答案.【详解】π是无理数,故答案为:π.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.18.②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线; ②把弯曲的公路改直能缩短路程,解析:②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两颗树的位置,就能确定同一行所在的直线根据两点确定一条直线; 故答案为②.考点:线段的性质:两点之间线段最短.19.【解析】【分析】根据题意可知单项式与是同类项,从而可求出m 的值.【详解】解:∵若单项式与的差仍是单项式,∴这两个单项式是同类项,∴m -2=1解得:m=3.故答案为:3.【点睛】解析:3【解析】【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y-与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3. 20.5×108【解析】科学记数法的表示形式为的形式,其中,为整数.【详解】解:根据已知150000000用科学记数法表示为1.5×108故答案为:1.5×108【点睛】本题考核知解析:5×108【解析】【分析】 科学记数法的表示形式为10n a ⨯的形式,其中110a≤,为整数. 【详解】解:根据已知150000000用科学记数法表示为1.5×108故答案为:1.5×108【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的要求,即10n a ⨯其中110a ≤<.21.【解析】【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值,进而得出答案.【详解】解:∵,∴x +3=0,y−2=0,解得:x =−3,y =2,故x +2y =−3+4=1.故答案解析:1【解析】【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值,进而得出答案.【详解】解:∵2|3|(2)0x y ++-=,∴x +3=0,y−2=0,解得:x =−3,y =2,故x +2y =−3+4=1.故答案是:1.此题主要考查了偶次方的性质以及绝对值的性质,正确得出x,y的值是解题关键.22.15【解析】【分析】因为∠BAC=60°, ∠DAE=45°,根据角的和差关系及三角板角的度数求解. 【详解】解:∵∠DAB=∠BAC-∠DAC, ∠EAC=∠DAE-∠DAC∴=(∠B解析:15【解析】【分析】因为∠BAC=60°, ∠DAE=45°,根据角的和差关系及三角板角的度数求解.【详解】解:∵∠DAB=∠BAC-∠DAC, ∠EAC=∠DAE-∠DAC∠-∠∴DAB EAC=(∠BAC-∠DAC)-(∠DAE-∠DAC)=∠BAC-∠DAC- ∠DAE+∠DAC=∠BAC-∠DAE∵∠BAC=60°, ∠DAE=45°∠-∠=60°-45°=15°.∴DAB EAC【点睛】本题考查角的和差关系,根据和差关系将角进行合理的等量代换是解答此题的关键. 23.5【解析】【分析】将代入方程,然后解一元一次方程即可.【详解】解:由题意,将代入方程解得:m=5故答案为:5【点睛】本题考查方程的解和解一元一次方程,正确计算是本题的解题关键.解析:5【解析】x=-代入方程,然后解一元一次方程即可.将4【详解】x=-代入方程解:由题意,将4⨯-+=-+m2(4)41解得:m=5故答案为:5【点睛】本题考查方程的解和解一元一次方程,正确计算是本题的解题关键.24.62°.【解析】【分析】互为余角的两角和为,而计算得.【详解】该余角为90°﹣28°=62°.故答案为:62°.【点睛】本题考查了余角,从互为余角的两角和为而解得.解析:62°.【解析】【分析】互为余角的两角和为90︒,而计算得.【详解】该余角为90°﹣28°=62°.故答案为:62°.【点睛】本题考查了余角,从互为余角的两角和为90︒而解得.25.2【解析】分析:根据未知数的指数等于1列方程求解即可.详解:由题意得,2k-3=1,∴k=2.故答案为2.点睛:本题考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且解析:2分析:根据未知数的指数等于1列方程求解即可.详解:由题意得,2k -3=1,∴k =2.故答案为2.点睛:本题考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,像这样的方程叫做一元一次方程.三、解答题26.(1)4.5;(2)① 120°;②经过4.5,7.2秒时,其中一条射线是另外两条射线夹角的平分线.【解析】【分析】(1)设t 秒后第一次重合.根据题意,列出方程,解方程即可;(2)①利用180°减去OA 转动的角度,加上OB 转动的角度,即可得到答案;②先用t 的代数式表示∠BON 和∠AON ,然后分为三种情况进行讨论:当ON 、OA 、OB 为角平分线时,分别求出t 的值,即可得到答案.【详解】解:(1)若OA 顺时针转动,OB 逆时针转动,∴∠AOM+∠BON=180°,∴3010180t t +=,解得: 4.5t =;∴ 4.5t =秒,OA 与OB 第一次重合;故答案为:4.5;(2)①若OA 、OB 同时顺时针转动,∴30390AOM ∠=︒⨯=︒,10330BON ∠=︒⨯=︒,∴1809030120AOB ∠=︒-︒+︒=︒;故答案为:120;② 由题意知012t ≤≤,∴∠BON =10t ,∠AON =180-30t (0≤t ≤6),∠AON =30t -180(6<t ≤12).当ON 为∠AOB 的角平分线时,有180-30t =10t ,解得:t =4.5;当OA 为∠BON 的角平分线时,10t =2(30t -180),解得:t =7.2;当OB 为∠AON 的角平分线时,30t -180=2×10t ,解得:t =18(舍去);∴经过4.5,7.2秒时,射线OA 、OB 、ON 其中一条射线是另外两条射线夹角的平分线.【点睛】本题考查一元一次方程的应用,解题的关键是理解题意,学会设未知数列方程解决问题,注意利用分类讨论的思想进行解题,属于中考常考题型.27.12【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:由题意得,a 10-=,2b 10+=,解得,a 1=,1b 2=-, 原式222227a b ab 4a b 2a b 3ab =+--+22a b 4ab =+211141()22⎛⎫=⨯-+⨯⨯- ⎪⎝⎭ 12=. 故答案为:12. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.28.(1)42;(2)9t =或21t =;(3)t =7.5或12或30.【解析】【分析】(1)当t =8时,OA 转过的角度为8×9°=72°,OB 转过的角度为8×3°=24°, 再计算∠AOB 的值即可;(2)根据题意列出方程(903)936t t +-=,在解方程即可的解;(3)当ON 、OA 、OB 三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,有3种情况:ON 平分∠AOB 、OA 平分∠BON 、OB 平分∠AON ,分别根据每种情况列方程求解即可.【详解】(1) 当t =8时,OA 转过的角度为8×9°=72°,OB 转过的角度为8×3°=24°,∴∠AOB=∠AON+∠NOB=90°-72°+24°=42°;(2)根据题意可得,(903)936t t +-=,解得9t =或21t =;(3) 当ON 、OA 、OB 三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,有以下3种情形:①当ON 平分∠AOB 时,3t =90-9t ,∴t =7.5;②当OA 平分∠BON 时,3t =2(9t -90),∴t =12;③当OB 平分∠AON 时,9t -90=2×3t ,∴t =30 ;综上,t 的值为7.5、12或30.【点睛】本题考查一元一次方程的应用,解题的关键是根据ON 平分不同的角时进行分类讨论.29.(1)-2和4;(2)①经过107秒或145秒,3OA OB =;②经过25秒或52秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点.【解析】【分析】(1)设点A 在数轴上对应的数为a,点B 在数轴上对应的数为b.根据题意确定a 、b 的正负,得到关于a 、b 的方程,求解即可;(2)①设t 秒后OA=3OB.根据OA=3OB ,列出关于t 的一元一次方程,求解即可;②根据中点的意义,得到关于t 的方程,分三种情况讨论并求解:点P 是AB 的中点;点A 是BP 的中点;点B 是AP 的中点.【详解】(1)设点A 在数轴上对应的数为a,点B 在数轴上对应的数为b,则OA=-a ,OB=b∵6AB =,∴OA+OB=6∴-a+b=6∵2OB OA =.∴b=-2a∴-a+b=6b=-2a ⎧⎨⎩∴a=-2b=4⎧⎨⎩∴点A 在数轴上对应的数为-2,点B 在数轴上对应的数为4故答案为:-2和4;(2)①设t 秒后,3OA OB =,则点A 在数轴上对应的数为-2-t,点B 在数轴上对应的数为4-2t ,故OA=2+t情况一:当点B 在点O 右侧时,故OB=4-2t∵3OA OB =则()2342t t +=-,解得:107t =. 情况二:当点B 在点O 左侧时,,故OB=2t-4∵3OA OB =则()2324t t +=-, 解得:145t =. 答:经过107秒或145秒,3OA OB =. ②设经过t 秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点,此时点P 在数轴上对应的数为t, 点A 在数轴上对应的数为-2-t,点B 在数轴上对应的数为4-2t当点P 是AB 的中点时,则()()2422t t t --+-=, 解得:25t =. 当点B 是AP 的中点时,则()2422t t t --+=-. 解得:52t =. 当A 点是BP 的中点时,则()4222t t t -+=-- 解得:8t =-(不合题意,舍去) 答:经过25秒或52秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点. 【点睛】本题考查了数轴、一元一次方程、 线段的中点及分类讨论的思想.题目综合性较强.掌握数轴上两点间的距离公式是解决本题的关键.数轴上两点间的距离=右边点表示的数-左边点表示的数.30.(1)-1;(2)-5【解析】【分析】(1)利用有理数的加减法法则和绝对值的性质,即可求出算式的值.(2)应用乘法分配律,即可求出算式的值.【详解】解:(1)35|3|44⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭=2﹣3=﹣1(2)23151(32)21428⎛⎫---⨯-+⎪⎝⎭ =﹣1+32×34﹣32×212+32×158=﹣1+24﹣80+52=﹣5.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.31.(1)x =2;(2)x =﹣3.【解析】【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【详解】解:(1)去括号,可得:5x ﹣1=3x +3,移项,合并同类项,可得:2x =4,系数化为1,可得:x =2.(2)去分母,可得:2(2x +1)﹣(5x ﹣1)=6,去括号,可得:4x +2﹣5x +1=6,移项,合并同类项,可得:﹣x =3,系数化为1,可得:x =﹣3.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.(1)1x =;(2)75x =【解析】【分析】(1)根据解一元一次方程的步骤依次去括号、移项、合并同类项、系数化为1,据此计算可得;(2)根据解一元一次方程的步骤依次去分母、去括号、移项、合并同类项、系数化为1,据此计算可得.【详解】解:(1)523(2)x x -=--去括号得:523+6x x -=-移项得:5+36+2x x =合并同类项得:88x =系数化为1得:1x =(2)321143x x ---=去分母得:()()1233421x x --=-去括号得: 129+384x x -=-移项得: 3-84-12+9x x =-合并同类项得: -57x =-系数化为1得: 75x =【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.33.(1)2a b -1;(2)a=-2,b=12;1. 【解析】试题分析:(1)首先根据去括号的法则将括号去掉,然后再进行合并同类项化简;(2)根据非负数的性质求出a 和b 的值,然后代入化简后的式子进行计算,得出答案. 试题解析:(1)原式=22a b +22ab -22ab +1-2a b -2=2a b -1(2)根据非负数的性质可得:2b -1=0,a+2=0 解得:a=-2,b=12 ∴原式=2a b -1=4×12-1=2-1=1. 考点:(1)化简求值;(2)非负数的性质四、压轴题34.(1)3.(2)存在.x 的值为3.(3)不变,为2.【解析】【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解.【详解】解:(1)∵点A 、B 是数轴上的两个点,它们分别表示的数是2-和1∴A,B 两点之间的距离是1-(-2)=3.故答案为3.(2)存在.理由如下:①若P 点在A 、B 之间,x+2+1-x=7,此方程不成立;②若P 点在B 点右侧,x+2+x-1=7,解得x=3.。
苏教版七年级上册数学期末测试卷及答案成功的花由汗水浇灌,艰苦的掘流出甘甜的泉,祝:七年级数学期末考试时能超水平发挥。
下面是小编为大家精心整理的苏教版七年级上册数学期末测试卷,仅供参考。
苏教版七年级上册数学期末测试题一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1093.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是35.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣﹣0.4.12.计算: = .13.若∠α=34°36′,则∠α的余角为.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= .15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= .16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= cm.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为元.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到的距离,线段是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是(用“<”号连接)26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ,理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= cm OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?苏教版七年级上册数学期末测试卷参考答案一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°【考点】垂线.【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【考点】平行线的判定.【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.【考点】一元一次方程的解.【专题】计算题;应用题.【分析】使方程两边左右相等的未知数叫做方程的解方程的解.【解答】解:把x=m代入方程得4m﹣3m=2,m=2,故选B.【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.【解答】解:①两点之间的所有连线中,线段最短,说法正确;②相等的角是对顶角,说法错误;③过直线外一点有且仅有一条直线与己知直线平行,说法正确;④两点之间的距离是两点间的线段,说法错误.正确的说法有2个,故选:B.【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上【考点】规律型:数字的变化类.【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)∵2016÷6=336,∴2016在射线OA上.故选A.【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣> ﹣0.4.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣ |= ,|﹣0.4|=0.4,∵ <0.4,∴﹣ >﹣0.4.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.计算: = ﹣.【考点】有理数的乘方.【分析】直接利用乘方的意义和计算方法计算得出答案即可.【解答】解:﹣(﹣ )2=﹣ .故答案为:﹣ .【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.13.若∠α=34°36′,则∠α的余角为55°24′.【考点】余角和补角;度分秒的换算.【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°24′,故答案为:55°24′.【点评】此题主要考查了余角,关键是掌握余角定义.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= 1 .【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.【解答】解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,∴2m+1=3m﹣1,10+4n=6,∴n=﹣1,m=2,∴m+n=2﹣1=1.故答案为1.【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= 0 .【考点】实数与数轴.【专题】计算题.【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c∴a+c<0、a﹣b>0、c+b<0,所以原式=﹣(a+c)+a﹣b+(c+b)=0.故答案为:0.【点评】此题主要看错了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是1 .【考点】代数式求值.【专题】计算题.【分析】先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.【解答】解:∵x+y=1,∴(x+y)2﹣x﹣y+1=(x+y)2﹣(x+y)+1=1﹣1+1=1.故答案为1.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为 2 .【考点】同解方程.【分析】根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.【解答】解:由2(2x﹣1)=3x+1,解得x=3,把x=3代入m=x﹣1,得m=3﹣1=2,故答案为:2.【点评】本题考查了同解方程,把同解方程的即代入第二个方程得出关于m的方程是解题关键.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= 13或7 cm.【考点】两点间的距离.【专题】计算题.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,∵M是线段AC的中点,则AM= AC=13cm;②当点C在线段AB上时,AC=AB﹣BC=14cm,∵M是线段AC 的中点,则AM= AC=7cm.故答案为:13或7.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为240 元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:330×80%﹣x=10%x,解得:x=240,则这种商品每件的进价为240元.故答案为:240【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为 2.5 cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.【考点】展开图折叠成几何体.【分析】利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.【解答】解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程2x=10÷2解得x=2.5cm,故答案为:2.5.【点评】本题考查了展开图折叠成几何体,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.【考点】有理数的混合运算.【分析】利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.【解答】解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣× ×6=﹣1﹣1=﹣2.【点评】本题考查的是有理数的运算法则.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.【考点】解一元一次方程.【分析】去分母,去括号,移项,合并同类项,系数化一.【解答】解:(1)4﹣x=3(2﹣x),去括号,得4﹣x=6﹣3x,移项合并同类项2x=2,化系数为1,得x=1;(2) ,去分母,得3(x+1)﹣(2﹣3x)=6去括号,得3x+3﹣2+3x=6,移项合并同类项6x=5,化系数为1,得x= .【点评】本题考查解一元一次方程,关键知道去分母,去括号,移项,合并同类项,系数化一.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)原式合并后,根据代数式的值与字母x无关,得到x 一次项与二次项系数为0求出a与b的值即可;(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.【解答】解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;(2)原式=(a﹣b)2=42=16.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到直线OA 的距离,线段PC的长是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是PH【考点】垂线段最短;点到直线的距离;作图—基本作图.【专题】作图题.【分析】(1)(2)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA 的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.【解答】解:(1)如图:(2)如图:(3)直线0A、PC的长.(4)PH【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?【考点】一元一次方程的应用.【分析】首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.【解答】解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为 .根据题意,得160x+300× =4020.解得:x=12.从而 =7.答:该旅游团入住三人普通间12间、双人豪华间7间.(注:若用二元一次方程组解答,可参照给分)【点评】此题主要考查了一元一次方程的应用,根据题意表示出双人豪华间数进而得出等式是解题关键.27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45 °,∠COD和∠AOB互余.【考点】余角和补角.【分析】(1)①根据同角的余角相等解答;②表示出∠AOD,再求出∠COD,然后整理即可得解;(2)根据(1)的求解思路解答即可.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.【点评】本题考查了余角和补角,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= 8 cm OB= 4 cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?【考点】一元一次方程的应用;数轴.【分析】(1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;(2)根据图形可知,点C是线段AO上的一点,可设CO的长是xcm,根据AC=CO+CB,列出方程求解即可;(3)①分0≤t<4;4≤t<6;t≥6三种情况讨论求解即可;②求出点P经过点O到点P,Q停止时的时间,再根据路程=速度×时间即可求解.【解答】解:(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得OB=4cm,OA=2OB=8cm.故答案为:8,4;(2)设CO的长是xcm,依题意有8﹣x=x+4+x,解得x= .故CO的长是 cm;(3)①当0≤t<4时,依题意有2(8﹣2t)﹣(4+t)=4,解得t=1.6;当4≤t<6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8(不合题意舍去);当t≥6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8.故当t为1.6s或8s时,2OP﹣OQ=4;②[4+(8÷2)×1]÷(2﹣1)=[4+4]÷1=8(s),3×8=24(cm).答:点M行驶的总路程是24cm.【点评】本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.注意(3)①需要分类讨论.。
最新苏教版七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3a 的平方根是3±,则a =_________。
苏教版七年级数学上册 期末试卷测试卷(含答案解析) 一、选择题1.下列各组单项式中,是同类项的一组是( ) A .3x 3y 与3xy 3 B .2ab 2与-3a 2b C .a 2与b 2 D .2xy 与3 yx 2.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b --3.﹣3的相反数是( )A .13- B .13 C .3- D .34.下列说法正确的是( )A .过一点有且仅有一条直线与已知直线平行B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC=BC ,则点C 是线段AB 的中点5.如果a +b +c =0,且|a |>|b |>|c |,则下列式子可能成立的是( )A .c >0,a <0B .c <0,b >0C .c >0,b <0D .b =06.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .7.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ).A .B .C .D .8.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a 9.-5的相反数是( )A .-5B .±5C .15D .5 10.在 3.14、227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个 B .2 个 C .3 个 D .4 个11.对于代数式3m +的值,下列说法正确的是( )A .比3大B .比3小C .比m 大D .比m 小12.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( )A .44.8310⨯B .54.8310⨯C .348.310⨯D .50.48310⨯13.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+= D .x x 5204204+=+- 14.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养15.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y -的系数是2-,次数是3 二、填空题16.2019上半年溧水实现GDP 为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP 为_________元.17.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .18.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.19.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.小宇购买这些书的原价是____元.20.青藏高原面积约为2 500 000方千米,将2 500 000用科学记数法表示应为______.21.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.22.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.23.如图,AB ,CD 相交于点O ,EO AB ⊥,则1∠与2∠互为_______角.24.比较大小: -0.4________12-. 25.一个角的的余角为30°15′,则这个角的补角的度数为________.三、解答题26.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,求每件服装的标价是多少元?27.先化简,再求值:()()222227a b ab 4a b 2a b 3ab +---,其中a 、b 的值满足2a 1(2b 1)0-++=28.计算:(1)243()(3)3-⨯-+-; (2)62112(3)522-+⨯--÷⨯. 29.解方程:(1)5(2)1x x --=;(2)21101211364x x x -++-=-. 30.如图,点P 是∠AOB 的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点C ;(2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______(用“<”号连接).31.计算(1)157()362612+-⨯(2)()421723-+÷-32.如图,在方格纸中,A、B、C为 3 个格点,点C在直线AB外.(1)仅用直尺,过点C画AB的垂线m和平行线n;(2)请直接写出(1)中直线m、n的位置关系.33.2017年元旦期间,某商场打出促销广告,如表所示.优惠条件一次性购物不超过200元一次性购物超过200元,但不超过500元一次性购物超过500元优惠办法没有优惠全部按九折优惠其中500元仍按九折优惠,超过500元部分按八折优惠小欣妈妈两次购物分别用了134元和490元.(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
七年级数学期末考试试卷一.选择题(每题3分,共36分)1.已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有( ).A .1B .2C .3D .42.某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适. A .18℃~20℃ B .20℃~22℃ C .18℃~21℃ D .18℃~22℃ 3.多项式3x 2-2xy 3-21y -1是( ). A .三次四项式 B .三次三项式 C .四次四项式 D .四次三项式 4.下面不是同类项的是( ). A .-2与21 B .2m 与2n C .b a 22-与b a 2D .22y x -与2221y x5.若x =3是方程a -x =7的解,则a 的值是( ). A .4 B .7 C .10 D .736.在解方程123123x x -+-=时,去分母正确的是( ). A .3(x -1)-2(2+3x )=1 B .3(x -1)+2(2x +3)=1 C .3(x -1)+2(2+3x )=6 D .3(x -1)-2(2x +3)=67.如图1,由两块长方体叠成的几何体,从正面看它所得到的平面图形是( ).A .B .C .D .8.把图2绕虚线旋转一周形成一个几何体,与它相似的物体是 ( ). A .课桌 B .灯泡 C .篮球 D .水桶9.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程( ).A .98+x =x -3B .98-x =x -3C .(98-x )+3=xD .(98-x )+3=x -3评卷人得分图1图210. 以下3个说法中:①在同一直线上的4点A 、B 、C 、D 只能表示5条不同的线段;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.说法都正确的结论是( ).A .②③B .③C .①②D .①11.用一副三角板(两块)画角,不可能画出的角的度数是( ).A .1350B .750C .550D .15012.如图3,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,则MN :PQ 等于( ).A .1B .2C .3D .4图3QPN MCBA二、填空题(每小题3分,共12分)13.请你写出一个解为x =2的一元一次方程 . 14.在3,-4,5,-6这四个数中,任取两个数相乘,所得的积最大的是.15.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是 .16.计算:77°53′26"+33.3°=______________.三、解答与证明题(本题共72分)17.计算:(本题满分8分) (1)-2123+334-13-0.25(4分) (2)22+2×[(-3)2-3÷12](4分)评卷人 得分评卷人 得分18.(本题满分8分)先化简,再求值,222963()3y x y x -++-,其中12-==y x ,.(4分)19.解下列方程:(本题满分8分)(1)231x x -=+(4分) (2)13312x x --=-(4分)20.(本题6分)如图所示,点C 、D 为线段AB 的三等分点,点E 为线段AC 的中点,若ED =9,求线段AB 的长度.E D C BA21.(本题7分)下面是红旗商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,请你求出这台电脑的进价是多少(写出解答过程)22.(本题9分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(6分)(2)当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?为什么? (3分)23.(本题7分)如图,某轮船上午8时在A 处,测得灯塔S 在北偏东60°的方向上,向东行驶至中午12时,该轮船在B 处,测得灯塔S 在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时20千米,求∠ASB 的度数及AB 的长.24.(本题满分9分)如图所示已知90AOB ∠=︒,30BOC ∠=︒,OM 平分AOC ∠,ON 平分BOC ∠;(1)︒=∠_____MON ;(2)如图∠AOB =900,将OC 绕O 点向下旋转,使∠BOC =02x ,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.(3) AOB α∠=,BOC β∠=,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求MON ∠的度数;并从你的求解中看出什么什么规律吗?(3分)25.(10分)画图说明题 (1) 作∠AOB=90;(2) 在∠AOB 内部任意画一条射线OP ; (3) 画∠AOP 的平分线OM ,∠BOP 的平分线ON ; (4) 用量角器量得∠MON= . 试用几何方法说明你所得结果的正确性.参考答案一、选择题二、填空题13.2x =4(答案不唯一), 14.24, 15.82, 16.0'"1111126, 三、解答题17.(1)原式=(-2123-13)+(334-14) …… 2分 =-22+324 =-1812…… 4分(2)原式=4+2(9-3×2) …… 2分=4+6=10 ……4分18. )32(36922x y x y -++-, = 229632y x y x -++- ……4分 =-6y +4x 2; ……6分当12-==y x ,时,原式=-6y +4x 2=-6×(-1)+4×22=6+16=22.……8分 19.(1)231x x -=+; 解:移项得,2x -x =1+3,……2分 合并得, x =4. ……4分 (2)13312x x --=- 解:去分母得,6-(x -1)=2(3x -1),……2分 去括号得,6-x +1=6x -2,……3分 移项得,-x -6x =-2-6-1, 合并得,-7x =-9,化系数为1得,x=97.……4分20.因为C、D为线段AB的三等分点所以AC=CD=DB……1分又因为点E为AC的中点,则AE=EC=12AC……2分所以,CD+EC=DB+AE……3分因为ED=EC+CD=9……4分所以, DB+AE= EC+CD =ED=9则AB=2ED=18.……6分或者设EC=x,则AC=CD=DB=2x,AB=6x,……3分因为ED=9,则有x+2x=9,解得x=3,……5分则AB=6x=6×3=18.……6分21.设这台电脑的进价为x元,由题意可列:……1分5850×0.8-x=210,……4分解得x=4470,……6分答:这台电脑的进价为4470元.……7分22.(1)设当购买乒乓球x盒时,两种优惠办法付款一样,由题意可知……1分30×5+5×(x-5)=5×30×0.9+x×5×0.9,……4分去括号得,150+5x-25=135+4.5x移项合并得,0.5x=10化系数为1得,x=20.……5分答:当购买乒乓球20盒时,两种优惠办法付款一样.……6分(2)当购买30盒乒乓球时,去甲店购买要30×5+5(x-5)=150+5×25=275(元),……7分去乙店购买要5×30×0.9+x×5×0.9=135+4.5×30=270元……8分所以,去乙店购买合算.…………9分23.(1)能正确画出图形给4分(3)由题意可知30SAB ∠=︒,60SBA ∠=︒180603090ASB ∠=︒-︒-︒=︒AB =(12-8)×20=80千米24.(1)45MON ∠=︒;……3分(2)能,因为∠AOB =900,∠BOC =02x , 所以∠AOC =900+02x ,……4分 因为OM 、 ON 平分∠AOC,∠BOC 的线所以∠MOC =21∠AOC =21(900+02x )=450+x 所以∠CON =21∠BOC =x ……5分所以∠MON =∠MOC -∠CON =450+x -x =450……6分 (3)能,因为∠AOB =α,∠BOC =β, 所以∠AOC =α+β,……7分 因为OM 、 ON 平分∠AOC,∠BOC 的线所以∠MOC =21∠AOC =21(α+β) 所以∠CON =21∠BOC =21β ……8分所以∠MON =∠MOC -∠CON =21(α+β)-21β =21α即12MON α∠=.……9分25.下面用几何方法说明所得结果的正确性:因为 ∠POB+∠POA=∠AOB=90°,∠POM=12∠POB ,∠PON=12∠POA ,……………………………………(8分) 所以 ∠POM+∠PON=12(∠POB+∠POA )=12∠AOB=12×90°=45°. ………(10分)。
苏教版七年级上册数学 期末试卷测试卷(含答案解析)一、选择题1.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( ) A .5 B .﹣5 C .7 D .﹣7 2.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .3.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 4.2-的相反数是( ) A .2-B .2C .12D .12-5.有理数a 、b 在数轴上的位置如图所示,则化简||2||a b a b --+的结果为( )A .3a b +B .3a b --C .3a b +D .3a b -- 6.下列运算正确的是( )A .225a 3a 2-=B .2242x 3x 5x +=C .3a 2b 5ab +=D .7ab 6ba ab -=7.方程1502x --=的解为( ) A .4- B .6- C .8- D .10- 8.下列关于0的说法正确的是( )A .0是正数B .0是负数C .0是有理数D .0是无理数9.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .B .4C .或4D .2或410.一5的绝对值是( )A .5B .15C .15- D .-511.画如图所示物体的主视图,正确的是( )A .B .C .D .12.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( ) A .33.2410⨯B .43.2410⨯C .53.2410⨯D .63.2410⨯13.下列说法正确的是( ) A .两点之间的距离是两点间的线段 B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直14.若关于x y 、的单项式33nx y -与22mx y 的和是单项式,则()nm n -的值是 ( )A .-1B .-2C .1D .215.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y-的系数是2-,次数是3二、填空题16.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.小宇购买这些书的原价是____元.17.已知关于x 的方程4231x m x +=+与方程3265x m x +=+的解相同,则方程的解为_________.18.已知关于x 的方程345m x -=的解是1x =,则m 的值为______. 19.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.20.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.21.一个角的度数是4536'︒,则它的补角的度数为______︒.(结果用度表示) 22.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.23.已知∠α=28°,则∠α的余角等于___.24.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.25.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____.三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.解下列方程:(1)2(2)6x --= . (2)121123x x -+=-. 28.如图,已知三角形ABC ,D 为AB 边上一点.(1) 过点D 画线段BC 的平行线DE ,交AC 于点E ;过点A 画线段BC 的垂线AH ,垂足为点H .(2)用符号语言分别描述直线DE 与线段BC 及直线AH 与线段BC 的位置关系. (3)比较大小:线段BH 线段BA ,理由为 .29.线段AB=20cm,M是线段AB的中点,C是线段AB的延长线上的点,AC=3BC,D是线段BA的延长线上的点,且DB=AC.(1)求线段BC,DC的长;(2)试说明M是线段DC的中点.30.解方程:(1)5(x+8)=6(2x-7)+5(2)2x13-=2x16+-131.先化简,再求值:已知a2+2(a2﹣4b)﹣(a2﹣5b),其中a=﹣3,b=13.32.如图所示是一个几何体的表面展开图.(1)该几何体的名称是.(2)根据图中所给信息,求该几何体的体积(结果保留π)33.化简:(1)-3x+2y+5x-7y;(2)2(x2-2x)-(2x2+3x).四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。
苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题 1.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=- 2.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a= D .若a b c c=(c ≠0),则a b = 3.用代数式表示“a 的2倍与b 的差的平方”,正确的是( )A .22(a b)-B .22a b -C .2(2a b)-D .2(a 2b)- 4.在55⨯方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( ) (1)(2)A .先向下移动1格,再向左移动1格;B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格:D .先向下移动2格,再向左移动2格5.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°6.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角D .EOD ∠与BOC ∠是对顶角 7.下列图形,不是柱体的是( )A .B .C .D .8.下列各式进行的变形中,不正确的是( )A .若32a b =,则3222a b +=+B .若32a b =,则3525a b -=-C .若32a b =,则23a b = D .若32a b =,则94a b = 9.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( )A .2018B .2019C .2020D .202110.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( )A .-4B .-2C .2D .4 11.下列合并同类项正确的是( )A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=0 12.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .13.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a =D .若a b c c=(c ≠0),则a b = 14.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒15.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D . 二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .18.已知22m n -=-,则524m n -+的值是_______.19.实数a ,b ,c 在数轴上的对应点的位置如图所示,化简b c c a b -+--的结果是________.20.将一副三角板如图放置(两个三角板的直角顶点重合),若28β∠=︒,则α∠=______︒.21.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.22.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______.23.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.24.比较大小:227-__________3-. 25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.将正整数1至2019按照一定规律排成下表:记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4.(1)直接写出a 35= ,a 54= ;(2)①若a ij =2019,那么i = ,j = ,②用i ,j 表示a ij = ; (3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能, 求出这5个数中的最小数,若不能请说明理由.27.已知平面上点,,,A B C D .按下列要求画出图形:(1)画直线AC ,射线BD ,交于点O ;(2)比较两角的大小:AOD ∠___________BOC ∠,理由是___________;(3)画出从点A 到CD 的垂线段AH ,垂足为H .28.解方程:(1)-5x +3=-3x -5;(2)4x -3(1-x )=11.29.解下列方程:(1)3(45)7x x --=;(2)5121136x x +-=-. 30.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P和图形M,点B是图形M上任意一点,我们把线段PB长度的最小值叫做点P与图形M之间的距离.例如,以点M为圆心,1cm为半径画圆如图1,那么点M到该圆的距离等于1cm;若点N是圆上一点,那么点N到该圆的距离等于0cm;连接M N,若点Q为线段M N中点,那么点Q到该圆的距离等于0.5cm,反过来,若点P到已知点M的距离等于1cm,那么满足条件的所有点P就构成了以点M为圆心,1cm为半径的圆.(初步运用)(1)如图 2,若点P到已知直线m的距离等于1cm,请画出满足条件的所有点P.(深入探究)(2)如图3,若点P到已知线段的距离等于1cm,请画出满足条件的所有点P.(3)如图 4,若点P到已知正方形的距离等于1cm,请画出满足条件的所有点P.31.如图,A、B、C是正方形网格中的三个格点.(1)①画射线AC;②画线段BC;③过点B画AC的平行线BD;④在射线AC上取一点E,画线段BE,使其长度表示点B到AC的距离;(2)在(1)所画图中,①BD与BE的位置关系为;②线段BE与BC的大小关系为BE BC(填“>”、“<”或“=”),理由是.32.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.(1)如图1,若点D在AB上,则∠EBC的度数为;(2)如图2,若∠EBC=170°,则∠α的度数为;(3)如图3,若∠EBC=118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE-∠DBC的度数.33.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列计算正确的是()A .2m ﹣m =2B .2m+n =2mnC .2m 3+3m 2=5m 5D .m 3n ﹣nm 3=03.将一副三角尺按下列几种方式摆放,则能使αβ∠=∠的摆放方式为()A .B .C .D .4.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .15.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A .经过一点有无数条直线B .两点之间,线段最短C .经过两点,有且仅有一条直线D .垂线段最短6.若(﹣2x+a )(x ﹣1)的结果中不含x 的一次项,则a 的值为()A .1B .﹣1C .2D .﹣27.如图所示几何体的左视图是()A .B .C .D .8.如图,点A 表示的实数是()A 6B 5C .15D .169.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是()A .ab >0B .﹣a+b >0C .a+b <0D .|a|﹣|b|>010.如图,点O 在直线AB 上,∠AOC 与∠BOD 互余,∠AOD =148°,则∠BOC 的度数为()A .122°B .132°C .128°D .138°二、填空题11.﹣690000000用科学记数法表示_____.12.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.13.若2|35|(3)0m n -++=,则()9m n -=________.14.根据数值转换机的示意图,输出的值为_____.15.如图所示,一块长为m ,宽为n 的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d 的长度,则由此产生的裂缝面积是______.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,与“你”对面的字为______.17.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则可列方程_____.18.如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n≥3)中的卡纸的周长为Cn ,则Cn ﹣Cn ﹣1=_____.三、解答题19.计算:(1)31125(25)25()424⨯--⨯+⨯-;(2)201721(1)(132(3)2⎡⎤---÷⨯--⎣⎦.20.解方程:(1)2(1)25(2)x x -=-+(2)5172124x x ++-=21.先化简,再求值:2(x 2y+3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.22.如图,网格线的交点叫格点,格点P 是AOB ∠的边OB 上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;<的理由是;(3)PC OC(4)过点C画OB的平行线;23.现规定一种新运算,规则如下:a※b ab a bx-=,求x的值.=++,已知3※32424.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)25.如图,C是线段AB上的一点,N是线段BC的中点.若AB=12,AC=8,求AN的长.26.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.27.若在一个两位正整数A的个位数字之后添上数字6,组成一个三位数,我们称这个三位数为A的“添彩数”,如78的“添彩数”为786,若将一个两位正整数B减去6得到一个新数,我们称这个新数为B的“减压数”,如78的“减压数”为72.(1)求证:对任意一个两位正整数M,其“添彩数”与“减压数”之和能被11整除.(2)对任意一个两位正整数N ,我们将其“添彩数”与“减压数”之比记作()f N ,若()f N 为整数且()18f N ≤,求出所有符合题意的N 的值.参考答案1.B【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据合并同类项逐项分析判断即可【详解】A.2m ﹣m =m ,故该选项不正确,不符合题意;B.2m 与n 不是同类项,不能合并,故该选项不正确,不符合题意;C.2m 3与3m 2不是同类项,不能合并,故该选项不正确,不符合题意;D.m 3n ﹣nm 3=0,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,掌握合并同类项是解题的关键.3.B【分析】根据三角板的特殊角分别进行判断即可;【详解】由图形摆放可知,αβ∠≠∠;由图形摆放可知,αβ∠=∠;由图形摆放可知,15α∠=︒,=30β∠︒,αβ∠≠∠;由图形摆放可知,180αβ∠+∠=︒,αβ∠≠∠;故答案选B .【点睛】本题主要考查了直角三角板的角度求解,准确分析判断是解题的关键.4.C【分析】把x=9代入原方程即可求解.【详解】把x=9代入方程2(x-3)-■=x+1得2×6-■=10∴■=12-10=2故选C.【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.5.B【分析】根据两点之间,线段最短进行解答即可.【详解】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.6.D【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.【详解】解:(﹣2x+a)(x﹣1)=﹣22x+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点睛】本题考查了整式的乘法中的不含某项的计算,正确理解题意是解题的关键.7.A【分析】视线从左面观察几何体所得的视图叫左视图,能够看到的线用实线,看不到的线用虚线.【详解】解:从左边看,底层是一个矩形,上层是一个直角三角形(三角形与矩形之间没有实线隔开),左齐.故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.8.B【分析】利用勾股定理求出OA长度,然后得到A点表示的实数即可【详解】解:∵OA =∴点A 故选B .【点睛】本题考查勾股定理,能够灵活运用勾股定理解题是本题的关键9.B【分析】根据a ,b 两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【详解】解:A .由数轴可知,﹣1<a <0<1<b ,|b|>|a|,因为a <0,b >0,所以ab <0,故选项错误,不符合题意;B .因为a <0,所以﹣a >0,又因为b >0,所以﹣a+b >0,故选项错正确,符合题意;C .因为a <0,b >0,|b|>|a|,所以a+b >0,故选项错误,不符合题意;D .因为|b|>|a|,所以|a|﹣|b|<0,故选项错误,不符合题意.故选:B【点睛】本题考查了实数与数轴上点的对应关系,解题的关键是确定a ,b 的符号和绝对值的大小关系.10.A【分析】利用∠AOC 与∠BOD 互余得出∠AOC+∠BOD =90°,再由平角的定义求出∠COD ,即可求出答案.【详解】解:∵点O 在直线AB 上,∠AOC 与∠BOD 互余,∴∠AOC+∠BOD =90°,∴∠COD =180°﹣(∠AOC+∠BOD )=180°﹣90°=90°,∵∠AOD =148°,∴∠BOD =180°﹣∠AOD =180°﹣148°=32°,∴∠BOC =∠COD+∠BOD =90°+32°=122°,故选:A .11.﹣6.9×108【分析】用科学记数法表示绝对值大于1的数,形如,11001,n a n <⨯<为正整数,据此解答.【详解】解:﹣690000000用科学记数法表示为﹣6.9×108故答案为:﹣6.9×108.12.-1【详解】解:∵单项式2xmy 5和﹣x 2yn 是同类项,∴m =2,n =5,∴n ﹣3m =5﹣6=-1.故答案为:-1.13.-20【分析】利用非负性,确定m=53,n=-3,代入计算即可.【详解】∵2|35|(3)0m n -++=,∴m=53,n=-3,∴()59(12)3m n -=⨯-=-20,故答案为:-20.14.19【详解】解:当x =﹣3时,31+x =3﹣2=19,故答案为:19.15.dn【分析】根据平移后的图形面积-平移前的面积=裂缝面积列式即可计算出结果.【详解】裂缝面积=(m+d)n-mn=mn+dn-mn=dn .故答案为dn .16.顺【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故答案为:顺.17.36x -=58x+【分析】直接利用鸽笼的数量不变得出方程,即可得出答案.【详解】解:设原有x 只鸽子,则可列方程:3568x x -+=.故答案为:3568x x -+=.18.112n -【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2=12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣Cn ﹣1=(12)n ﹣1=112n -.故答案为:112n -.19.(1)25;(2)16【详解】解:(1)原式=311252525424⨯+⨯-⨯=31125(424⨯+-=25×1=25;(2)原式=111(29)23--⨯⨯-=111(7)23--⨯⨯-=716-+=16.20.(1)67x =-;(2)43x =【分析】(1)首先去括号,然后移项,合并同类项,系数化为1即可;(2)去分母,然后去括号,移项,合并同类项,系数化为1即可求解.【详解】(1)解:222510x x -=--,76x =-,67x =-;(2)102724x x +--=,34x =,43x =.21.﹣x 2y+4xy+1,-23【分析】原式去括号再合并即可得到最简结果,将x 与y 的值代入计算即可求出值.【详解】原式=2x 2y+6xy ﹣3x 2y+3﹣2xy ﹣2=﹣x 2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.22.(1)见解析;(2)OP ;(3)垂线段最短;(4)见解析【详解】试题分析:(1)先以点P 为圆心,以任意长为半径画弧,与OB 交于两点,然后再分别以这两点为圆心,作弧在OB 两侧交于两点,过这两点作直线即可;(2)根据点到直线的距离的概念即可得;(3)根据垂线段最短即可得;(4)根据“同位角相等,两直线平行”作∠BOA 的同位角即可得.试题解析:(1)如图所示:PC 即为所求作的;(2)根据点到直线的距离的定义可知线段OP 的长度是点O 到PC 的距离,故答案为OP ;(3)PC<OC 的理由是垂线段最短,故答案为垂线段最短;(4)如图所示.23.6x =【分析】根据题意,可得:3※333324x x x -=++-=,据此求出x 的值即可.【详解】解:a ※b ab a b =++,3∴※333324x x x -=++-=,32433x x ∴+=-+,424x ∴=,解得:6x =.【点睛】此题主要考查了解一元一次方程的方法,解题的关键是要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.AB 两地距离为252千米.【分析】根据路程、速度、时间之间的关系列出方程,解方程即可.【详解】设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米.根据题意,得238282x x -+=+-解得x =252.答:AB 两地距离为252千米.【点睛】考查了一元一次方程的应用,解题关键是理解题意找到等量关系,根据等量关系列出方程.25.10【分析】先根据已知求出BC的长,再根据N是线段BC的中点求出CN,从而求出AN.【详解】解:∵AB=12,AC=8,∴BC=AB﹣AC=12﹣8=4,∵N是线段BC的中点,∴CN=12BC=12×4=2,∴AN=AC+CN=8+2=10.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及中点的性质是解答此题的关键.26.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF 平分∠AOC .【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.27.(1)证明见解析;(2)17.【分析】(1)设M 的十位数字为a ,个位数字为b ,分别写出M 的“添彩数”和“减压数”,求和,化简,表示出11的倍数,即可证明;【详解】(1)证明:设M 的十位数字为a ,个位数字为b则其“添彩数”与“减压数”分别为:100a+10b+6;10a+b-6它们的差为:100a+10b+6+(10a+b-6)=110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y-6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9,则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数∴N 的值为17.。
苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题1.下列各组单项式中,是同类项的一组是( ) A .3x 3y 与3xy 3 B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx2.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60° 3.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mn B .23m nC .3m nD .32m n4.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 5.下列说法错误的是( ) A .2的相反数是2- B .3的倒数是13C .3-的绝对值是3D .11-,0,4这三个数中最小的数是06.下列合并同类项结果正确的是( ) A .2a 2+3a 2=6a 2B .2a 2+3a 2=5a 2C .2xy -xy =1D .2x 3+3x 3=5x 67.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元 B .145元 C .150元 D .160元 8.多项式343553m n m n -+的项数和次数分别为( ) A .2,7B .3,8C .2,8D .3,79.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-10.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( ) A .-3B .3C .-2D .211.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .10012.下列说法错误的是( )A .对顶角相等B .两点之间所有连线中,线段最短C .等角的补角相等D .不相交的两条直线叫做平行线13.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐14.据统计,2020年元旦到高邮市旅游的旅客约为15000人,数据15000用科学计数法可表示为( ) A .50.1510⨯B .51.510⨯C ..41510⨯D .31510⨯15.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( ) A . 1.5(7020)x x =-+ B .70 1.5(20)x x +=+ C .70 1.5(20)x x +=-D .70 1.5(20)x x -=+二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.一个角的的余角为30°15′,则这个角的补角的度数为________. 18.已知A =5x +2,B =11-x ,当x =_____时,A 比B 大3. 19.在数轴上到-3的距离为4个单位长度的点表示的数是___.20.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.21.已知222x y -+的值是 5,则 22x y -的值为________. 22.多项式234ab ab -的次数是______.23.小颖将考试时自勉的话“冷静、细心、规范”写在一个正方体的六个面上,其平面展开图如图所示,那么在正方体中和“规”字相对的字是____.24.下列各数:3.141592、1.010010001、..4.21、π、813中,无理数有_______个25.如图,点C 在直线AB 上,(A C 、、B 三点在一条直线上,)若CE CD ⊥,已知150∠=︒,则2∠=________°三、解答题26.化简:(1)-3x +2y +5x -7y ; (2)2(x 2-2x )-(2x 2+3x ).27.如图,∠AOB 是平角,OD 是∠AOC 的角平分线,∠COE =∠BOE . (1)若∠AOC = 50°,则∠DOE = °;(2)若∠AOC = 50°,则图中与∠COD 互补的角为 ;(3)当∠AOC 的大小发生改变时,∠DOE 的大小是否发生改变?为什么?28.(探索新知)如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)图2中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.29.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天12x明天30.列方程解应用题:《弟子规》的初中读本的主页共计96页。
最新苏教版七年级数学上册期末试卷(共4套)(含答案)最新苏教版七年级数学上册期末试卷(Ⅰ)一、选择题(每小题3分,共36分)1、在下图的四个图形中,不能由左边的图形经过旋转或平移得到的是()。
2、在-(-8),(-1)/4,22π,-3,-53/2中,负有理数共有()个。
3、a、b两数在数轴上位置如图所示,将a、b、-a、-b用“<”连接,其中正确的是()。
4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为亿元,亿元用科学记数法表示为(保留三个有效数字)()。
5、下列结论中,正确的是()。
6、在解方程x-1/2x+3/23=1时,去分母正确的是()。
7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()。
8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
若设甲有x只羊,则下列方程正确的是()。
9、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。
一列火车以每小时120千米的速度迎开来,测得火车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒。
如果队伍长500米,那么火车长()。
10、下列图形中,不是正方体的展开图的是()。
11、自行车的轮胎安装在前轮上行驶6000公里后报废,安装在后轮上,只能行驶4000公里。
为了行驶尽可能多的路程,采取轮胎调换的方法,行驶一定路程后,用前后轮调换使用。
问安装在自行车上的这对轮胎最多可行驶多少公里?答案:4800公里12、已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB中点的个数有:①AP=BP;②BP=1/2AB;③AB=2AP;④AP+PB=AB。
答案:2个(②和③)13、当x=1时,代数式ax^3+bx+1的值为2012.则当x=-1时,代数式ax^3+bx+1的值为_______。
苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题1.如图所示,沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A .B .C .D .2.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1- 3.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( ) A .1 B .2 C .1- D .2- 4.若x 3=是方程3x a 0-=的解,则a 的值是( ) A .9B .6C .9-D .6- 5.如果向北走2 m ,记作+2 m ,那么-5 m 表示( )A .向东走5 mB .向南走5 mC .向西走5 mD .向北走5 m6.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b -7.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .198.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直; ④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个B .2个C .3个D .4个9.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个10.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变D .商品的销售量不变11.下列方程为一元一次方程的是( ) A .12y y+= B .x+2=3yC .22x x =D .3y=212.下列叙述中正确的是( )①线段AB 可表示为线段BA; ② 射线AB 可表示为射线BA; ③ 直线AB 可表示为直线BA; ④ 射线AB 和射线BA 是同一条射线. A .①②③④B .②③C .①③D .①②③13.如图,AB ∥CD ,AD 平分∠BAC ,且∠C=80°,则∠D 的度数为( )A .50°B .60°C .70°D .100°14.单项式24x y 3-的次数是( ) A .43-B .1C .2D .315.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x ﹣5=y+5 B .若a=b ,则ac=bc C .若a bc c =,则2a=3b D .若x=y ,则x y a a= 二、填空题16.有理数中,最大的负整数是____.17.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 18.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|1||1|b c -+-=______.19.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.20.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.21.如图是一个数值转换机.若输出的结果为10,则输入a 的值为______.22.如图,O 为模拟钟面圆心,M 、O 、N 在一条直线上,指针OA 、OB 分别从OM 、ON 同时出发,绕点O 按顺时针方向转动,OA 运动速度为每秒12°,OB 运动速度为每秒4°,当一根指针与起始位置重合时,转动停止,设转动的时间为t 秒,当t =______秒时,∠AOB=60°.23.如图,每一幅图中均含有若干个正方形,第1幅图中有2个正方形;第2幅图中有8个正方形;…按这样的规律下去,第7幅图中有___个正方形.24.如图,直线AB ,CD 相交于点O ,若∠AOC +∠BOD =100°,则∠AOD 等于__________度.25.计算:3-|-5|=____________.三、解答题26.解方程:(1)5236x x +=+ (2)4320.20.5x x +--= 27.如图,已知三角形ABC ,D 为AB 边上一点.(1) 过点D 画线段BC 的平行线DE ,交AC 于点E ;过点A 画线段BC 的垂线AH ,垂足为点H .(2)用符号语言分别描述直线DE 与线段BC 及直线AH 与线段BC 的位置关系. (3)比较大小:线段BH 线段BA ,理由为 .28.、两地相距,甲、乙两车分别沿同一条路线从地出发驶往地,已知甲车的速度为,乙车的速度为,甲车先出发后乙车再出发,乙车到达地后再原地等甲车.(1)求乙车出发多长时间追上甲车? (2)求乙车出发多长时间与甲车相距?29.如图,已知AOB ∠.画射线OC OA ⊥、射线OD OB ⊥.(1)请你画出所有符合要求的图形; (2)若30AOB ∠=︒,求出COD ∠的度数. 30.解方程: (1)4365x x -=-; (2)221134x x +-=+. 31.在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A 、B 、C 均为格点(格点是指每个小正方形的顶点). (1)按下列要求画图:①标出格点D ,使CD ∥AB ,并画出直线CD ; ②标出格点E ,使CE ⊥AB ,并画出直线CE . (2)计算△ABC 的面积.32.学校艺术节要印制节目单,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而900元的制版费则六折优惠.问: (1)学校印制多少份节目单时两个印刷厂费用是相同的? (2)学校要印制1500份节目单,选哪个印刷厂所付费用少? 33.计算:(1)()360.655---+-+ (2)()()202031113122⎛⎫---÷⨯-- ⎪⎝⎭四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
最新苏教版七年级数学上册期末试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-14.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.下列二次根式中,最简二次根式的是( )A 15B 0.5C 5D 507.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°10.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.已知,|a|=﹣a ,b b =﹣1,|c|=c ,化简|a+b|﹣|a ﹣c|﹣|b ﹣c|=_____.4.分解因式:23m m -=________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知关于x 的不等式(1﹣a )x >2的解集为x <21a-,则a 的取值范围是_______. 三、解答题(本大题共6小题,共72分)1.解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.3.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、B6、C7、A8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、20°.3、﹣2cm m4、(3)5、±46、a>1三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)x=-72、﹣1≤x<2.3、(1)证明见解析;(2)75.4、(1)略(2)成立5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。
苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题1.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b --2.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1-3.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 4.如果a +b +c =0,且|a |>|b |>|c |,则下列式子可能成立的是( ) A .c >0,a <0 B .c <0,b >0 C .c >0,b <0 D .b =05.有一列数121000,,,a a a ,其中任意三个相邻数的和是4,其中21009004,1,2a a x a x =-=-=,可得 x 的值为( )A .0B .1C .2D .3 6.下列四个数中,最小的数是()A .5B .0C .1-D .4-7.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元B .145元C .150元D .160元8.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .9.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A .115×103B .11.5×104C .1.15×105D .0.115×10610.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .11.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( ) A .-3 B .3 C .-2 D .2 12.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4 B .4C .﹣8D .813.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-14.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m15.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -二、填空题16.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.17.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.18.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.19.如图,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_______(填编号)20.下表是某校七﹣九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,但表格中九年级的两个数据被遮盖了,记得九年级文艺小组活动次数与科技小组活动次数相同. 年级 课外小组活动总时间(单位:h ) 文艺小组活动次数 科技小组活动次数 七年级 17 6 8 八年级 14.5 57九年级12.5则九年级科技小组活动的次数是_____.21.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .22.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.23.若单项式42m a b 与22n ab -是同类项,则m n -=_______.24.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.25.如图,点C 在直线AB 上,(A C 、、B 三点在一条直线上,)若CE CD ⊥,已知150∠=︒,则2∠=________°三、解答题26.给出定义如下:若一对实数(,)a b 满足4a b ab -=+,则称它们为 一对“相关数”,如:3377488-=⨯+,故3(7,)8是一对“相关数”. (1)数对(1,1),(2,6),(0,4)---中是“相关数”的是___________;(2)若数对(,3)x -是“相关数”,求x 的值;(3)是否存在有理数数,m n ,使数对(,)m n 和(,)n m 都是“相关数”,若存在,求出一对,m n 的值,若不存在,说明理由.27.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来; (2)该几何体的表面积(含下底面)为________.28.画出如图所示物体的主视图、左视图、俯视图.29.已知:点A 、B 在数轴上表示的数分别是a 、b ,线段AB 的中点P 表示的数为m .请你结合所给数轴,解答下列各题:(1)填表:a 1- 1-2.5▲b13▲2-m▲▲4 4-(2)用含a 、b 的代数式表示m ,则m =___________. (3)当2021a =,2020m =时,求b 的值.30.如图,已知AOB ∠.画射线OC OA ⊥、射线OD OB ⊥.(1)请你画出所有符合要求的图形; (2)若30AOB ∠=︒,求出COD ∠的度数.31.计算: (1) 12(8)(7)15--+--;(2) ()241123522-+⨯--÷⨯32.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0-300(含)a3第二阶梯300-600(含)0.5a+ 3.5第三阶梯600以上 1.5a+5(1)甲用户家2018年用气总量为280立方米,则总费用为元(用含a的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?33.如图所示的几何体是由几个相同的小正方形排成两行组成的.(1)填空:这个几何体由_______个小正方体组成.(2)画出该几何体的三个视图.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手 (1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
最新苏教版七年级数学上册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( ) A .a<b<c<d B .a<b<d<c C .b<a<c<d D .a<d<b<c2.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .37.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-28.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.已知x a =3,x b =4,则x 3a-2b 的值是( )A .278B .2716C .11D .1910.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( )A .3B .4C .6D .9二、填空题(本大题共6小题,每小题3分,共18分)1.若3的整数部分是a ,小数部分是b ,则3a b -=________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.已知关于x 的方程9x 3kx 14-=+有整数解,求满足条件的所有整数k 的值.3.如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、C6、B7、A8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、1.2、203、0.4、±10.5、40°6、1三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、k=26,10,8,-8.3、略4、(1)略;(2)略.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)120件;(2)150元.。
苏教版数学七年级上册期末试卷测试卷(含答案解析)一、选择题1.运行程序如图所示,规定:从“输入一个值x”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x的和为( )A.30 B.35 C.42 D.392.-5的相反数是()A.15B.±5 C.5 D.-153.如果向北走2 m,记作+2 m,那么-5 m表示()A.向东走5 m B.向南走5 m C.向西走5 m D.向北走5 m4.下列几何体三视图相同的是()A.圆柱B.圆锥C.三棱柱D.球体5.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a的值是()A.1 B.-2 C.3 D.b6.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8B.7C.6D.47.下列图形经过折叠不能围成棱柱的是().A.B.C.D.8.-8的绝对值是()A.8 B.18C.-18D.-89.一个几何体的侧面展开图如图所示,则该几何体的底面是()A .B .C .D . 10.一5的绝对值是( )A .5B .15C .15- D .-511.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >012.-5的相反数是( )A .15B .±5C .5D .-1513.单项式24x y 3-的次数是( ) A .43- B .1 C .2 D .3 14.如图,直线a ,b 相交于点O ,若1∠等于36︒,则2∠等于( )A .54︒B .64︒C .144︒D .154︒ 15.下列计算中正确的是( )A .()33a a -=B .235a b ab +=C .22243a a a -=D .332a a a += 二、填空题16.在直线l 上有四个点A 、B 、C 、D ,已知AB =8,AC =2,点D 是BC 的中点,则线段AD =________.17.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)18.已知x =1是方程ax -5=3a +3的解,则a =_________.19.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .20.已知222x y -+的值是 5,则 22x y -的值为________. 21.一个角的度数是4536'︒,则它的补角的度数为______︒.(结果用度表示)22.已知数轴上点A ,B 分别对应数a ,b .若线段AB 的中点M 对应着数15,则a +b 的值为_____.23.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”).24.按照下图程序计算:若输入的数是 -3 ,则输出的数是________25.一个角的余角比这个角的补角15的大10°,则这个角的大小为_____. 三、解答题26.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.27.解下列方程:(1)76163x x +=-;(2)253164y y ---=. 28.给出定义如下:若一对实数(,)a b 满足4a b ab -=+,则称它们为 一对“相关数”,如:3377488-=⨯+,故3(7,)8是一对“相关数”. (1)数对(1,1),(2,6),(0,4)---中是“相关数”的是___________; (2)若数对(,3)x -是“相关数”,求x 的值;(3)是否存在有理数数,m n ,使数对(,)m n 和(,)n m 都是“相关数”,若存在,求出一对,m n 的值,若不存在,说明理由.29.如图,网格线的交点叫格点,格点是的边上的一点(请利用网格作图,保留作图痕迹).(1)过点画的垂线,交于点; (2)线段 的长度是点O 到PC 的距离; (3)的理由是 ;(4)过点C 画的平行线;30.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.31.计算(1)157()362612+-⨯ (2)()421723-+÷-32.甲、乙两车都从A 地出发,在路程为360千米的同一道路上驶向B 地.甲车先出发匀速驶向B 地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B 地.(1)甲车的速度为 千米/时;(2)求乙车装货后行驶的速度;(3)乙车出发 小时与甲车相距10千米?33.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的完美分解.并规定:()p F n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值.四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
第一学期期末考试题初 一 数 学一. 填空题:(第1-----11题每空1分,第12—15题每空2分,共25分)1.在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的有 , 属于四棱柱的有 .2.用一个平面去截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是 . 3.深圳市某天早晨的温度是12°C,中午上升了9°C,夜间下降了6°C,则这天夜间的温度是 .4.+8与 互为相反数,请赋予它实际意义: 5.用科学记数法表示:5678000000 = . 6.甲、乙争论“a 和3a哪个大(a 是有理数)”. 甲:“a 一定比3a大”. 乙:“不一定”.又说: “你漏掉了两种可能.”请问:乙说的是什么意思? 答: ; . 7.x 的平方的3倍与-5的差,用代数式表示为 ,当1-=x 时,代数式的值为 .8.如图,是按照某种规律排列的多边形:第20个图形是 边形,第41个图形的颜色是 色.9.如图:∠AOB=∠COD=90°,∠AOD=130°, 则∠BOC 的度数是 . 10.数轴的A 点表示-3,让A 点沿着数轴移动2个单位到B 点, B 点表示的数是 ;线段BA 上的点表示的数是 . 11.北环中学初一年级共10个班,每班有43名学生,现从每个班中任意抽一名学生共10名学生参加福田区教育局组织的冬令营.若你是该校初一某班的学生,你被抽到的可能性是 .12.如图,A 点表示数a ,B 点表示数b ,在3++-+b a ab a b b a ,,,中正数是 .13.A 、B 、C 是直线l 上的三点,BC=32AB ,若BC=6,则AC 的长等于 . 14.一商店把彩电按标价的九折出售,仍可获利20% ,若该彩电的进价是2400元,则该彩电的标价为 元.15.某市为了鼓励居民节约用水,对自来水用户按如下标准收费,若每月每户用水不超过15吨,按每吨1元收费,若超过15吨,则超过部分每吨按2元收费.如果小明家12月份交纳的水费29元,则小明家这个月实际用水 吨.二.选择题(每题2分,共20分,将答案直接填在下表中)1.下面的算式: ①.-1-1=0; ② 2516542=;③ (-1)2004=2004 ;④ -42=-16;⑤612131=-⑥53315-=⨯÷-,其中正确的算式的个数是 A .1个 B. 2 个 C.3个 D.4个 2.下面说法:正确的是:①如果地面向上15米记作15米,那么地面向下6米记作-6米;②一个有理数不是正数就是负数;③正数与负数是互为相反数;④任何一个有理数的绝对值都不可能小于零.A .①,② B.②,③ C.③,④ D.④,①3.下列图形中,是正方体的展开图是:①③ ④ A .①② B.③④ C.③ D.④4.在8:30这一时刻,时钟上的时针和分针之间的夹角为A .85° B.75° C.70° D.60°1-1-25.n m m y x + 与y x 32是同类项,那么n 等于A .-2 B.-1 C.0 D.16.下列说法正确的是:A .经过一点可以作两条直线; B.棱柱侧面的形状可能是一个三角形; C.长方体的截面形状一定是长方形; D.棱柱的每条棱长都相等.7. 下列算式正确的是:A .224=-a a . B.3243a a a =+. C.2222a a a -=--. D.a a a =-228.下列事件中是必然事件的有①明天中午的气温一定是全天最高的温度; ②小明买电影票,一定会买到座位号是双号的票;③现有10张卡片,上面分别写有1,2,3,……,10,把它们装人一个口袋中,从中抽出6张.这6张中,一定有写着偶数的卡片. ④元旦节这一天刚好是1月1日.A . ①, ② B. ①, ③ C. ①, ④ D. ③, ④9.天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于A .教室地面的面积. B.黑板面的面积. C.课桌面的面积. D.铅笔盒盒面的面积10.下列说法,正确的是①.用长为10米的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽多1米,设长方形的长为X 米,则可列方程为2(X+X-1)=10 .②.小明存人银行人民币2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为X,则可列方程2000(1+X)80%=2120.③.X 表示一个两位数,把数字3写到X 的左边组成一个三位数,这个三位数可以表示为300+X.④.甲、乙两同学从学校到少年宫去,甲每小时走4千米 ,乙每小时走6千米,甲先出发半小时,结果还比乙晚到半小时,若设学校与少年宫的距离为s 千米,则可列方程216214+=-s s A . ①, ② B. ①, ③ C. ②, ④ D. ③, ④三.计算题(要求写出详细的计算过程,不准用计算器。
每题4分,共16分)1. ()()()24321-+-+--- 2. ⎪⎭⎫⎝⎛-÷⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯-5258.031322解: 解:3. ()()229452a ab a ab -+-- 4. ()[]222222324222xy y x y x xy y x y x ------ 解: 解:四.解答题(共39分)1.解方程(要求写出详细解题步骤.每小题5分,共10分)(1). 8(2X-4)=4-6(4-X) (2) 32221++=--x x x 解: 解:2.当|X-2|+(y+3)2=0时,求代数式⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22312331221y x y x x 的值.(5分) 解:3.画出下面立体图形的主视图、俯视图:(4分)4.如图,是一副三角板组成的图形。
(6分)(1)图中有几个小于平角的角?用字母和符号把它们一一表示出来,并写出它们的度数。
(2)图中有几对互相垂直的线段?用字母和符号把它们一一表示出来。
5.如图是市民对“净畅宁工程”满意程度的扇形统计图.回答下列问题.(4分) (1)非常不满意的人占的百分比是多少? (2)非常满意的人数是非常不满意人数的几倍? (3)若被调查的市民中非常满意的人数有600人,那么调查了多少市民? 这些市民中非常不满意的有多少人?6.用黑白两种颜色的正六边形地砖按如下所示的规律,拼成若干个图案:(4分)ACD第1个第2个第3个(1)第4个图案中有白色地砖块;第10个图案中有白色地砖块;(2)第n个图形中有白色地砖块.7. 8人分别乘两辆小汽车赶往火车站,其中一辆小汽车在距离火车站15千米的地方出了故障,此时离火车停止检票时间还有42分钟.这时唯一可以利用的交通工具只有一辆小汽车,连司机在内限乘5人.这辆小汽车的平均速度为60千米/时,人行走的速度为5千米/时.这8人能赶上火车吗? 若能,请说明理由.(6分)初一数学期末测试参考答案一. 填空题:1. 球 、圆锥. 正方体、长方体。
2.圆柱。
3. 15°C 4.-8, 略 5. 5.678×1096.当0=a 时,3a a =;当0 a 时,3a a .7.)(532--x 或532+x , 8. 8.12,黑.9.130℃. 10.-1、-5,-3到-1的一切数、-5到-3的一切数。
11.431. 12.3++-b a a b ,.13.15或3. 14.3200. 15.22.二.选择题:A D DB A ACD C D 三.计算题:1. 142.313. 22a ab + 4. 2234xy y x +-四.解答题:1.(1)56=x (2) X=132. -3x+y 2, 3. 3.主视图俯视图4.(1)7个.它们是:∠A,∠B,∠ACB,∠ACD,∠D,∠AED,∠CED;其中∠A=30°,∠B=60°, ∠ACB=∠ACD=90°,∠D=∠CED=45°,∠AED=135°(2)9对。
它们是AC ⊥BC ,AC ⊥CD , AC ⊥BD , CE ⊥BC ,CE ⊥CD ,CE ⊥BD ,AE ⊥BC , AE ⊥CD ,AE ⊥BD 。
5.(1)10%,(2)3倍,(3)2000人,200人。
6.(1)18, 42 ;(2) 4n+2。
7.能赶上火车。
在汽车送第一批人的同时,其他人先步行,可节约时间。
设用了X 时与第二批人相遇,根据题意得:5601515605⨯-=+x x ,解得5211=x ,从汽车出故障开始,第二批人到达火车站要用5235521126015=⨯+时,5235时<42分。
不计算其他时间的话,这8人能赶上火车。
此题思维方法不唯一,只要思维方法合理,解答正确即可。
2005—2006学年度第一学期期中知识检测七年级数学试卷一、填空题:(1’×20=20’) 1、-2的相反数为________, 21-的倒数为________。
2、(-2)+(-4)=________,(-2)-(-4)=________。
3、我市冬季某一天的最高气温为-1℃,最低气温为-6℃,那么这一天的最高气温比最低气温高_________℃。
4、近似数0.570精确到________,有________个有效数字。
5、x 的相反数与3的和,用代数式表示为__________________,当2=x 时,这个代数式的值为________________。
6、代数式(a-b)2表示的意义是_______________________________。
7、单项式y x 2-的系数为_________,次数为________。
8、多项式1322-+-xy y x 中最高次项的系数为_________,常数项为_________, 它是一个______次______项式。
9、多项式a b b a --223,按a 的降幂排列为__________________,按b 的升幂排列为__________________。
10、某中学举行歌咏比赛,六名评委对某选手打分如下: 77分、82分、78分、95分、83分、75分 去掉一个最高分和最低分后的平均分是_______分。
11、规定一种新的运算:,1+-+⋅=*b a b a b a 如143434*3+-+⨯=,请比较大小:)3(*4______4*)3(--(填>,<或=)。
二、选择题:(3’×10=30’) 1、计算1-(-2)的结果是( )A 、-3B 、-1C 、1D 、3 2、下列四个数中,在-2到0之间的数是( ) A 、-1 B 、1 C 、-3 D 、33、在1,-1,-2这三个数中,任意两数之和的最大值是( ) A 、1 B 、0 C 、-1 D 、-34、一个数的相反数与这个数的倒数的和等于0,则这个数的绝对值是( ) A 、0 B 、21C 、1D 、0 5、我国最长的河流长江全长约为6300千米,用科学记数法表示为( ) A 、63×102千米 B 、6.3×102千米 C 、6.3×103千米 D 、6.3×104千米 6、用代数式表示“比a 的平方的2倍小1的数”为( ) A 、2a 2-1 B 、(2a)2-1 C 、2(a-1)2 D 、(2a-1)2 7、算式:22+22+22+22可化为( )A 、24B 、 82C 、28D 、216 8、m ,n 两数在数轴上的位置如图所示,下列结论正确的是( )m -1 0 n 1A 、0>+n mB 、0>-n mC 、0>mnD 、n m 〉9、某商店进了一批商品,每件商品的进价为a 元,若要获利20%,则每件商品的零售价定为( )A 、20%a 元B 、(1-20%)a 元C 、%201+a元 D 、(1+20%)a 元10、若,021=-++y x 则y x 的值为( )A 、2B 、-2C 、1D 、-1三、简答题:(5’×2=10’)1、把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号将这些数连接起来。