2018四川高考理科数学真题及答案
- 格式:docx
- 大小:180.49 KB
- 文档页数:5
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={ x | x -1≥0 },B={ 0, 1, 2 }, 则A∩B=A.{0} B.{1} C.{1,2} D.{0,1,2}【答案】C【解析】A={ x | x -1≥0 }={ x | x≥1 },B={ 0, 1, 2 }, 于是A∩B={1,2}【点评】求交集就是求它们的公共元素所组成的集合。
方法是先化简后联立解之。
本题是考察集合的运算,属于基础题,难度系数小,易错点在于审题不清。
2.( 1 + i )( 2-i ) =A.-3 -i B.-3 + i C.3-i D.3 + i【答案】D【解析】原式=( 1 + i )( 2-i ) = 2-i + 2i-i2 = 2 + i-i2 = 3 + i ,所以选D。
【点评】求复数之积的基本方法是按多项式乘法先展开,然后合并同类项,注意复数的核心知识点:i2 = -1。
记性好的同学可直接按乘法公式进行计算。
本题是考察复数的基本运算,属于基础题,难度系数小,易错点在于不知道i2 = -1或计算错误。
叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A B .C . D【答案】 A【解析】 因为带卯眼的木构件咬合成长方体,从俯视方向看榫头,它在带卯眼的木构件的左侧底部中间内嵌位置,所以榫头在俯视图中呈虚线状态,故选A 。
2018年高考真题——理科数学(全国卷Ⅰ)+Word版含解析2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设121iz i i-=++,则z =( ) A .0 B .12C .1D 25.设函数()()321f x xa x ax=+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217 B .25 C .3 D .2 8.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .8 9.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( )A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC△的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p = B .13p p = C .23pp =D .123p p p =+11.已知双曲线2213x C y-=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32 B .3 C .23 D .4 12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .32 二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记nS 为数列{}na 的前n 项和.若21nn Sa =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案) 16.已知函数()2sin sin 2f x x x=+,则()f x 的最小值是________.三、解答题(共70分。
2018年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B?球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a b a b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
理科数学试题 第1页(共9页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半理科数学试题 第2页(共9页)4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+理科数学试题 第3页(共9页)11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
- 1 - 2018年普通高等学校招生全国统一考试全国卷1理科数学本试题卷共623150分。
考试用时120分钟。
1II.第Ⅰ卷1至3II 卷3至5页.2.3、.4第Ⅰ卷12题5题目要求的.1.设121iziizA. 0B. 12 C. 1 D. 22(1)22izii|z|1C.2. 已知集合220Axxx RCAA.12xx B. 12xxC.2|1|xxxx D.2|1|xxxx220xx(1)(2)0xx2x1x RCA12xxB.3.- 2 -则下列结论中丌正确的是A.B.C.D.37%274%.故答案为A.4. 设nS为等差数列na的前n3243SSS12a5aA. 12B. 10C. 10D. 123243sss3221433(32=2242222ddd3(63)127dd3d52410ad 52410ad为B.5. 321fxxaxax fx yfx0,0处的切线方程为A. 2yx B. yx C. 2yx D. yxfx为奇函数得1a2()31,fxx为yx.故答案为D.6. 在ABCAD为BC E为AD EB- 3 - A.ACAB4143B. ACAB4341C.ACAB413D.ACAB434111131()22244EBABAEABADABABACABAC答案为A. 7.某圆柱的高为216. 圆柱表面上的点M在正视图上的对应点为A N在左视图上的对应点为BM到N A. 172 B.52 C.3 D. 2MN的长度52为B.8.设抛物线xyC4:2F0,2 32的直线不C交于NM,FNFMA. 5B.6C. 7D. 8M(12),N(4,4)FNFM8 D.9.已知函数,0,ln,0,xexfxxxgxfxxa.gx存在2a的取值范围是A.1,0 B.0, C.1, D.1,()()gxfxxa2()yfx yxa)(xf的图象如MN24- 4 - yxa)(xf1a1a C.10的直径分别为直角三角形ABC的斜边BC ACAB,.ABC,Ⅱ,Ⅲ的概率分别记为321,,pppA. 21pp B.31pp C. 32pp D. 321ppp2ABAC,则22BC ∴区域Ⅰ的面积为112222S 231(2)222S区域Ⅱ的面积为22312SS12pp.故答案为A. 11.已知双曲线13:22yxC O F为C F的直线不C的两条渐近线的交点分别为NM,.若OMN MNA. 23 B. 3 C. 32 D. 42203xy 33yx∵OMN2ONM∴3NMk MN方程为3(2)yx.联立33(2)yxyx33(,)22N 3ON 3MON3MN B. 12. 已知正方体的棱长为1所得截面面积的最大值为- 5 - A. 433 B. 332 C.423 D. 2311ABD在与平面11ABD为由各棱的中点构成的截面EFGHMN EFGHMN的面积122333 622224S.故答案为A. 第II卷本卷包括必考题和选考题两部分.第(13)~(21)生都必须作答.第(22)~(23).45分.13.若x y满足约束条件22010xyxyy32zxy_______________.标函数过点(2,0)时取得最大max32206z. 故答案为6.14.记nS为数列na的前n若21nnSa6S_______________.1121,21,nnnnSaSa12nnaa{}na为公比为2- 6 - 又因为11121aSa11a12nna 661(12)6312S故答案为-63.15.从24位男生中选31__________2恰有1122412CC恰有221244CC12416. 故答案为16.16.2sinsin2fxxx fx的最小值是______________________.()2sinsin2fxxx()fx最小正周期为2T2'()2(coscos2)2(2coscos1)fxxxxx '()0fx22coscos10xx 1cos2x cos1x.∴当1cos23x 53x,当cos1,xx∴53()332f.3()332f(0)(2)0ff()0f∴()fx最小值为332. 故答案为332..1712在平面四边形ABCD90ADC45A2AB5BD.1cosADB222DC BC.- 7 - 1ABD52sin45sinADB,∴2sin5ADB,∵90ADB,∴223cos1sin5ADBADB. 2 2ADBBDC,∴coscos()sin2BDCADBADB coscos()sinBDCADBADB,∴222cos2DCBDBCBDCBDDC,∴2282552522BC.∴5BC. 18小题满分12ABCD,EF分别为,ADBC DF为折痕把DFCC到达点P PFBF.1PEF ABFD2DP不平面ABFD所成角的正弦值. 1,EF分别为,ADBC//EFAB EFBF PFBF EFPFF BF PEF BE ABFD PEF ABFD.2PFBF//BFED PFED又PFPDEDDPD PF PED PFPE设4AB4EF2PF23PE过P作PHEFEF于H由平面PEF ABFD∴PH ABFD DH则PDHDP与平面ABFD由PEPFEFPH23234PH而4PD 3sin4PHPDH∴DP与平面ABFD所成角的正弦值34.- 8 - 1912设椭圆22:12xCy F F的直线l不C交于,AB M2,0.1l不x AM2O OMAOMB. 11x2112y 22y 2(1,)2A∴22AMk AM 2(2)2yx.2l1l方程(1)ykx1122(,),(,)AxyBxy方程有22(1),12ykxxy2222(21)4220kxkxk 2122421kxxk21222221kxxk1212121212[(23()4]22(2)(2)AMBMyykxxxxkkxxxx2222124412(4)2121(2)(2)kkkkkxxAMBMkkOMAOMB. 2012某工厂的200- 9 - 20检验)10(pp各件产品是否为丌合格品相互独立。
2018年普通高等学校招生全国统一考试(含答案)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A.3144AB AC -B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。
D C AE B 2018年普通高等学校招生全国统一考试(四川卷) 数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式()()()P A B P A P B 24S R如果事件相互独立,那么 其中R 表示球的半径()()()P A B P A P B 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k k n k n n P k C p p k n …第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i -=( )A 、1B 、1-C 、iD 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=() A 、31010 B 、1010 C 、510 D 、5155、函数1(0,1)x y a a a a =->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行。