人教版数学必修2直线与方程知识点专题讲义
- 格式:doc
- 大小:452.00 KB
- 文档页数:5
直线与方程知识梳理:1.倾斜角的定义(1)当直线l 与x 轴相交时,取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. 2.倾斜角的范围直线的倾斜角α的取值范围为0°≤α<180°. 3.直线的斜率直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α. 4.斜率与倾斜角的对应关系α=0° 0°<α<90°α=90° 90°<α<180°5.直线的斜率公式已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),则其斜率k =y 2-y 1x 2-x 1(x 1≠x 2).6.两条直线平行与斜率之间的关系设两条不重合的直线l 1,l 2,倾斜角分别为α1,α2,斜率存在时斜率分别为k 1,k 2.则对应关系如下:7.8.直线方程的五种形式(1)直线的点斜式方程: y -y 0=k(x -x 0). 由直线上一定点P 0(x 0,y 0)及斜率k 确定. (2)直线的斜截式方程:y =kx +b. 由直线的斜率k 和它在y 轴上的截距b 确定. (3)直线的两点式方程:y -y 1y 2-y 1=x -x 1x 2-x 1. 由直线上两点P 1(x 1,y 1),P 2(x 2,y 2)确定. (4)直线的截距式方程:x a +yb=1 . 由直线分别在x ,y 轴上的截距a ,b 确定.(5)直线的一般式方程: Ax +By +C =0. 当B≠0时,其斜率是-A B ,在y 轴上的截距是-CB 当B =0时,这条直线垂直于x 轴. 9.两条直线的位置关系已知直线l 1:y =k 1x +b 1与直线l 2:y =k 2x +b 2.(1) l 1∥l 2⇔k 1=k 2且b 1≠b 2. (2) l 1⊥l 2⇔k 1·k 2=-1. 10.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1)、(x 2,y 2),设P(x ,y)是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y22.11.两条直线的交点已知两直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.若两直线方程组成的方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0有惟一解⎩⎪⎨⎪⎧x =x 0,y =y 0,则两直线相交,交点坐标为(x 0,y 0).12.两点间的距离公式(1)已知平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)则它们的距离|P 1P 2|=x 2-x 12+y 2-y 12.(2)两点间距离的特殊情况①原点O(0,0)与任一点P(x ,y)的距离|OP|=x 2+y 2. ②当P 1P 2∥x 轴(y 1=y 2)时,|P 1P 2|=|x 2-x 1|. ③当P 1P 2∥y 轴(x 1=x 2)时,|P 1P 2|=|y 2-y 1|. 13.点到直线的距离公式点P(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C|A 2+B 2. 14.两条平行直线间的距离公式两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d =|C 1-C 2|A 2+B2.巩固练习:1.如图,直线l 的倾斜角为( )A .45°B .135°C .0°D .不存在2.已知直线l的倾斜角为30°,则直线l的斜率为__________.3.已知A(2,3)、B(-1,4),则直线AB的斜率是________.4.已知三点A(a,2),B(3,7),C(-2,-9a)在同一条直线上,则实数a的值为_______.5.已知直线l1∥l2,直线l1的斜率k1=2,则直线l2的斜率k2=________.6.已知直线l1⊥l2,若直线l1的倾斜角为30°,则直线l2的斜率为________.7.直线l1的斜率为2,直线l2上有三点M(3,5),N(x,7),P(-1,y),若l1⊥l2,则x=________,y =________.8.若直线l1,l2的倾斜角分别为α1,α2,且l1⊥l2,则( )A.α1-α2=90° B.α2-α1=90° C.|α1-α2|=90° D.α1+α2=180°9.直线l过点A(-1,2),斜率为3,则直线l的方程为___________________.10.已知直线l的点斜式方程为y-1=x-1,那么直线l的斜率为________,倾斜角为________,在y 轴上的截距为________.11.(1)斜率为2,在y轴上的截距是5的直线方程为____________________;(2)倾斜角为150°,在y轴上的截距是-2的直线方程为_____________________;12.(1)经过点(1,1)且与直线y=2x+7平行的直线方程为_____________________;(2)经过点(-1,1)且与直线y=-2x+7垂直的直线方程为_________________.13.过P1(2,0),P2(0,3)两点的直线方程是_________________.14.直线2x+3y+1=0的斜率为________;在x轴上的截距为________;在y轴上的截距为________.15.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A.4x+2y=5 B.4x-2y=5 C.x+2y=5 D.x-2y=516.若直线ax+by+c=0经过第一、二、三象限,则( )A.ab>0,bc>0 B.ab>0,bc<0 C.ab<0,bc>0 D.ab<0,bc<017.在下列各种情况下,直线Ax+By+C=0(A,B不同时为零)的系数A,B,C之间各有什么关系:(1)直线与x轴平行时:_____________; (2)直线与y轴平行时:_________________;(3)直线过原点时:_________________; (4)直线过点(1,-1)时:_______________.18.直线x+2y-2=0与直线2x+y-3=0的交点坐标是______________.19.已知M(2,1),N(-1,5),则|MN|=_____________. 20.直线x -2y +1=0与2x +y -1=0的位置关系是( )A .平行B .相交且垂直C .相交但不垂直D .重合 21.原点到直线x +2y -5=0的距离为___________.22.两条平行线l 1:3x +4y -7=0和l 2:3x +4y -12=0的距离为________________. 23.若点(1,a)到直线y =x +1的距离是322,则实数a 为___________.24.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是_________. 25.当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2 (1)平行; (2)垂直26.已知在△ABC 中,A ,B 的坐标分别为(-1,2),(4,3),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标; (2)求直线MN 的方程.。
人教A版高中数学必修二同步学习讲义:第三章直线与方程习题课知识点一两直线的交点坐标已知直线:l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0,点A(a,b).(1)若点A在直线l:Ax+By+C=0上,则有:Aa+Bb+C=0.(2)若点A是直线l1与l2的交点,则有:知识点二两直线的位置关系知识点三(1)条件:点P1(x1,y1),P2(x2,y2).(2)结论:|P1P2|=x1-x22+y1-y22).(3)特例:点P(x,y)到原点O(0,0)的距离|OP|=.类型一直线恒过定点问题例1 求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一定点,并求出这个定点坐标.证明方法一对于方程(2m-1)x+(m+3)y-(m-11)=0,令m=0,得x-3y-11=0;令m=1,得x+4y+10=0.解方程组⎩⎪⎨⎪⎧x -3y -11=0,x +4y +10=0,得两条直线的交点坐标为(2,-3).将点(2,-3)代入方程组左边,得(2m -1)×2+(m +3)×(-3)-(m -11)=0. 这表明不论m 取什么实数,所给直线均经过定点(2,-3).方法二 将已知方程(2m -1)x +(m +3)y -(m -11)=0整理为(2x +y -1)m +(-x +3y +11)=0.由于m 取值的任意性,有⎩⎪⎨⎪⎧2x +y -1=0,-x +3y +11=0,解得⎩⎪⎨⎪⎧x =2,y =-3.所以不论m 取什么实数,所给直线均经过定点(2,-3). 反思与感悟 解含有参数的直线恒过定点的问题(1)方法一:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)方法二:含有一个参数的二元一次方程若能整理为A1x +B1y +C1+λ(A2x +B2y +C2)=0,其中λ是参数,这就说明了它表示的直线必过定点,其定点可由方程组解得.若整理成y -y0=k(x -x0)的形式,则表示所有直线必过定点(x0,y0).跟踪训练1 不论m 为何实数,直线(m -1)x +(2m -1)y =m -5恒过的定点坐标是________________.答案 (9,-4)解析 方法一 取m =1,得直线y =-4.取m =,得直线x =9.故两直线的交点为(9,-4),下面验证直线(m -1)x +(2m -1)y =m -5恒过点(9,-4).将x =9,y =-4代入方程,左边=(m -1)·9-4·(2m-1)=m -5=右边, 故直线恒过点(9,-4).方法二 直线方程可变形为(x +2y -1)m -(x +y -5)=0,∵对任意m 该方程恒成立,∴解得⎩⎪⎨⎪⎧x =9,y =-4,故直线恒过定点(9,-4). 类型二 对称问题例2 (1)求点P(x0,y0)关于点A(a ,b)的对称点P′的坐标; (2)求直线3x -y -4=0关于点(2,-1)的对称直线l 的方程. 解 (1)根据题意可知点A(a ,b)为PP ′的中点, 设P′点的坐标为(x ,y),则根据中点坐标公式得⎩⎪⎨⎪⎧a =x +x02,b =y +y02,所以⎩⎪⎨⎪⎧x =2a -x0,y =2b -y0.所以点P′的坐标为(2a -x0,2b -y0).(2)方法一 设直线l 上任意一点M 的坐标为(x ,y), 则此点关于点(2,-1)的对称点为M1(4-x ,-2-y), 且M1在直线3x -y -4=0上, 所以3(4-x)-(-2-y)-4=0, 即3x -y -10=0.所以所求直线l 的方程为3x -y -10=0.方法二 在直线3x -y -4=0上取两点A(0,-4),B(1,-1), 则点A(0,-4)关于点(2,-1)的对称点为A1(4,2), 点B(1,-1)关于点(2,-1)的对称点为B1(3,-1). 可得直线A1B1的方程为3x -y -10=0, 即所求直线l 的方程为3x -y -10=0.反思与感悟 (1)点关于点的对称问题:若两点A(x1,y1),B(x2,y2)关于点P(x0,y0)对称,则P 是线段AB 的中点,并且⎩⎪⎨⎪⎧x0=x1+x22,y0=y1+y22.(2)直线关于点的对称问题:若两条直线l1,l2关于点P 对称,则:①l1上任意一点关于点P 的对称点必在l2上,反过来,l2上任意一点关于点P 的对称点必在l1上;②若l1∥l2,则点P 到直线l1,l2的距离相等;③过点P 作一直线与l1,l2分别交于A ,B 两点,则点P 是线段AB 的中点.跟踪训练2 与直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0 D .2x +3y +8=0 答案 D解析 由平面几何知识易知所求直线与已知直线2x +3y -6=0平行,则可设所求直线方程为2x +3y +C =0.在直线2x +3y -6=0上任取一点(3,0), 关于点(1,-1)的对称点为(-1,-2), 则点(-1,-2)必在所求直线上, ∴2×(-1)+3×(-2)+C =0,C =8. ∴所求直线方程为2x +3y +8=0.例3 点P(-3,4)关于直线x +y -2=0的对称点Q 的坐标是( ) A .(-2,1) B .(-2,5) C .(2,-5) D .(4,-3)答案 B解析 设对称点坐标为(a ,b),由题意,得⎩⎨⎧a -32+b +42-2=0,b -4a +3=1,解得即Q(-2,5).反思与感悟 (1)点关于直线的对称问题求P(x0,y0)关于Ax +By +C =0的对称点P′(x,y)时,利用-\f(A,B)=-1,,A·\f(x0+x,2)+B·\f(y0+y,2)+C =0))可以求P′点的坐标.(2)直线关于直线的对称问题:若两条直线l1,l2关于直线l 对称,①l1上任意一点关于直线l 的对称点必在l2上,反过来,l2上任意一点关于直线l 的对称点必在l1上;②过直线l 上的一点P 且垂直于直线l 作一直线与l1,l2分别交于点A ,B ,则点P 是线段AB 的中点.跟踪训练3 一束光线从原点O(0,0)出发,经过直线l :8x +6y =25反射后通过点P(-4,3),求反射光线的方程.解 设原点关于l 的对称点A 的坐标为(a ,b), 由直线OA 与l 垂直和线段AO 的中点在l 上得 ∴点A 的坐标为(4,3).∵反射光线的反向延长线过A(4,3),又∵反射光线过P(-4,3),两点纵坐标相等, 故反射光线所在直线方程为y =3. 由方程组⎩⎪⎨⎪⎧y =3,8x +6y =25,解得⎩⎪⎨⎪⎧x =78,y =3,由于反射光线为射线,故反射光线的方程为y =3(x≤). 类型三 运用坐标法解决平面几何问题例4 在△ABC 中,AD 是BC 边上的中线,求证:|AB|2+|AC|2=2(|AD|2+|DC|2).证明设BC所在边为x轴,以D为原点,建立坐标系,如图所示,设A(b,c),C(a,0),则B(-a,0).∵|AB|2=(a+b)2+c2,|AC|2=(a-b)2+c2,|AD|2=b2+c2,|DC|2=a2,∴|AB|2+|AC|2=2(a2+b2+c2),|AD|2+|DC|2=a2+b2+c2,∴|AB|2+|AC|2=2(|AD|2+|DC|2).反思与感悟利用坐标法解平面几何问题常见的步骤(1)建立坐标系,尽可能将有关元素放在坐标轴上.(2)用坐标表示有关的量.(3)将几何关系转化为坐标运算.(4)把代数运算结果“翻译”成几何关系.跟踪训练4 已知:等腰梯形ABCD中,AB∥DC,对角线为AC和BD.求证:|AC|=|BD|.证明如图所示,建立直角坐标系,设A(0,0),B(a,0),C(b,c),则点D的坐标是(a-b,c),∴|AC|=b-02+c-02)=,|BD|=a-b-a2+c-02)=.故|AC|=|BD|.1.已知点A(x,5)关于点(1,y)的对称点为(-2,-3),则点P(x,y)到原点的距离是( )A.2 B.4C .5 D.17答案 D解析 由题意知解得⎩⎪⎨⎪⎧x =4,y =1.∴P(4,1),则|OP|==.2.直线3x +my -1=0与4x +3y -n =0的交点为(2,-1),则m +n 的值为( )A .12B .10C .-8D .-6 答案 B解析 将点(2,-1)代入3x +my -1=0可求得m =5,将点(2,-1)代入4x +3y -n =0,得n =5,所以m +n =10,故选B.3.当a 取不同实数时,直线(2+a)x +(a -1)y +3a =0恒过一个定点,这个定点的坐标为________.答案 (-1,-2)解析 直线方程可写成a(x +y +3)+2x -y =0,则该直线系必过直线x +y +3=0与直线2x -y =0的交点,即(-1,-2).4.已知点P(3,2)与点Q(1,4)关于直线l 对称,则直线l 的方程为________. 答案 x -y +1=0解析 线段PQ 的垂直平分线就是直线l , 则kl·kPQ=kl·=-1,得kl =1,PQ 的中点坐标为(2,3), ∴直线l 的方程为y -3=x -2, 即x -y +1=0.5.已知直线λ:5ax -5y -a +3=0.(1)求证:不论a 为何值,直线l 总经过第一象限; (2)若使直线l 不经过第二象限,求a 的取值范围. (1)证明 直线l 的方程可化为y -=a(x -),所以不论a 取何值,直线l 恒过定点A(,), 又点A 在第一象限,所以不论a 取何值,直线l 恒过第一象限. (2)解 令x =0,y =, 由题意,≤0,解得a≥3.所以a 的取值范围为[3,+∞).1.解含有参数的直线过定点问题将含有一个参数的二元一次方程常整理为A1x +B1y +C1+λ(A2x +B2y +C2)=0(其中λ为常数)形式,可通过求解定点.2.有关对称问题的两种主要类型 (1)中心对称:①点P(x ,y)关于O(a ,b)的对称点P′(x′,y′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y.②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称:①点A(a ,b)关于直线Ax +By +C =0(B≠0)的对称点为A′(m,n),则有-\f(A,B)=-1,,A·\f(a +m,2)+B·\f(b +n,2)+C =0.))②直线关于直线的对称可转化为点关于直线的对称问题来解决.课时作业一、选择题1.直线ax +2y +8=0,4x +3y =10和2x -y =10相交于一点,则a 的值为( )A .1B .-1C .2D .-2 答案 B解析 联立解得⎩⎪⎨⎪⎧x =4,y =-2,∴交点坐标为(4,-2),代入方程ax +2y +8=0,解得a =-1.2.直线l1:x+my-6=0与l2:(m-2)x+3y+2m=0只有一个公共点,则( )A.m≠-1且m≠3B.m≠-1且m≠-3C.m≠1且m≠3D.m≠1且m≠-1答案A解析两线相交,其系数关系为1×3-m(m-2)≠0,解得m≠3且m≠-1.3.光线从点A(-3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是( )A.5 B.25C.5 D.105答案C解析点A(-3,5)关于x轴的对称点的坐标为A′(-3,-5).光线从A到B的距离是|A′B|=-3]2+[10--5]2)=5.4.已知M(0,-1),点N在直线x-y+1=0上,且直线MN与直线x+2y-3=0垂直,则点N的坐标是( )A.(-2,-3) B.(2,1)C.(2,3) B.(-2,-1)答案C解析设点N的坐标为(x,x+1),∵直线MN与直线x+2y-3=0垂直,∴kMN·(-)=-1,∴kMN=2,即x+1--1,x-0)=2,解得x=2,故点N的坐标为(2,3).5.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A ,B ,则|AB|的值为( )A. B.175 C. D.115答案 C解析 直线3ax -y -2=0过定点A(0,-2),直线(2a -1)x +5ay -1=0,过定点B ,由两点间的距离公式,得|AB|=.6.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|PA|=|PB|,若直线PA 的方程为x -y +1=0,则直线PB 的方程为( )A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=0答案 A解析 由已知得A(-1,0),P(2,3), 由|PA|=|PB|,得B(5,0),由两点式得直线PB 的方程为x +y -5=0.7.点P(a ,b)关于l :x +y +1=0对称的点仍在l 上,则a +b 等于( ) A .-1 B .1 C .2 D .0 答案 A解析 ∵点P(a ,b)关于l :x +y +1=0对称的点仍在l 上,∴点P(a ,b)在直线l 上,∴a+b +1=0,即a +b =-1.二、填空题8.点P(2,5)关于直线x +y =1的对称点的坐标是____________. 答案 (-4,-1)解析 设对称点坐标为(x0,y0),则-1=-1,,\f(x0+2,2)+\f(y0+5,2)=1,))解得⎩⎪⎨⎪⎧x0=-4,y0=-1.9.直线ax +by -2=0,若满足3a -4b =1,则必过定点________.答案 (6,-8)解析 ∵3a-4b =1,∴b=a -,则直线ax +by -2=0,可化为ax +(a -)y -2=0,即为y +8=a(4x +3y),由得∴直线过定点(6,-8).10.设a +b =k(k≠0,k 为常数),则直线ax +by =1恒过定点________. 答案 (,)解析 由题知ax +by =1可变为ax +(k -a)y =1,即a(x -y)+ky -1=0,若其对于任何a∈R 都成立,则⎩⎪⎨⎪⎧ x -y =0,ky -1=0,解得⎩⎪⎨⎪⎧ x =1k ,y =1k .11.在直线x -y +4=0上求一点P ,使它到点M(-2,-4),N(4,6)的距离相等,则点P 的坐标为________.答案 (-,)解析 设P 点的坐标是(a ,a +4),由题意可知|PM|=|PN|,即a +22+a +4+42)=a -42+a +4-62),解得a =-,故P 点的坐标是(-,).三、解答题12.已知两条直线l1:mx +8y +n =0和l2:2x +my -1=0,试分别确定m ,n 的值,满足下列条件:(1)l1与l2相交于一点P(m,1);(2)l1∥l2且l1过点(3,-1);(3)l1⊥l2且l1在y 轴上的截距为-1.解 (1)把P(m,1)的坐标分别代入l1,l2的方程得m2+8+n =0,2m +m -1=0,解得m =,n =-.(2)显然m≠0.∵l1∥l2且l1过点(3,-1),∴解得或⎩⎪⎨⎪⎧ m =-4,n =20.(3)由l1⊥l2且l1在y 轴上的截距为-1.当m =0时,l1的方程为8y +n =0,l2的方程为2x -1=0,∴-8+n =0,解得n =8,∴m=0,n =8.而m≠0时,直线l1与l2不垂直.综上可知,m =0,n =8.13.过点M(0,1)作直线,使它被两已知直线l1:x -3y +10=0和l2:2x +y -8=0所截得的线段恰好被M 所平分,求此直线的方程.解 方法一 过点M 与x 轴垂直的直线显然不符合要求,故设所求直线方程为y =kx +1,若与两已知直线分别交于A 、B 两点,则解方程组和⎩⎪⎨⎪⎧ y =kx +1,2x +y -8=0,可得xA =,xB =.由题意得+=0,∴k=-,故所求直线方程为x +4y -4=0.方法二 设所求直线与两已知直线分别交于A 、B 两点,点B 在直线2x +y -8=0上,故可设B(t,8-2t),由中点坐标公式得A(-t,2t -6).又因为点A 在直线x -3y +10=0上,所以(-t)-3(2t -6)+10=0,得t =4,即A(-4,2),B(4,0).由两点式可得所求直线方程为x+4y-4=0.四、探究与拓展14.使三条直线4x+y=4,mx+y=0,2x-3my=4不能围成三角形的m值的个数是( )A.1 B.2 C.3 D.4答案D解析当直线4x+y=4与直线mx+y=0平行时,m=4;当直线4x+y=4与直线2x-3my=4平行时,-4=,即m=-;当直线mx+y=0与直线2x-3my=4平行时,-m=,无解;当三条直线交于一点时,联立解得代入2x-3my=4,解得m=或m=-1.综上所述,满足条件的m值有4个.15.已知平面内两点A(8,-6),B(2,2).(1)求AB的中垂线方程;(2)求过点P(2,-3)且与直线AB平行的直线l的方程;(3)一束光线从B点射向(2)中的直线l,若反射光线过点A,求反射光线所在直线的方程.解(1)因为=5,=-2,所以AB的中点坐标为(5,-2),因为kAB==-,所以AB的中垂线的斜率为,故AB的中垂线的方程为y+2=(x-5)即3x-4y-23=0.(2)由(1)知kAB=-,所以直线l的方程为y+3=-(x-2),即4x+3y+1=0.(3)设B(2,2)关于直线l的对称点B′(m,n),由⎩⎨⎧ n -2m -2=34,4×m +22+3×n +22+1=0,解得⎩⎪⎨⎪⎧ m =-145,n =-85,所以B′(-,-),kB′A==-,所以反射光线所在直线方程为y +6=-(x -8). 即11x +27y +74=0.。
必修二直线与方程专题讲义
1、直线的倾斜角与斜率 (1)直线的倾斜角
① 关于倾斜角的概念要抓住三点:
ⅰ.与x 轴相交; ⅱ.x轴正向; ⅲ.直线向上方向. ② 直线与x 轴平行或重合时,规定它的倾斜角为0
0. ③ 倾斜角α的范围00
0180α≤<.
④ 090,tan 0k αα︒≤<︒=≥; 90180,tan 0k αα︒<<︒=< (2)直线的斜率
①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在. ②经过两点),(),,(222111y x P y x P 的直线的斜率公式是21
1221
()y y k x x x x -=≠-.
③每条直线都有倾斜角,但并不是每条直线都有斜率. 2、直线方程的几种形式
注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示?(不一定) (1)若2121y y x x ≠=且,直线垂直于x 轴,方程为1x x =; (2)若2121y y x x =≠且,直线垂直于y轴,方程为1y y =; (3)若2121y y x x ≠≠且,直线方程可用两点式表示) 3、两条直线平行与垂直的判定 (1) 两条直线平行
斜截式:对于两条不重合的直线111222:,:l y k x b l y k x b =+=+,则有
121212//,l l k k b b ⇔=≠
注:当直线12,l l 的斜率都不存在时,12l l 与的关系为平行.
一般式:已知 1111:0l A x B y C ++=, 2222:0l A x B y C ++=,则
1212211221//,l l A B A B AC A C ⇔=≠
注:1212211221=,l l A B A B AC A C ⇔=与重合
1l 与2l 相交01221≠-⇔B A B A
(2)两条直线垂直
斜截式:如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-
注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1.如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直.
一般式:已知 1111:0l A x B y C ++=, 2222:0l A x B y C ++=,则
0212121=+⇔⊥B B A A l l
4、线段的中点坐标公式
若两点),(),,(2
22111y x P y x P ,且线段21,P P 的中点M 的坐标为),(y x ,则⎪⎪⎩
⎪⎪⎨⎧+=+=222121y y y x x x
5、 直线系方程 (1)过定点的直线系
①斜率为k 且过定点),(00y x 的直线系方程为)(00x x k y y -=-
②过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为
0)(222111=+++++C y B x A C y B x A λ(λ为参数),其中直线l 2不在直线系中
(2)平行垂直直线系
①平行于已知直线0Ax By C ++=的直线系10Ax By C ++= ②垂直于已知直线0Ax By C ++=的直线系10Bx Ay C -+= 6、两条直线的交点
设两条直线的方程是0:1111=++C y B x A l , 0:2222=++C y B x A l 两条直线的交点坐标就是方程组⎩⎨
⎧=++=++0
222111C y B x A C y B x A 的解,
若方程组有唯一解,则这两条直线相交,此解就是交点的坐标; 若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立. 7、几种距离 (1)两点间的距离
平面上的两点),(),,(222111y x P y x P 间的距离公式2
122
1221)()(y y x x P P -+-= 特别地,原点)0,0(O 与任一点),(y x P 的距离22y x OP +=
(2)点到直线的距离
点),(00y x P 到直线0:=++C By Ax l 的距离2
2
00B
A C By Ax d +++=
(3)两条平行线间的距离
两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2
2
12B
A C C d +-=
注:①求点到直线的距离时,直线方程要化为一般式;
②求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能
套用公式计算.
8、有关对称问题 (1)中心对称
①若点),(11y x M 及),(22y x N 关于),(b a P 对称,则由中点坐标公式得⎩⎨
⎧-=-=1
1
22y b y x a x
②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用
21//l l ,由点斜式得到所求直线方程.
(2)轴对称 ①点关于直线的对称
若两点),(111y x P 与),(222y x P 关于直线0:=++C By Ax l 对称,则线段21P P 的中点在对称轴l 上,而且连接21P P 的直线垂直于对称轴l 上,由方程组
⎪⎪⎩⎪
⎪⎨⎧-=-•--=++++1
)(0)2()2(1
212212
1B A x x y y C y y B x x A ⎩⎨⎧==⇒22y x ? 可得到点1P 关于l 对称的点2P 的坐标),(22y x (其中21,0x x A ≠≠) ②直线关于直线的对称
此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.
注:①曲线、直线关于一直线b x y +±=对称的解法:y 换x ,x 换y . 例:曲线
0),(=y x f 关于直线2-=x y 对称曲线方程是0)2,2(=-+x y f
②曲线0),(:=y x f C 关于点),(b a 的对称曲线方程是0)2,2(=--y b x a f
9、直线l 上一动点P 到两个定点A 、B 的距离“最值问题”: (1)在直线l 上求一点P ,使PB PA +取得最小值,
① 若点B A 、位于直线l 的同侧时,作点A (或点B )关于l 的对称点/A 或/B ,
.)(//即为所求点,则点于交或连接P P l AB B A
② 若点B A 、位于直线的异侧时,连接AB 交于l 点P ,则P 为所求点.
可简记为“同侧对称异侧连”.即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可.
(2)在直线l 上求一点P 使PB PA -取得最大值, 方法与(1)恰好相反,即“异侧对称同侧连”
① 若点B A 、位于直线l 的同侧时,连接AB 交于l 点P ,则P 为所求点.
② 若点B A 、位于直线的异侧时,作点A (或点B )关于l 的对称点/
A 或/
B ,
.)(//即为所求点,则点于交或连接P P l AB B A
(3) 2
2
PB PA +的最值:函数思想“转换成一元二次函数,找对称轴”. 10、直线过定点问题 (1)含有一个未知参数,
12)1(-+-=a x a y 1)2(+-+=⇒x x a y (1)
令202-=⇒=+x x ,将3)1(2=-=y x 式,得代入,从而该直线过定点)3,2(- (2)含有两个未知参数
0)2()3(=-++-n y n m x n m 0)12()3(=-+-++⇒y x n y x m
令⎩⎨⎧-+-=+1203y x y x ⎪⎪⎩
⎪⎪⎨⎧
=-=⇒73
7
1y x ,从而该直线必过定点)73,71(-.。