(新课标)高三数学一轮复习 第8篇 直线与方程学案 理
- 格式:doc
- 大小:490.00 KB
- 文档页数:6
2023年直线与方程教案高三【精选4篇】直线与方程教案高三篇一《直线的方程》教案一、教学目标知识与技能:理解直线方程的点斜式的特点和使用范围过程与方法:在知道直线上一点和直线斜率的基础上,通过师生探讨得出点斜式方程情感态度价值观:养成数形结合的思想,可以使用联系的观点看问题。
二、教学重难点教学重点:点斜式方程教学难点:会使用点斜式方程三、教学用具:直尺,多媒体四、教学过程1、复习导入,引入新知我们确定一条直线需要知道哪些条件呢?(直线上一点,直线的斜率)那么我们能不能用直线上这一点的坐标和直线的斜率把整条直线所有点的坐标应该满足的关系表达出来呢?这就是我们今天所要学习的课程《直线的方程》。
2、师生互动,探索新知探究一:在平面直角坐标系中,直线l过点p(0,3),斜率k=2,q(x,y)是直线l上不同于点p的任意一点,如ppt上图例所示。
通过上节课所学,我们可以得出什么?由于p,q都在这条直线上,我们就可以用这两点的坐标来表示直线l的斜率,可以得出公式:y-3x-0=2 那我们就可以的出方程y=2x+3 所以就有l上的任意一点坐标(x,y)都满足方程y=2x=3,满足方程y=2x+3的每一个(x,y)所对应的点都在直线l上。
因此我们可以的出结论:一般的如果一条直线l上任意一点的坐标(x,y)都满足一个方程,满足该方程的每一个数对(x,y)所确定的点都在直线l上,我们就把这个方程称为l的直线方程,因此,当我们知道了直线上的一点p(x,y),和它的斜率,我们就可以求出直线方程。
3、知识剖析,深化理解我们刚刚知道了如何来求直线方程,那现在同学来做做这一个例子。
设q(x,y)是直线l上不同于点p的任意一点,由于点p,q都在l,求直线的方程。
设点p(x0,,y0),先表示出这个直线的额斜率是y-y0x-x0=k,然后可以推得公式y-y0=k(x-x0)那如果当x=x0,这个公式就没有意义,还有就是分母不能为零,所以这里要注意(x不能等于x0)1)过点,斜率是k的直线l上的点,其坐标都满足方程(1)吗?p(x0,y0)(x0,y0),斜率为k的直线l上吗?2)坐标满足方程(1)的点都在经过p那么像这种由直线上一个点和一个斜率所求的方程,就称为直线方程的点斜式。
第九章解析几何第一节直线与方程本节主要包括3个知识点:1.直线的倾斜角与斜率、两直线的位置关系;2.直线的方程;3.直线的交点、距离与对称问题.突破点(一)直线的倾斜角与斜率、两直线的位置关系基础联通抓主干知识的“源”与“流”1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l倾斜角的范围是[0,π).2.斜率公式(1)定义式:直线l的倾斜角为α≠π2,则斜率k=tan_α.(2)两点式:P1(x1,y1),P2(x2,y2)在直线l上,且x1≠x2,则l的斜率k=y2-y1 x2-x1.3.两条直线平行与垂直的判定(1)两条直线平行:①对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.②当直线l1,l2不重合且斜率都不存在时,l1∥l2.(2)两条直线垂直:①如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2⇔k1·k2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l1⊥l2.考点贯通抓高考命题的“形”与“神”直线的倾斜角与斜率1.直线都有倾斜角,但不一定都有斜率,二者的关系具体如下:斜率k k=tan α>0k=0k=tan α<0不存在倾斜角α锐角0°钝角90°2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=tan α的单调性,如图所示:当α取值在⎣⎡⎭⎫0,π2内,由0增大到π2⎝⎛⎭⎫α≠π2时,k 由0增大并趋向于正无穷大;当α取值在⎝⎛⎭⎫π2,π内,由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 由负无穷大增大并趋近于0.解决此类问题,常采用数形结合思想.[例1] (1)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π (2)已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.[解析] (1)因为直线x sin α+y +2=0的斜率k =-sin α,又-1≤sin α≤1,所以-1≤k ≤1.设直线x sin α+y +2=0的倾斜角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. (2)如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m .∴-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为⎣⎡⎦⎤-23,12. [答案] (1)B (2)⎣⎡⎦⎤-23,12 [易错提醒]直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).两直线的位置关系两直线平行或垂直的判定方法 (1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1.(2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合.(3)已知两直线的一般方程设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.该方法可避免对斜率是否存在进行讨论.[例2] (1)若直线ax +2y -6=0与x +(a -1)y +a 2-1=0平行,则a =________. (2)已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2互相垂直,则实数a 的值为________.[解析] (1)因为两直线平行,所以有a (a -1)-2=0,且2(a 2-1)+6(a -1)≠0,即a 2-a -2=0,且a 2+3a -4≠0,解得a =2或a =-1.(2)l 1的斜率k 1=3a -01-(-2)=a .当a ≠0时,l 2的斜率k 2=-2a -(-1)a -0=1-2aa .因为l 1⊥l 2,所以k 1k 2=-1,即a ·1-2aa=-1,解得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴,A (-2,0),B (1,0),直线l 1为x 轴,显然l 1⊥l 2.综上可知,实数a 的值为1或0. [答案] (1)2或-1 (2)1或0[易错提醒]当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.1.[考点一]直线2x cos α-y -3=0(α∈[π6,π3])的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3解析:选B 直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎡⎦⎤π6,π3, 所以12≤cos α≤32,因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3, 即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.2.[考点一]直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.3.[考点二]若直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,则实数m 的值为( )A .-1B .0C .1D .2解析:选C ∵直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,∴⎩⎪⎨⎪⎧-m +(2-m )=0,m +2(2-m )≠0,解得m =1.故选C. 4.[考点二]已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( )A .2或12B.13或-1 C.13D .-1解析:选B 因为直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或a =-1.故选B.5.[考点一]直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析:如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 答案:(-∞,- 3 ]∪[1,+∞)6.[考点二](2016·苏北四市一模)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)-2b =0, 即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号, 故2a +3b 的最小值为25. 答案:25突破点(二) 直线的方程基础联通 抓主干知识的“源”与“流”直线方程的五种形式 形式 几何条件 方程 适用范围 点斜式 过一点(x 0,y 0),斜率k y -y 0=k (x -x 0) 与x 轴不垂直的直线 斜截式 纵截距b ,斜率k y =kx +b 与x 轴不垂直的直线 两点式过两点(x 1,y 1),(x 2,y 2)y -y 1y 2-y 1=x -x 1x 2-x 1与x 轴、y 轴均不垂直的直线 截距式 横截距a ,纵截距bx a +y b =1 不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0,A 2+B 2≠0平面直角坐标系内所有直线考点贯通 抓高考命题的“形”与“神”求直线方程[例1] (1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. (3)求过A (2,1),B (m,3)两点的直线l 的方程.[解] (1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (3)①当m =2时,直线l 的方程为x =2; ②当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,代入方程2x -(m -2)y +m -6=0,即为x =2, 所以直线l 的方程为2x -(m -2)y +m -6=0.[易错提醒](1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零).与直线方程有关的最值问题[例2] 过点P (4,1)作直线l 分别交x ,y 轴正半轴于A ,B 两点. (1)当△AOB 面积最小时,求直线l 的方程. (2)当|OA |+|OB |取最小值时,求直线l 的方程. [解] 设直线l :x a +yb =1(a >0,b >0), 因为直线l 经过点P (4,1), 所以4a +1b =1. (1)4a +1b =1≥24a ·1b =4ab, 所以ab ≥16,当且仅当a =8,b =2时等号成立,所以当a =8,b =2时,S △AOB =12ab 最小,此时直线l 的方程为x 8+y 2=1,即x +4y -8=0.(2)因为4a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝⎛⎭⎫4a +1b =5+a b +4b a≥5+2 a b ·4ba =9,当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y -6=0.[方法技巧]1.给定条件求直线方程的思路(1)考虑问题的特殊情况,如斜率不存在的情况,截距等于零的情况. (2)在一般情况下准确选定直线方程的形式,用待定系数法求出直线方程. (3)重视直线方程一般形式的应用,因为它具有广泛的适用性. 2.与直线有关的最值问题的解题思路 (1)借助直线方程,用y 表示x 或用x 表示y . (2)将问题转化成关于x (或y )的函数. (3)利用函数的单调性或基本不等式求最值.1.[考点一]倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0D .x +y +1=0解析:选D 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0.2.[考点一]已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A .4x -3y -3=0B .3x -4y -3=0C .3x -4y -4=0D .4x -3y -4=0解析:选D 由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0.3.[考点二]若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1, ∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·a b =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.4.[考点二]若ab >0,且A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 解析:根据A (a,0),B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0. 根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.答案:165.[考点一]△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 所在直线的方程. 解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点, 由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点, 由截距式得AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.突破点(三) 直线的交点、距离与对称问题基础联通 抓主干知识的“源”与“流” 1.两条直线的交点2.三种距离类型 条件距离公式两点间的距离点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2 点到直线的距离点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2两平行直线间的距离 两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2考点贯通 抓高考命题的“形”与“神”直线的交点问题[例1] (1)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)已知直线l 经过点P (3,1),且被两条平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段长为5,则直线l 的方程为________.[解析] (1)由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k得⎩⎪⎨⎪⎧x =k k -1,y =2k -1k -1.又∵0<k <12,∴x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.(2)若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别为A ′(3,-4),B ′(3,-9),截得的线段A ′B ′的长|A ′B ′|=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组⎩⎪⎨⎪⎧y =k (x -3)+1,x +y +1=0,得A ⎝ ⎛⎭⎪⎫3k -2k +1,-4k -1k +1,解方程组⎩⎪⎨⎪⎧y =k (x -3)+1,x +y +6=0,得B ⎝ ⎛⎭⎪⎫3k -7k +1,-9k -1k +1.由|AB |=5,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫-4k -1k +1+9k -1k +12=52.解得k =0,即所求的直线方程为y =1.综上可知,所求直线l 的方程为x =3或y =1. [答案] (1)B (2)x =3或y =1 [方法技巧]1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.2.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.距离问题[例2] (1)若P ,Q 5=0上任意一点,则|PQ |的最小值为( )A.95 B.185C.2910D.295(2)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P 点坐标为________.[解析] (1)因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910,所以|PQ |的最小值为2910.(2)设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.① 又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. [答案] (1)C (2)(1,-4)或⎝⎛⎭⎫277,-87 [易错提醒](1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; (2)利用两平行线间的距离公式要先把两直线方程中x ,y 的系数化为相等.对称问题1.中心对称问题的两种类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的两种类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:①若直线与对称轴平行,则在直线上取一点,求出该点关于轴的对称点,然后用点斜式求解.②若直线与对称轴相交,则先求出交点,然后再取直线上一点,求该点关于轴的对称点,最后由两点式求解.[例3] (1)点P (3,2)关于点Q (1,4)的对称点M 为( ) A .(1,6) B .(6,1) C .(1,-6)D .(-1,6)(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0(3)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.[解析](1)设M (x ,y ),则⎩⎨⎧3+x2=1,2+y2=4,∴x =-1,y =6, ∴M (-1,6).(2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0.(3)设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.[答案] (1)D (2)A (3)6x -y -6=0[方法技巧]解决两类对称问题的关键点解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.1.[考点三](2016·东城期末)如果平面直角坐标系内的两点A (a -1,a +1),B (a ,a )关于直线l 对称,那么直线l 的方程为( )A .x -y +1=0B .x +y +1=0C .x -y -1=0D .x +y -1=0解析:选A 因为直线AB 的斜率为a +1-aa -1-a=-1,所以直线l 的斜率为1,设直线l的方程为y =x +b ,由题意知直线l 过点⎝⎛⎭⎫2a -12,2a +12,所以2a +12=1,所以直线l 的方程为y =x +1,即x -y +1=0.选A.2.[考点二]若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A ∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去).∴m +n =0.3.[考点一]已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是( )A.⎝⎛⎭⎫12,12B.⎝⎛⎭⎫22,22C.⎝⎛⎭⎫32,32D.⎝⎛⎭⎫52,52 解析:选A 因为定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,设直线AB 的方程为x +y +m =0,将A 点代入,解得m =-1,所以直线AB 的方程为x +y -1=0,它与x -y =0联立解得x =12,y =12,所以B 的坐标是⎝⎛⎭⎫12,12.4.[考点三]若m >0,n >0,点(-m ,n )关于直线x +y -1=0的对称点在直线x -y +2=0上,那么1m +4n的最小值等于________.解析:由题意知(-m ,n )关于直线x +y -1=0的对称点为(1-n,1+m ).则1-n -(1+m )+2=0,即m +n =2.于是1m +4n =12(m +n )⎝⎛⎭⎫1m +4n =12×⎝⎛⎭⎫5+n m +4m n ≥12×(5+2×2)=92,当且仅当m =23,n =43时等号成立. 答案:925.[考点一]经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________________.解析:由方程组⎩⎪⎨⎪⎧ x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2). ∵l ⊥l 3,直线l 3的斜率为34,∴直线l 的斜率k 1=-43,∴直线l 的方程为y -2=-43x ,即4x +3y -6=0.答案:4x +3y -6=0 6.[考点二]已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程.(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0. 由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1,因为k OP =-12,所以k l =-1k OP =2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax+y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.2.(2013·新课标全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎦⎤1-22,13 D.⎣⎡⎭⎫13,12解析:选B 法一:(1)当直线y =ax +b 与AB ,BC 相交时,如图①所示.易求得:x M =-ba ,y N =a +b a +1.由已知条件得:⎝⎛⎭⎫1+b a ·a +b a +1=1,∴a =b 21-2b.∵点M 在线段OA 上,∴-1<-ba <0,∴0<b <a .∵点N 在线段BC 上,∴0<a +ba +1<1,∴b <1.由⎩⎨⎧b 21-2b>b ,b21-2b >0,b >0,解得13<b <12.(2)当直线y =ax +b 与AC ,BC 相交时,如图②所示.设MC =m ,NC =n ,则S △MCN =12mn =12,∴mn =1.显然,0<n <2,∴m =1n >22.又0<m ≤2且m ≠n .∴22<m ≤2且m ≠1.设D 到AC ,BC 的距离为t ,则t m =DN MN ,t n =DM MN ,∴t m +t n =DN MN +DM MN =1.∴t =mn m +n ,∴1t =1m +1n =1m +m .而f (m )=m +1m ⎝⎛⎭⎫22<m ≤2且m ≠1的值域为⎝⎛⎦⎤2,322,即2<1t ≤322,∴23≤t <12.∵b =1-CD =1-2t ,∴1-22<b ≤13.综合(1)、(2)可得:1-22<b <12. 法二:由⎩⎪⎨⎪⎧x +y =1,y =ax +b消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b.∵a >0,∴b 21-2b>0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为B.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.直线x +3y +1=0的倾斜角是( ) A.π6 B.π3 C.2π3D.5π6解析:选D 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,所以α=5π6.2.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32B .m ≠0C .m ≠0且m ≠1D .m ≠1解析:选D 由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.4.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710 B.175C .8D .2解析:选D ∵63=m 4≠14-3,∴m =8,直线6x +8y +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.5.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析:由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.答案:-9[练常考题点——检验高考能力]一、选择题1.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:选D 由题意可知a ≠0.当x =0时,y =a +2.当y =0时,x =a +2a .故a +2a =a +2,解得a =-2或a =1.2.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <0解析:选A 由于直线ax +by +c =0同时经过第一、第二、第四象限,所以直线斜率存在,将方程变形为y =-a b x -c b .易知-a b <0且-cb >0,故ab >0,bc <0.3.两直线x m -y n =a 与x n -ym =a (其中a 是不为零的常数)的图象可能是( )解析:选B 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号,故选B.4.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则P 1P 2的中点P 到原点的距离的最小值是( )A.522 B .5 2 C.1522D .15 2解析:选B 由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d =|-10|2=52,即P 到原点距离的最小值为5 2. 5.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎫0,10a ,则线段AB 的长为( ) A .11 B .10 C .9D .8解析:选B 依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎨⎧x -2y2=0,2x +y2=5,解得⎩⎪⎨⎪⎧x =4,y =2,所以A (4,8),B (-4,2),∴|AB |=(4+4)2+(8-2)2=10. 6.设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .x +y -7=0解析:选D 由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,所以直线PB 的方程为x +y -7=0.二、填空题7.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为________. 解析:因为l 1,l 2关于直线y =-x 对称,所以l 2的方程为-x =-2y +3,即y =12x +32,即直线l 2的斜率为12.答案:128.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是__________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.答案:x +2y -3=09.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]10.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.解析:从特殊位置考虑.如图,∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4), ∴kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,∴k FD >kA 1F ,即k FD ∈(4,+∞).答案:(4,+∞)三、解答题11.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离 d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 12.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)由已知可得l 2的斜率存在, ∴k 2=1-a .若k 2=0,则1-a =0,a =1. ∵l 1⊥l 2,直线l 1的斜率k 1必不存在,∴b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在. ∵k 2=1-a ,k 1=ab ,l 1⊥l 2,∴k 1k 2=-1,即ab (1-a )=-1.① 又∵l 1过点(-3,-1), ∴-3a +b +4=0.②由①②联立,解得a =2,b =2. (2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab =1-a .③届高三理科数学一轮复习学案 直线与方程又∵坐标原点到这两条直线的距离相等,且l 1∥l 2,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .④ 联立③④,解得⎩⎪⎨⎪⎧ a =2,b =-2或⎩⎪⎨⎪⎧ a =23,b =2.∴a =2,b =-2或a =23,b =2.。
2022届高三数学一轮复习导学案直线与方程(共5课时)直线的倾斜角与斜率导学案-----2022届高三数学一轮复习直线与方程导学案(一)一、直线的倾斜角与斜率(一)考纲点击1、理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;2、能根据两条直线的斜率判定这两条直线平行或垂直。
(二)热点提示1、直线的倾斜角和斜率、两直线的位置关系是高考热点;2、主要以选择、填空题的形式出现,属于中低档题目。
【考纲知识梳理】一、直线的倾斜角与斜率(1)直线的倾斜角①关于倾斜角的概念要抓住三点:ⅰ.与某轴相交;ⅱ.某轴正向;ⅲ.直线向上方向.②直线与某轴平行或重合时,规定它的倾斜角为00.③倾斜角的范围001800.(2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为900的直线斜率不存在。
②经过两点的直线的斜率公式是③每条直线都有倾斜角,但并不是每条直线都有斜率。
例题分析:例1、(1)图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则:A.k1<k2<k3C.k3<k2<k1B.k3<k1<k2D.k1<k3<k2(2)若是三角形的内角,则直线某coym0的倾斜角为的取值范围是:A.(333,)B.(,)C.(,)(,)D.[0,)(,)4444422444例2.已知直线的斜率k=-co(∈R).求直线的倾斜角的取值范围。
思路解析:co的范围斜率k的范围tan的范围倾斜角的取值范围例2.设直线l的练习:直线l方程为(a1)某y2a0,直线l不过第二象限,求a的取值范围。
3、利用斜率证明三点共线的方法:已知A(某1,y1),B(某2,y2),C(某3,y3),若某1某2某3或kABkAC,则有A、B、C三点共线。
注:斜率变化分成两段,900是分界线,遇到斜率要谨记,存在与否需讨论。
练习:若A(-2,3),B(3,-2),C(0,m)三点共线,则m的值为.练习:1.直线经过A(2,1),B(1,m)两点,那么直线的倾斜角的取值范围是A.[0,2](,)B.[0,)C.[0,]D.[,)(,)4424222.若A.6,则过两点A(0,co),B(in,0)的直线的倾斜角是5B.C.D.63663.若AC0,且BC0,则直线A某ByC0一定不经过A.第一象限B.第二象限C.第三象限D.第四象限2直线的平行与垂直导学案-----2022届高三数学一轮复习直线与方程导学案(二)2、两条直线平行与垂直的判定(1)两条直线平行:对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1//l2k1k2。
第八章 直线和圆的方程高考导航 考试要求重难点击命题展望1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率的计算公式.3.能根据两条直线的斜率判定这两条直线平行或垂直.4.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.5.掌握用解方程组的方法求两条相交直线的交点坐标.6.掌握两点间的距离公式、点到直线的距离公式,会求两条平行线间的距离.7.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.8.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.9.能用直线和圆的方程解决简单的问题.10.初步了解用代数方法处理几何问题的思想.11.了解空间直角坐标系,会用空间直角坐标表示点的位置,会推导空间两点间的距离公式. 本章重点:1.倾斜角和斜率的概念;2.根据斜率判定两条直线平行与垂直;3.直线的点斜式方程、一般式方程;4.两条直线的交点坐标;5.点到直线的距离和两条平行直线间的距离的求法;6.圆的标准方程与一般方程;7.能根据给定直线,圆的方程,判断直线与圆的位置关系;8.运用数形结合的思想和代数方法解决几何问题. 本章难点:1.直线的斜率与它的倾斜角之间的关系;2.根据斜率判定两条直线的位置关系;3.直线方程的应用;4.点到直线的距离公式的推导;5.圆的方程的应用;6.直线与圆的方程的综合应用.本章内容常常与不等式、函数、向量、圆锥曲线等知识结合起来考查.直线和圆的考查,一般以选择题、填空题的形式出现,属于容易题和中档题;如果和圆锥曲线一起考查,难度比较大.同时,对空间直角坐标系的考查难度不大,一般为选择题或者填空题.本章知识点的考查侧重考学生的综合分析问题、解决问题的能力,以及函数思想和数形结合的能力等.知识网络8.1 直线与方程典例精析题型一 直线的倾斜角【例1】直线2xcos α-y -3=0,α∈[π6,π3]的倾斜角的变化范围是( )A.[π6,π3]B.[π4,π3]C.[π4,π2]D.[π4,2π3] 【解析】直线2xcos α-y -3=0的斜率k =2cos α,由于α∈[π6,π3],所以12≤cos α≤32,k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3],由于θ∈[0,π),所以θ∈[π4,π3],即倾斜角的变化范围是[π4,π3],故选B.【点拨】利用斜率求倾斜角时,要注意倾斜角的范围.【变式训练1】已知M(2m +3,m),N(m -2,1),当m ∈ 时,直线MN 的倾斜角为锐角;当m = 时,直线MN 的倾斜角为直角;当m ∈ 时,直线MN 的倾斜角为钝角.【解析】直线MN 的倾斜角为锐角时,k =m -12m +3-m +2=m -1m +5>0⇒m <-5或m >1;直线MN 的倾斜角为直角时,2m +3=m -2⇒m =-5;直线MN 的倾斜角为钝角时,k =m -12m +3-m +2=m -1m +5<0⇒-5<m <1.题型二 直线的斜率【例2】已知A(-1,-5),B(3,-2),直线l 的倾斜角是直线AB 的倾斜角的2倍,求直线l 的斜率.【解析】由于A(-1,-5),B(3,-2),所以kAB =-2+53+1=34,设直线AB 的倾斜角为θ,则tan θ=34,l 的倾斜角为2θ,tan 2θ=2tan θ1-tan2θ=2×341-(34)2=247.所以直线l 的斜率为247.【点拨】直线的倾斜角和斜率是最重要的两个概念,应熟练地掌握这两个概念,扎实地记住计算公式,倾斜角往往会和三角函数的有关知识联系在一起.【变式训练2】设α是直线l 的倾斜角,且有sin α+cos α=15,则直线l 的斜率为( )A.34B.43C.-43D.-34或-43【解析】选C.sin α+cos α=15⇒sin αcos α=-1225<0⇒sin α=45,cos α=-35或cos α=45,sin α=-35(舍去),故直线l 的斜率k =tan α=sin αcos α=-43.题型三 直线的方程【例3】求满足下列条件的直线方程.(1)直线过点(3,2),且在两坐标轴上截距相等; (2)直线过点(2,1),且原点到直线的距离为2.【解析】(1)当截距为0时,直线过原点,直线方程是2x -3y =0;当截距不为0时,设方程为x a +ya =1,把(3,2)代入,得a =5,直线方程为x +y -5=0. 故所求直线方程为2x -3y =0或x +y -5=0. (2)当斜率不存在时,直线方程x -2=0合题意;当斜率存在时,则设直线方程为y -1=k(x -2),即kx -y +1-2k =0,所以|1-2k|k2+1=2,解得k =-34,方程为3x +4y -10=0.故所求直线方程为x -2=0或3x +4y -10=0.【点拨】截距可以为0,斜率也可以不存在,故均需分情况讨论.【变式训练3】求经过点P(3,-4),且横、纵截距互为相反数的直线方程. 【解析】当横、纵截距都是0时,设直线的方程为y =kx.因为直线过点P(3,-4),所以-4=3k ,得k =-43.此时直线方程为y =-43x.当横、纵截距都不是0时,设直线的方程为x a +y-a=1,因为直线过点P(3,-4),所以a =3+4=7.此时方程为x -y -7=0. 综上,所求直线方程为4x +3y =0或x -y -7=0. 题型四 直线方程与最值问题【例4】过点P(2,1)作直线l 分别交x 、y 轴的正半轴于A 、B 两点,点O 为坐标原点,当△ABO 的面积最小时,求直线l 的方程.【解析】方法一:设直线方程为x a +yb =1(a >0,b >0),由于点P 在直线上,所以2a +1b =1.2a ·1b ≤(2a +1b 2)2=14, 当2a =1b =12时,即a =4,b =2时,1a ·1b 取最大值18, 即S △AOB =12ab 取最小值4,所求的直线方程为x 4+y2=1,即x +2y -4=0.方法二:设直线方程为y -1=k(x -2)(k <0),直线与x 轴的交点为A(2k -1k ,0),直线与y 轴的交点为B(0,-2k +1),由题意知2k -1<0,k <0,1-2k >0.S △AOB =12(1-2k)·2k -1k =12[(-1k )+(-4k)+4]≥12[2(-1k)·(-4k)+4]=4. 当-1k =-4k ,即k =-12时,S △AOB 有最小值,所求的直线方程为y -1=-12(x -2),即x +2y -4=0.【点拨】求直线方程,若已知直线过定点,一般考虑点斜式;若已知直线过两点,一般考虑两点式;若已知直线与两坐标轴相交,一般考虑截距式;若已知一条非具体的直线,一般考虑一般式.【变式训练4】已知直线l :mx -(m2+1)y =4m(m ∈R).求直线l 的斜率的取值范围.【解析】由直线l 的方程得其斜率k =mm2+1.若m =0,则k =0; 若m >0,则k =1m +1m≤12m·1m=12,所以0<k≤12;若m <0,则k =1m +1m =-1-m -1m ≥-12(-m)(-1m )=-12,所以-12≤k <0.综上,-12≤k≤12.总结提高1.求斜率一般有两种类型:其一,已知直线上两点,根据k =y2-y1x2-x1求斜率;其二,已知倾斜角α或α的三角函数值,根据k =tan α求斜率,但要注意斜率不存在时的情形. 2.求倾斜角时,要注意直线倾斜角的范围是[0,π).3.求直线方程时,应根据题目条件,选择合适的直线方程形式,从而使求解过程简单明确.设直线方程的截距式,应注意是否漏掉过原点的直线;设直线方程的点斜式时,应注意是否漏掉斜率不存在的直线.。
2020版高考数学一轮复习精品学案:第八章平面解析几何【知识特点】1、本章内容主要包括直线与方程、圆与方程、圆锥曲线,是解析几何最基本,也是很重要的内容,是高中数学的重点内容,也是高考重点考查的内容之一;2、本章内容集中体现了用坐标法研究曲线的思想与方法,概念、公式多,内容多,具有较强的综合性;3、研究圆锥曲线的方法很类似,因此可利用类比的方法复习椭圆、双曲线、抛物线的定义与几何性质,掌握解决解析几何问题的最基本的方法。
【重点关注】1、关于直线的方程,直线的斜率、倾斜角,几种距离公式,两直线的位置关系,圆锥曲线的定义与性质等知识的试题,都属于基本题目,多以选择题、填空题形式出现,一般涉及两个以上的知识点,这些将是今后高考考查的热点;2、关于直线与圆的位置关系,圆与圆的位置关系的题目出现次数较多,既有选择题、填空题,也有解答题。
既考查基础知识的应用能力,又考查综合运用知识分析问题、解决问题的能力;3、直线与圆锥曲线联系在一起的综合题多以高档题出现,要求学生分析问题的能力,计算能力较高;4、注重数学思想方法的应用解析法、数形结合思想、函数与方程的思想、转化与化归的思想、分类讨论思想及待定系数法在各种题型中均有体现,应引起重视。
【地位和作用】解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。
在本模块中,学生将在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系。
体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
在平面解析几何初步的教学中,教师应帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。
这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
课程标准命题解读1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.掌握直线方程的几种形式,了解斜截式与一次函数的关系.3.掌握直线方程的几种形式,能根据两条直线的斜率及直线方程判定这两条直线平行或垂直.4.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.5.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.6.能判断直线与圆,圆与圆的位置关系.7.掌握椭圆的定义、标准方程及简单几何性质.8.了解抛物线与双曲线的定义、标准方程,以及它们的简单几何性质.9.通过圆锥曲线与方程的学习,进一步体会数形结合的思想.考查形式:一般为两个选择题或填空题和一个解答题.考查内容:直线和圆的位置关系,圆锥曲线标准方程的求解,椭圆、双曲线离心率的计算等几何性质,直线与圆锥曲线的位置关系,最值与范围问题,定点与定值问题,探索性问题或证明问题.备考策略:(1)熟练掌握直线、圆、椭圆、双曲线和抛物线方程的求法.(2)深刻理解圆锥曲线的定义,并能应用定义解决相关问题.(3)在解决直线与圆锥曲线的位置关系问题时,要加强运算的训练,重视“设而不求”的思想方法的应用.(4)掌握最值和范围、定点与定值、探索性问题等的一般解法和思想.核心素养:数学抽象、数学运算.第1节直线方程一、教材概念·结论·性质重现1.直线的倾斜角(1)倾斜角的定义一般地,给定平面直角坐标系中的一条直线,如果这条直线与x轴相交,将x轴绕着它们的交点按逆时针方向旋转到与直线重合时所转的最小正角记为θ,则称θ为这条直线的倾斜角.(2)若直线与x轴平行或重合,则规定该直线的倾斜角为0°.(3)倾斜角的取值范围是0°~180°.2.直线的斜率(1)一般地,如果直线l的倾斜角为θ,则当θ≠90°时,称k=tan_θ为直线l 的斜率;当θ=90°时,称直线l的斜率不存在.(2)若A(x1,y1),B(x2,y2)是直线l上两个不同的点,则当x1≠x2时,直线l的斜率为k=y2-y1x2-x1,当x1=x2时,直线l的斜率不存在.直线的斜率公式与两点的顺序无关,即两纵坐标和两横坐标在公式中的次序可以同时调换.就是说,如果分子是y2-y1,那么分母必须是x2-x1;反过来,如果分子是y1-y2,那么分母必须是x1-x2.3.直线方程的五种形式名称方程适用范围点斜式y-y0=k(x-x0)不含直线x=x0斜截式y=kx+b 不含垂直于x轴的直线两点式y-y1y2-y1=x-x1x2-x1不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式xa+yb=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)所有的直线都适用(1)求直线方程时,若不能断定直线是否具有斜率,应对斜率存在与不存在加以讨论.(2)“截距式”中截距不是距离,在用截距式时,应先判断截距是否为0.若不确定,则需分类讨论.二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”. (1)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (2)直线的倾斜角越大,其斜率就越大.( × ) (3)斜率相等的两条直线的倾斜角不一定相等.( × ) (4)不经过原点的直线都可以用x a +yb =1表示.( × )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )2.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足( )A .a +b =1B .a -b =1C .a +b =0D .a -b =0D 解析:因为sin α+cos α=0,所以 tan α=-1.又因为α为倾斜角,所以斜率k =-1.而直线ax +by +c =0的斜率k =-a b , 所以-ab =-1,即a -b =0.3.如果AC <0,且BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C 解析:由已知得直线Ax +By +C =0在x 轴上的截距-CA >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限.4.已知A (3,5),B (4,7),C (-1,x )三点共线,则 x =________.-3 解析:因为A ,B ,C 三点共线,所以k AB =k AC ,所以7-54-3=x -5-1-3,所以x =-3.5.过点P (2,3)且在两轴上截距相等的直线方程为__________________. 3x -2y =0或x +y -5=0 解析:当纵、横截距为0时,直线方程为3x -2y=0;当截距不为0时,设直线方程为x a +y a =1,则2a +3a =1,解得a =5,直线方程为x +y -5=0.考点1 直线的倾斜角与斜率——基础性1.若图中的直线l 1,l 2,l 3的斜率分别是k 1,k 2,k 3,则有( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 2<k 3<k 1D 解析:由图可知k 1>0,k 2<0,k 3<0,且直线l 3的倾斜角大于直线l 2的倾斜角,所以k 3>k 2.综上可知k 2<k 3<k 1.故选D.2.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A .⎝ ⎛⎭⎪⎫-1,15B .⎝ ⎛⎭⎪⎫-1,12C .(-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞D 解析:设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k .令-3<1-2k <3,解不等式得k <-1或k >12.3.已知直线的方程为x sin α+3y -1=0,α∈R ,则直线l 的倾斜角的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫2π3,π B.⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π C.⎣⎢⎡⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π6,π D.⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫2π3,π B 解析:因为直线l 的方程为x sin α+3y -1=0,所以y =-sin α3x +13,即直线的斜率k =-sin α3.由-1≤sin α≤1,得-33≤k ≤33.又直线的倾斜角的取值范围为[0,π),由正切函数的性质可得,直线的倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π. 4.(2021·八省联考)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为________.13,-3 解析:正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图的平面直角坐标系.设对角线OB 所在直线的倾斜角为θ,则tan θ=2.由正方形的性质可知,直线OA 的倾斜角为θ-45°,直线OC 的倾斜角为θ+45°,故k OA =tan(θ-45°)=tan θ-tan 45°1+tan θtan 45°=2-11+2=13,k OC =tan(θ+45°)=tan θ+tan 45°1-tan θtan 45°=2+11-2=-3.1.倾斜角α与斜率k 的函数关系k =tan α,α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π,求倾斜角或斜率范围时,可结合图像解题.2.斜率的两种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.(2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.考点2 求直线的方程——基础性根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解:(1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π). 从而cos α=±31010,则k =tan α=±13. 故所求直线方程为y =±13(x +4). 即x +3y +4=0或x -3y +4=0.(2)由题设知纵、横截距不为0.设直线方程为x a +y12-a =1.又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.(3)当斜率不存在时,所求直线方程为x -5=0,满足题意.当斜率存在时,设斜率为k,则所求直线方程为y-10=k(x-5),即kx-y+10-5k=0.由点到直线的距离公式,得|10-5k|k2+1=5,解得k=34.故所求直线方程为3x-4y+25=0.综上知,所求直线方程为x-5=0或3x-4y+25=0.求直线方程的方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程.(2)待定系数法:先设出直线方程,再根据已知条件求出待定系数,最后代入求出直线方程.求适合下列条件的直线方程:(1)求过点A(1,3),倾斜角是直线y=-3x的倾斜角的12的直线方程;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍;(3)经过点B(3,4),且与两坐标轴围成一个等腰直角三角形.解:(1)因为y=-3x的斜率为k=-3,其倾斜角为120°,所以所求直线的倾斜角为60°,其斜率为3,所以直线方程为y-3=3(x-1),即直线方程为3x-y+3-3=0.(2)设直线y=3x的倾斜角为α,则所求直线的倾斜角为2α.因为tan α=3,所以tan 2α=2tan α1-tan2α=-34.又直线经过点A(-1,-3),因此所求直线方程为y+3=-34(x+1),即3x+4y+15=0.(3)由题意可知,所求直线的斜率为±1.又直线经过点(3,4),由点斜式得y-4=±(x-3).所求直线的方程为x-y+1=0或x+y-7=0.考点3直线方程的综合应用——综合性考向1求与最值有关的直线方程过点P (4,1)作直线l 分别交x 轴、y 轴正半轴于A ,B 两点,O 为坐标原点.(1)当△AOB 面积最小时,求直线l 的方程; (2)当|OA |+|OB |取最小值时,求直线l 的方程. 解:设直线l :x a +yb =1(a >0,b >0). 因为直线l 经过点P (4,1),所以4a +1b =1. (1)因为1=4a +1b ≥24a ·1b =4ab, 所以ab ≥16,当且仅当a =8,b =2时等号成立. 所以,当a =8,b =2时,△AOB 的面积最小. 此时直线l 的方程为x 8+y2=1,即x +4y -8=0. (2)因为4a +1b =1(a >0,b >0),所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫4a +1b =5+a b +4b a ≥5+2a b ·4ba =9,当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.求解与最值有关的直线方程问题的一般步骤(1)设出直线方程,建立目标函数.(2)利用均值不等式、一元二次函数求解最值,得出待定系数. (3)写出直线方程.考向2 由直线方程求参数的值或取值范围已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4.当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.12 解析:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154.又0<a <2,所以当a =12时,四边形的面积最小.由直线方程求参数的值或取值范围的注意事项(1)注意寻找等量关系或不等关系.若点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或均值不等式求解.(2)注意直线恒过定点问题.1.如图,在两条互相垂直的道路l 1,l 2的一角,有一根电线杆,电线杆底部到道路l 1的垂直距离为4米,到道路l 2的垂直距离为3米.现在要过电线杆的底部靠近道路的一侧修建一条人行直道,使得人行道与两条垂直的道路围成的直角三角形的面积最小,则人行道的长度为________米.10 解析:如图,建立平面直角坐标系.设人行道所在直线方程为y -4=k (x -3)(k <0),所以A ⎝ ⎛⎭⎪⎫3-4k ,0,B (0,4-3k ),所以△ABO 的面积S =12×(4-3k )×⎝ ⎛⎭⎪⎫3-4k =12×⎝ ⎛⎭⎪⎫24-9k -16k .因为k <0,所以-9k -16k ≥2(-9k )⎝ ⎛⎭⎪⎫-16k =24,当且仅当-9k =-16k ,即k =-43时取等号.此时,A (6,0),B (0,8),所以人行道的长度为62+82=10(米).2.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A ||PB |的最大值是________.5 解析:由直线x +my =0求得定点A (0,0),直线mx -y -m +3=0,即y -3=m (x -1),得定点B (1,3).当m =0时,两条动直线垂直;当m ≠0时,因为⎝ ⎛⎭⎪⎫-1m ×m =-1,所以两条动直线也垂直.因为P 为直线x +my =0与mx -y -m +3=0的交点,所以|P A |2+|PB |2=|AB |2=10,所以|P A ||PB |≤|P A |2+|PB |22=5(当且仅当|P A|=|PB|=5时,等号成立),所以|P A|·|PB|的最大值是5.已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.[四字程序]读想算思△ABO的面积的最小值及此时直线l的方程1.三角形面积的表达式;2.以谁为变量?用适当的变量表示面积S,并求其最小值和此时的直线方程转化与化归直线过定点,且与x轴、y轴的正半轴分别交于A,B两点1. S=12ah;2.S=12ab·sin C;3.点的坐标作变量;4.直线的斜率作变量1.S=12ab≥12;2.S≥12[12+2(-9k)·4(-k)]=12×(12+12)=121.均值不等式;2.三角函数的性质思路参考:设出直线的截距式方程,利用均值不等式求出ab的最小值.解:设直线方程为xa+yb=1(a>0,b>0).将点P (3,2)代入得3a +2b =1≥26ab ,得ab ≥24. 从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23.从而所求直线方程为2x +3y -12=0.所以△ABO 的面积的最小值为12,此时直线l 的方程为2x +3y -12=0.思路参考:设出截距式方程,利用三角函数的有界性求出面积的最值,进而求出直线方程.解:设直线方程为x a +y b =1(a >0,b >0),将点P (3,2)的坐标代入得3a +2b =1.令3a =sin 2α,2b =cos 2α,则a =3sin 2α,b =2cos 2α,所以S △ABO =12ab =3sin 2αcos 2α=12sin 22α.因为0<sin 22α≤1,所以S △ABO ≥12,当且仅当sin 22α=1时等号成立.由图可知b >0,所以当且仅当3a =2b 时等号成立,即k =-b a =-23,从而所求直线方程为2x +3y -12=0.所以△ABO 的面积的最小值为12,此时直线l 的方程为2x +3y -12=0.思路参考:设出直线的点斜式方程,表示出△ABO 的面积,结合均值不等式求得最值.解:依题意知,直线l 的斜率k 存在且k <0,则直线l 的方程为y -2=k (x -3)(k <0),且有A ⎝ ⎛⎭⎪⎫3-2k ,0,B (0,2-3k ), 所以S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k )=12×(12+12)=12.当且仅当-9k =4-k,即k =-23时,等号成立,即△ABO 的面积的最小值为12.故所求直线的方程为2x +3y -12=0.1.本题考查根据具体的条件求直线的方程,基本策略是设出直线的方程,用变量表示三角形的面积,求出面积的最小值及取得最小值时的条件,得到直线的方程.2.本题体现了数学运算、数学抽象的核心素养.3.基于高考数学评价体系,本题创设了数学情境,通过知识之间的内在联系和转化,构造函数利用均值不等式或函数的性质求最值,体现了基础性和综合性.过点P (2,1)的直线分别与x 轴和y 轴的正半轴交于A ,B 两点.求:(1)|OA ||OB |取最小值时直线的方程;(2)|P A ||PB |取最小值时直线的方程.解:(1)设直线的方程为x a +y b =1(a >0,b >0),则2a +1b =1.所以ab =ab ⎝ ⎛⎭⎪⎫2a +1b =2b +a ≥22ab ,于是ab ≥8,所以|OA ||OB |=ab ≥8,即|OA ||OB |的最小值为8,当且仅当a =2b ,即a =4,b =2时取得等号.故所求直线的方程为x +2y -4=0.(2)显然直线的斜率存在,设其方程为y -1=k (x -2)(k <0),则A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k ).所以|P A ||PB |=⎝ ⎛⎭⎪⎫1k 2+1(4+4k 2)=8+4⎝ ⎛⎭⎪⎫k 2+1k 2≥4, 当且仅当k 2=1k 2,即k =-1时取等号,所以|P A ||PB |的最小值为4时,直线的方程为x +y -3=0.。
高三数学第一轮复习直线和圆的方程详细教案知识结构第一节直线的倾斜角和斜率学习目标1.了解直线的方程、方程的直线的定义;2.掌握直线的倾斜角、直线的斜率的定义及其取值范围;3.掌握过两点的直线的斜率公式,会运用公式求出有关直线的斜率和倾斜角.重点难点本节重点:正确地理解斜率的概念,熟练地掌握已知直线上两点求直线斜率的公式,这是学好直线这部分内容的关键.本节难点:正确理解直线倾斜角定义中的几个条件,如直线与x轴相交与不相交,按逆时针方向旋转、最小正角等.求倾斜角时,要特别注意其取值范围是高考中,由于本节内容是解析几何成果中最基础的部分,一般是隐含在综合题中进行考查.典型例题【分析】【解】【点评】【分析】【解】【点评】【解法一】代数方法:套两点斜率公式.【解法二】【点评】“解析几何的特点之一是数形结合,数无形时少直观,形无数时难入微.”在学习数学时,应该记住华罗庚的这段话.教材上还涉及证明三点共线的练习题,怎样证明三点共线呢?请看下面例4.【分析】证明三点共线,可以用代数方法、几何方法,可以用直接证法、间接证法,你能想出至少一个方法吗?下面是同学们讨论出的几种证法供参考.【证法一】【证法二】【证法三】第二节直线的方程学习目标掌握直线方程的点斜式、两点式、参数式、一般式,并能根据条件熟练地求出直线的方程式.重点难点本节重点:直线方程的点斜式和一般式,点斜式是推导直线方程其他形式的基础,一般式是直线方程统一的表述形式.本节难点:灵活运用直线方程的各种形式解题.在高考中几乎每年都要考查这部分内容,题型以选择题、填空题居多.典型例题【分析】关键是确定直线方程中的待定系数.【解】【点评】学习直线的方程常犯的错误是忽略方程各种形式的应用条件,因此造成丢解.本例中各个小题均为两解,你做对了吗?第(4)小题的解法一要用到下节学到的公式,解法二用到课外知识,供有兴趣的同学欣赏.【解法一】【解法二】【解法三】【点评】灵活运用直线方程的各种形式,常常要和平面几何的有关知识相结合.本题还有别的解法,不再一一列举.【解法一】【解法二】【解法三】【证明】【点评】【分析】【解法一】【解法二】【解法三】【点评】第三节两条直线的位置关系学习目标1.掌握两条直线平行与垂直的条件,以及两条直线的夹角和点到直线的距离公式.2.能够根据直线的方程判断两条直线的位置关系.重点难点本节重点:两条直线平行与垂直的条件,点到直线的距离公式.本节难点:了解解析几何的基本思想,并用解析几何方法研究角.在高考中,两条直线的位置关系几乎年年必考,常常单独出现在选择题和填空题中,或作为综合题的一部分出现在解答题中.典型例题学习了本节以后,应该对两条直线平行与垂直的充要条件,怎样求直线的斜率、距离与角有哪些公式等问题进行归纳小结,以便提纲挈领地掌握有关知识,并灵活运用这些知识解决问题.1.两条直线平行、垂直的充要条件是什么?答:2.怎样求直线的斜率?答:3.距离和角有哪些公式?能灵活运用吗?答:【解】用下面的例题检验是否理解和掌握了以上这些内容.1.两条直线的位置关系【解】2.两条直线所成的角【解】【解法一】【解法二】3.有关交点的问题(A)1 (B)2 (C)3 (D)4【解法一】【解】【解法二】4.点到直线的距离【错误的解】【正确的解】【解法一】【解法二】【解法三】【解法四】第四节简单的线性规划学习目标1.了解用二元一次不等式表示平面区域.2.了解线性规划的意义,并会简单的应用.重点难点典型例题学习了简单的线性规划以后,常见的题型是用二元一次不等式表示平面区域,以及用线性规划的知识来解决一些简单的问题.下面的例题可检验是否掌握了这些内容.1.二元一次不等式表示的区域【分析】【解】【点评】例2 试讨论点线距离公式中,去掉绝对值符号的规律?【分析】【解】【点评】2.线性规划初步例3钢管长11.1米,需要截下1.5米和2.5米两种不同长度的小钢管,问如何截取可使残料最少?【分析】关键是利用约束条件,列出线性目标函数.【解】【评析】例4 用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有().(A)5种(B)6种(C)7种(D)8种【解法一】【解法二】【解法三】列表数点.故选(C).【点评】本题为1999年全国高考试题第14题,难度系数0.47.如果有利用二元一次不等式表示平面区域的知识,此题将不再困难.【分析】甲的解法错误,错在(1)、(2)(3)、(4),反之不行,用必要不充分条件代替原条件,使解的范围扩大,[6,10]是[5,11]的子集.乙的解法正确.本题数形结合,利用本节的知识还可以有以下的解法.【解】【点评】第六节曲线和方程学习目标1.掌握曲线的方程、方程的曲线等概念.2.了解解析几何的基本思想和解析法,学习运动变化、对立统一等辩证唯物主义思想.重点难点本节重点:了解曲线的点集与方程的解集之间的一一对应关系,从而掌握曲线的方程和方程的曲线这两个重要概念,并掌握由曲线的已知条件求方程的方法和步骤,熟悉解析法.本节难点:理解曲线和方程的概念,以及求曲线的方程的方法.在高考中,曲线和方程常是重点考查的内容,出现在解答题中.典型例题学习了本节后主要要掌握求曲线的方程的步骤,以及用解析法解题的步骤,以下归纳供参考.求曲线的方程的步骤是:一建--选取适当的点和直线,建立坐标系;二设--设曲线上点,以及利用已知条件设出其他有关点的坐标等;三列式--根据动点符合的条件,列出含、的方程0;四化简--化方程0为最简形式;五证明--证曲线上点的坐标都是方程的解,以这个方程的解为坐标的点都在曲线上(这一步不要求写出).解析法的主要步骤是:一建--建立适当的坐标系.建系原则是使已知条件好用,使表达式简明,运算简便.因此,尽量利用已知点和已知直线;二设--选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程;三算--通过运算,得到所要的结果.用以下例题检验是否理解和掌握了这些内容.1.怎样求轨迹方程【解法一】【解法二】【点评】【错误解法】【正确解法】【点评】【解法一】【解法二】【点评】2.解析法与综合法【证法一】【证法二】【证法三】【证法四】【点评】不同证法,以解析法较简便,复数将在高三年级学习,这里的证法实质和解析法一样,不过是换个说法.【分析】【解】【点评】解析法与综合法的特点,从中你体会到了吗?解析法的优点是程序固定(一建二设三算),操作简便,但一般运算量较大;综合法的优点是思路灵活,但如何添加辅助线不易掌握.【解法一】【解法二】【解法三】【解法四】【点评】“是否可以用代数中的计算过程代替几何中的证明?”“让代数和几何中一切最好的东西互相取长补短”等是笛卡儿创立解析几何的初衷.解析几何既然是用代数方法来研究几何对象的特征和性质,当然对运算能力要求较高.运算能力是一种计算化了的推理能力,是逻辑思维能力与计算知识、方法、技能和技巧的结合.在解析几何中,如果不注意运算方法上的特点和技能,就可能陷入有思路但算不出或很难算出正确结果的窘境,如本题的思路一、二.解析几何中常用的运算方法和技能是:①注意利用平面几何知识,如思路四;②不忘利用定义,尤其是圆锥曲线的定义解题;③充分利用一元二次方程根与系数的关系,并不忘对判别式的要求,如思路三;④合理利用曲线系;⑤数形结合,依形判数,就数论形;⑥灵活运用字母的可轮换性,减少同类量的重复运算.以上方法和技能,要在实际解题中逐步掌握.第七节圆的方程学习目标1.掌握圆的标准方程和一般方程,理解圆的参数方程.2.初步了解直线和圆中反映出的运动变化、对立统一等辩证思想和观点.重点难点本节重点:圆的标准方程、一般方程、参数方程及其相互转化.本节难点:直线和圆的综合运用.在高考中,圆的方程在选择题、填空题、解答题等各类题型中出现.本节要掌握三种类型的问题,之一是求圆的方程,之二是直线和圆的综合题,之三是应用直线和圆的知识解决一些问题.1.圆的方程有哪些形式?典型例题用下面的例题检验是否理解和掌握了圆的方程的三种形式:【解法一】【解法二】【解法三】【点评】怎样求圆的方程?这三条思路具有典型意义.【解法一】【解法二】【点评】【解法一】【解法二】【点评】【分析】关键确定圆心坐标和半径.【解】【点评】本题为1997年全国高考理科第25题,难度系数0.20.难在什么地方呢?第一文字叙述较长,有同学读不懂题;第二涉及众多知识,有同学不会运用;第三丢解,忽略了不同的位置关系.会不会用知识和怎样用知识,是一个人有没有能力和能力高低的重要标志,努力吧!2.直线和圆综合题【分析】【解】【点评】【解法一】【解法二】【分析】【点评】【解】【点评】【解法一】【解法二】【点评】分类是自然科学的基本方法,数学中的分类讨论的思想方法,就是依据数学对象的共同点和差异点,将其区分为不同种类,分类讨论并归纳结论,这一思想方法,在近代数学和现代数学中占有重要地位,是应该学习和掌握的重要思想方法.3.怎样利用直线和圆的知识解题?【分析】数形结合,将代数式或方程赋予几何意义.【解】【点评】从“数”中认识“形”,从“形”中认识“数”,数形结合相互转化,是数学思维的基本方法之一.“数学是一个有机的统一体,它的生命力的一个必要条件是所有的各个部分不可分离地结合.”(希尔伯特)数形结合的思维能力不仅是中学生的数学能力、数学素养的主要标志之一,而且也是学习高等数学和现代数学的基本能力.本题是利用直线和圆的知识求最值的典型题目.【解法一】【解法二】【解法三】【点评】。
2019-2020学年高考数学第一轮复习 8.1 直线及其方程学案一、学习目标:1.深化理解倾斜角、斜率的概念,熟练掌握斜率公式;2.掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能熟练写出直线方程二、自主学习:【课前检测】1.设(,)2πθπ∈,则直线cos sin 10x y θθ++=的倾斜角α为 ( ) ()A 2πθ- ()B θ ()C 2πθ+ ()D πθ- 2.已知,a b N ∈,则过不同三点(,0)a ,(0,)b ,(1,3)的直线的条数为( )()A 1 ()B 2 ()C 3 ()D 多于33.已知ABC ∆的顶点(1,2)A -,(3,6)B ,重心(0,2)G ,则AC 边所在直线方程为 ;经过点(2,2)A -且与x 轴、y 轴围成的三角形面积是1的直线方程是 ;过点(2,1),且它的倾斜角等于已知直线324y x =+的倾斜角的一半的直线l 的方程是 .4.若直线l 的方向向量是(3,1)a =,则直线l 的倾斜角是 ;若点(2,3)M -,(3,2)N --,直线l 过点(11)P 且与线段MN 相交,则直线l 的斜率k 的取值范围为 .【考点梳理】见优化设计P81三、合作探究:例1.已知直线1l 的方程为2y x =,过点(2,1)A -作直线2l ,交y 轴于点C ,交1l 于点B ,且1||||2BC AB =,求2l 的方程.例2.求过点P (0,1)的直线l ,使它包含在两已知直线l 1:2x +y -8=0和l 2:x -3y +10=0间的线段被点P 所平分例3.ABC ∆的一个顶点(2,3)A ,两条高所在直线方程为230x y -+=和40x y +-=,求三边所在直线方程.四、课堂总结:五、检测巩固:1.若0ab <,则过点1(0,)P b -与1(,0)Q a的直线PQ 的倾斜角的取值范围是( ) ()A (0,)2π ()B (,)2ππ ()C (,)2ππ-- ()D (,0)2π- 3.已知三点(,2)A a ,(5,1)B ,(4,2)C a -在同一直线上,则a 的值为 .4.过点P 的直线l 与x 轴、y 轴分别交于A 、B 两点,点P 分有向线段→--AB 所成的比为12,则直线l 的斜率为 ,直线l 的倾斜角为 . 5.不论m 为何实数,直线(1)10m x y -++=恒过定点 .六、学习反思:。
第四十八课时 直线与方程课前预习案1.理解直线的倾斜角和斜率的概念,2.掌握过两点的直线斜率的计算公式,3.能根据两条直线的斜率判定这两条直线平行或垂直,4.掌握直线方程的几种形式(点斜式、斜截式、两点式、截距式及一般式),了解斜截式与一次函数的关系,5.能用解方程组的方法求两条相交直线的交点坐标,6.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
1.直线的倾斜角:x 轴正向与 方向之间所成的角叫直线的倾斜角。
当直线与x 轴平行或重合时,规定它的倾斜角为0度,所以直线的倾斜角的范围为 注意任意直线都有倾斜角。
2.直线的斜率:给定两点111(,)P x y 与22(,)P x y ,则过这两点的直线的斜率k = (其中12x x ≠),斜率与倾斜角的关系是k = ( 90≠α),注意倾斜角为90°的直线没有斜率。
3.两条直线平行的判定:两条不重合的直线1l 和2l ,斜率都存在。
则1212//l l k k ⇔=。
注意:两条直线平行是两条直线斜率相等的非充分非必要条件。
即12////l l k k k k l l ==不能推出,不能推出时21,l l 的斜率可能不存在,21k k =时21,l 可能重合 4.两条直线垂直的判定:两条直线1l 和2l 垂直是两直线的斜率乘积为-1的 条件,即 21l l ⊥时21,l l 可能一条斜率不存在,另一条斜率为0.5.直线l 过点111(,)P x y ,且斜率为k ,则其点斜式方程为 ,直线方程的点斜式不能表示没有斜率的直线,所以过定点11(,)P x y 的直线应设为11()y y k x x -=-或1x x =,不能遗漏了没有斜率的那条直线1x x =。
6.直线方程的斜截式为 (b 为直线l 在y 轴上的截距).直线方程的斜截式不能表示没有斜率的直线,要使用它,必须对斜率分两种情况讨论。
7.直线方程的两点式为 (12y y ≠,12x x ≠).8.直线方程的截距式为 (a b 、分别为直线的横、纵截距,0a b ≠、)截距式方程不能表示横截距为零或纵截距为零的直线,即不能表示和坐标轴平行或垂直或过坐标原点的直线。
9.直线方程的一般式 (其中A 、B 不同时为0).10.注意的几点问题:①涉及到直线的斜率时候,一定要对斜率存在不存在进行讨论...........,一般先讨论斜率.......不存在的情况......。
②设直线方程时,一定要考虑到该方程所不能表示的直线是否满足题意,以免漏解.........................。
③求直线的方程,最后一般要写成直线方程的一般式。
11.点00(,)P x y 到直线:0l Ax By C ++=的距离d =12.若11:0l Ax By C ++=,22:0l Ax By C ++=,则12,l l 的距离为d =注意:两条直线方程中,x y 的系数必须对应相等,才能应用这个公式。
1.若直线y =-a b x -c b 经过第一、二、三象限,则( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <02.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是 ( )A .4x +2y =5B .4x -2y =5C .x +2y =5D .x -2y =53.直线3ax-y-1=0与直线23a ⎛⎫- ⎪⎝⎭x+y+1=0垂直,则a 的值是( ) A.113-或 B.113或 C.113--或 D.113-或 课堂探究案考点1 求直线方程【典例1】在△ABC 中,已知点A (5,-2)、B (7,3),且边AC 的中点M 在y 轴上,边BC 的中点N 在x 轴上.(1)求点C 的坐标;(2)求直线MN 的方程.【典例2】已知直线l 与两坐标轴围成的三角形面积为3,分别求满足下列条件的直线l 的方程:(1)斜率为61的直线; (2)过定点)4,3(-A 的直线。
【变式1】求倾斜角是直线y =-3x +1的倾斜角的14,且分别满足下列条件的直线方程: (1)经过点(3,-1); (2)在y 轴上的截距是-5.考点2: 两直线的位置关系【典例3】设直线11221212:x+1:y=k x 1k ,k k k +20l y k l =-=,,其中实数满足,(1)证明1l 与2l 相交;(2)证明1l 与2l 的交点在椭圆222x +y =1上.【变式2】(2012浙江)设a∈R ,则“a=1”是“直线1l :ax+2y=0与直线2l :x+(a+1)y+4=0平行的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件考点3 距离问题【典例4】(1,2)到直线3440x y ++=距离为d =【变式3】直线2x-y+c=0与直线2x-y+2=0c 的值等于( )A 7B -3C 3或-7D 7或-31. 与直线x +3y -1=0垂直的直线的倾斜角为________.2.过点(2,1)且在两坐标轴上截距相等的直线方程是________________.3.若直线250x y -+=与直线260x my +-=互相垂直,则实数m =______4. 点(1,1)到直线03=-+y ax 的最大距离为( ). .1 B .2 C .5D .6课后拓展案组全员必做题1.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是 ( ) A .x -2y +4=0 B .x +2y -4=0 C .x -2y -4=0 D .x +2y +4=02.(2013年上海春季)直线2310x y -+=的一个方向向量是( ) A .(2 3)-, B .(2 3), C .(3 2)-, D . (3 2),3.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________.4.已知直线l :kx -y +1+2k =0.(1)证明:直线l 过定点;(2)若直线l 交x 轴负半轴于A ,交y 正半轴于B ,△AOB 的面积为S ,试求S 的最小值并求出此时直线l 的方程.组提高选做题1.(2013新课标Ⅱ)已知点(1,0),(1,0),(0,1)A B C -,直线(0)y ax b a =+>将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.1(1)2( C) 1(1]23- D . 11[,)322.设直线l 的方程为02)1(=-+++a y x a(1)若直线l 在两轴上的截距相等,求直线l 的方程;(2)若直线l 不过第二象限,求a 的取值范围。
参考答案1.D2.B3.D【典例1】解:(1)设(,)C x y ,则52(,)22x y M +-,73(,)22x y N ++. ∵M 在y 轴上,N 在x 轴上, ∴502x +=,302y +=,解得5x =-,3y =-, ∴点C 坐标为(5,3)C --.(2)由(1)知5(0,)2M -,(1,0)N , ∴1512x y +=-,即5250x y --=. 【典例2】解:(1)设l 的方程为16y x b =+, 令0x =,得y b =;令0y =,6x b =-. 则21|||6|32S b b b =⋅⋅-=, ∴233b =,即1b =±.∴所求直线l 的方程为116y x =±,即660x y -+=或660x y --=. (2)当直线斜率不存在时,与坐标轴不能构成三角形,故不成立. 当直线斜率存在时,设l 方程为:)3(4+=-x k y ,令0x =,得34y k =+;令0y =,得43x k =--. ∴S=14|34||3|32k k ⋅+⋅--=,∴16|924|6k k ++=, 即29241660k k k ++±=.①2918160k k ++=时,21849160∆=-⨯⨯<,无解;②2930160k k ++=时,301829k -±=⨯,即83k =-或23-, 直线l 的方程为2360x y +-=或83120x y ++=.【变式1】(1)0x -=.(2)0x -.【典例3】证明:(1)假设1l //l α2l ,则,21k k =代入,0221=+k k 得,0222=+k 与022≥k 矛盾,所以1l 与2l 相交.(2)11y k x -=,21y k x+=, ∴由1220k k +=可得22120y x-+=,即2221x y +=. 【变式2】A【典例4】3【变式3】D1.3π 2.20x y -=或30x y +-=3.14.C组全员必做题1.D2.D3.220x y +-=或220x y ++=4.(1)证明:l 的方程可化为(2)1y k x =++,∴直线l 恒过定点(2,1)-.(2)解:∵直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,∴0k >,令0y =,得12x k=--;令0x =,得21y k =+. ∴11(2)(21)2S k k =⋅+⋅+1222k k =++4≥,当且仅当122k k =,即12k =时等号成立. ∴min 4S =,此时直线l 方程为11(2)2y x -=+,即240x y -+=.组提高选做题1.B2.解:(1)令0x =,得2y a =-;令0y =,得21a x a -=+. 直线l 在两轴上截距相等, ∴221a a a --=+,解得0a =或2a =, ∴直线l 方程为20x y ++=或30x y +=.(2)直线不过第二象限,①10a +=,1a =-时,直线方程为3y =-符合题意; ②10a +≠,1a ≠-时,即(1)0,20,a a -+>⎧⎨-≤⎩解得1,2.a a <-⎧⎨≤⎩∴1a <-.由①②知a 的取值范围为(],1-∞-.。