有限元-第6章
- 格式:pdf
- 大小:323.76 KB
- 文档页数:27
第六章 SATWE-空间有限元分析与设计第一节接PMCAD生成SATWE数据选择接PM生成SATWE数据,如图6-1所示,选择应用后出现如图6-2所示的前处理对话框。
图6-1 接PM 生成SATWE数据图6-2 分析与设计参数补充定义一、分析与设计参数补充定义选择第1项“分析与设计参数补充定义(必须执行)”进行参数设置,出现如图6-3所示的对话框。
1、SATWE总信息选择“总信息”,进行总信息参数设置,如图6-3所示。
图6-3 总信息图6-4 风荷载信息(1)结构材料信息:按主体结构材料选择“钢筋混凝土结构”,如果是底框架结构要选择“砌体结构”。
(2)混凝土容重(KN/m3): Gc=27.00,一般框架取26~27,剪力墙取27~28,在这里输入的混凝土容重包含饰面材料。
(3)钢材容重(KN/m3):Gs=78.00,当考虑饰面材料重量时,应适当增加数值。
(4)水平力的夹角(Rad):ARF=0,一般取0度,地震力、风力作用方向反时针为正。
当结构分析所得的“地震作用最大的方向”>15度时,宜按照计算角度输入进行验算。
(5)地下室层数:MBASE=1,定义与上部结构整体分析的地下室层数,无则填0 。
(6)竖向荷载计算信息:“模拟施工加载 1 ”,多层建筑选择“一次性加载”;高层建筑选择“模拟施工加载1 ”,高层框剪结构在进行上部结构计算时选择“模拟施工加载1 ”,但在计算上部结构传递给基础的力时应选择“模拟施工加载2”。
提示:模拟施工方法1加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算。
但是对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基拙难于设计。
于是就有了下一种竖向荷载加载法。
模拟施工方法2加载:这是在“模拟施工方法1”的基础上将竖向构件(柱、墙)的刚度增大10倍的情况下再进行结构的内力计算,也就是再按“模拟施工方法1 ”加载的情况下进行计算。
UG有限元分析第6章
热传导问题是指在不同温度的物体之间,由于温度差引起的热量传递现象。
其基本方程为热传导方程,即Fourier定律。
热传导问题的求解需要确定物体的温度分布以及热通量。
在确定温度分布时,需要考虑边界条件,包括温度边界条件和热通量边界条件。
本章详细介绍了这些基本方程和边界条件,并引入了标量场和标量场描述方法。
针对热传导问题的离散化方法是有限元方法。
有限元方法将物体划分为若干个小单元,并在每个小单元内近似求解。
本章详细介绍了有限元方法的基本思想和步骤。
首先需要建立有限元模型,确定离散化的小单元形状和尺寸。
然后,根据有限元方法的离散化原理,将热传导问题离散化为一个线性代数方程组。
最后,通过求解线性代数方程组,得到物体的温度分布。
在有限元分析的过程中,还需要进行一些计算和处理。
本章详细介绍了有限元分析中常用的计算和处理方法。
其中包括矩阵形式的方程组和有限元的组装方法。
此外,本章还介绍了一些有限元分析的数值方法,如迭代法和加速技术。
最后,本章通过一个具体的案例进行了实际的有限元分析。
案例中考虑了一个简单的热传导问题,通过建立有限元模型、离散化、求解线性代数方程组等步骤,最终得到了物体的温度分布。
总之,UG有限元分析第6章主要介绍了基于有限元方法进行热传导问题求解的原理和方法。
通过本章的学习,读者可以了解到热传导问题的基本方程和边界条件,以及有限元方法的基本思想和步骤。
同时,通过案例的实际操作,读者可以更好地理解和应用有限元分析方法。
第6章 模态分析 模态分析主要用于确定结构和机器零部件的振动特性(固有频率和振型)也是其他动力学分析(如谐响应分析、瞬态动力学分析以及谱分析等)的基础。
利用模态分析可以确定一个结构。
本章先介绍动力学分析中较为简单的部分★ 了解模态分析。
6.1 模态分析概述模态分析(Modal Analysis )亦即自由振动分析,是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
模态分析的经典定义是将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
对于模态分析,振动频率i ω和模态i φ是由下面的方程计算求出的:[][](){}20i iK M ωφ−= 模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报、结构动力特性的优化设计提供依据。
模态分析应用可归结为:评价现有结构系统的动态特性。
在新产品设计中进行结构动态特性的预估和优化设计。
诊断及预报结构系统的故障。
控制结构的辐射噪声。
识别结构系统的载荷。
ANSYS Workbench 17.0有限元分析从入门到精通受不变载荷作用产生应力作用下的结构可能会影响固有频率,尤其是对于那些在某一个或两个尺度上很薄的结构,因此在某些情况下执行模态分析时可能需要考虑预应力的影响。
进行预应力分析时首先需要进行静力结构分析(Static Structural Analysis ),计算公式为:[]{}{}K x F =得出的应力刚度矩阵用于计算结构分析([][]0S σ→),这样原来的模态方程即可修改为:[][]()2i K S M ω+− {}0iφ= 上式即为存在预应力的模态分析公式。
第6章 结构动力分析有限元法此前述及的问题属于静力分析问题,即作用在结构上的荷载是与时间无关的静力。
由此求得的位移、应力等均与时间无关。
实际工程中的大部分都可简化成静力问题。
但当动载与静载相比不容忽略时,一般应进行动力分析。
如地震作用下的房屋建筑,风荷载作用下的高层建筑等,都应计算动荷载作用下的动力反应。
研究课题中以动力问题为主。
解决动力问题有两大工作要做:一是动荷载的模拟和计算,二是结构反应分析。
本章将讨论如何用有限元来解决动力计算问题。
6.1 结构动力方程一.单元的位移、速度和加速度函数设单元的位移函数为;}{[]}{ef N d = 6—1—1式中:单元位移函数列阵}{f 、结点位移函数列阵}{ed 均是时间t 的函数。
由6-1-1可求得单元的速度、加速度函数:}{[]}{e fN d = 6—1—2 }{[]}{ef N d= 6—1—3二.单元的受力分析设图示三角形单元,当它处于运动状态时,其上的荷载一般应包括:单元上的荷载;单元对结点的作用力,}{[]}{(,eeix iy F F F K d ⋅⋅⋅=结点力)单元内部单位体积的:惯性力:}{}{[]}{em F f N d ρρ=-=- 6—1—4 阻尼力(设正比于运动速度):}{}{[]}{ec F fN d αραρ=-=- 6—1—5干扰力(已知的条件):}{p F根据达朗贝尔原理,上述四力将构成一瞬时平衡力系,使单元处于动平衡状态。
为此寻求四者之间的关系;三.结点力与结点位移、速度和加速度之间的关系用虚功原理推导:令单元结点发生任意可能的虚位移}{*d,它满足单元所定义的位移场,即虚位移场}{[]}{**f N d =成立。
作用在单元上的外力所作的外力虚功:}{}{}{}{}{}{}{}{****TTTTPcmvvvT dF f F dv f F dv f F dv =+++⎰⎰⎰单元内部应力在由于虚位移所引起的虚应变上所做的内力虚功:}{}{[]}{[][]}{**TTvW dv B d D B d dv εσ==⎰()根据虚功原理(T=W ),若将惯性力}{m F ,阻尼力}{c F 用上面的6—1—4,6—1—5代替,得:}{}{[]}{}{[]}{[]}{[]}{[]}{[]}{[][]}{*****TPvvTvVd F N d F dv N d N d dv N d N d dv B d D B d dv αρρ+--=⎰⎰⎰⎰TTT ()()()()由于虚位移的任意性,可从等式两边各项中消去}{*dT,得:}{[][][]}{[][]}{[][]}{[]}{TT p vvvvF B D B dv d N N dv d N N dv d N F dv αρρ=++-⎰⎰⎰⎰ TT简写为:}{[]}{[]}{[]}{}{eF k d c dm d R =++- 6—1—6 式中:[][][][]Tv k B D B dv =⎰ 单刚(第一项为弹性恢复力) [][][]v c N N dv αρ=⎰T单元阻尼矩阵(第二项为阻尼力) [][][]v m N N dv ρ=⎰T 质量矩阵(第三项为惯性力)[][][]R e P v N F dv =⎰T 包括由作用在单元上的干扰力转化成的等效结点荷载6—1—6即为单元结点力之间的关系式。
LS-DYNA使用指南第六章发表时间:2007-7-30 作者: 安世亚太来源: e-works关键字: 显式有限元LS-DYNA ANSYS第六章接触表面ANSYS/LS-DYNA中的接触表面可以使用户在模型中诸Component之间定义多种接触类型,本章将概要地讲述一下显式动态分析中定义物理上的真实接触。
必须注意的是显式动态分析中的接触与其它类型的ANSYS分析中的接触类型不同,在其它分析中,接触是由实际接触单元表示。
而在显式动态分析中没有接触单元。
只需定义接触表面,它们之间的接触类型以及相应的参数。
6.1接触的定义因为在显式动态分析中会发生复杂的大变形,所以确定模型内component之间的接触是非常困难的。
基于此原因,ANSYS/LS-DYNA程序中包含许多功能以使接触表面间的接触定义更容易些。
在ANSYS/LS-DYNA中采用 EDCGEN命令来定义所有接触表面。
使用 EDCGEN命令时遵循下列步骤:第一步;确定哪种接触类型最适合你的物理模型。
第二步:定义接触实体。
第三步:定义摩擦系数参数。
第四步:为给定的接触类型给定一些附加输入。
第五步:定义接触的杀死和激活时间。
第一步:定义接触类型为了充分地描述在大变形接触和动态撞击中的复杂几何体之间的相互作用,在ANSYS/LS-DYNA中引入了许多种接触类型。
这些接触类型,包括节点-表面,表面-表面,单面,单边,侵蚀,固连,固连断开,压延筋和刚性体接触,将在本章标题为“接触选项”中详细讨论,对于一般的分析而言,建议使用自动单面(ASSC),自动原则(AG),节点-表面(NTS),表面-表面(STS)接触选项。
第二步:定义接触实体除单面接触(ASSC,SS和ESS)、自动通用(AG)和单边接触(SE)外,所有的接触类型都必须在发生接触的地方定义contact表面和target表面,这可用节点components, PART ID 或部件集合ID定义。
第六章 动力问题的有限元法6.1 概述前面几章所研究的问题都属于静力问题,其特点是施加到结构上的外载荷不会使结构产生加速度,且外载荷的大小和方向不随时间变化,因而结构所产生的位移和应力也不随时间变化。
本章将要研究结构分析中另一类重要问题的有限元解法,即动力问题的有限元解法。
动力学问题的特点是,载荷是随时间变化的,因而结构所产生的位移和应力是时间的函数,结构会产生速度和加速度。
由于结构本身的弹性和惯性,结构在动力载荷的作用下,往往呈现出振动的运动形态。
结构振动是工程中一个很普遍很重要的问题。
有些振动对我们有利,例如,振动打桩,振动选料,有些振动对我们有害,例如,机床的振动,仪器与仪表的振动,桥梁、水坝及高层建筑在地震作用下的振动等。
因此,我们必须对振动体本身的振动特性以及它对外部激振力的响应有一个明确的认识,才能更好地利用它有利的一面,而避免它有害的一面,设计出更好的机械和结构。
振动问题主要解决两方面的问题。
1. 寻求结构的固有频率和主振型,从而了解结构的固有振动特性,以便更好地利用或减少振动。
2. 分析结构的动力响应特性,以计算结构振动时动应力和动位移的大小及其变化规律。
6.2 结构的振动方程结构的振动方程可用多种方法建立,这里我们使用达朗伯原理(动静法),仿照前几章建立静力有限元方程的方法,来建立动力问题的有限元方程。
在静力问题中用有限元法建立的平衡方程是}{}]{[F K =δ在振动问题中,对结构的各节点应用达郎伯原理所建立的振动方程仍然具有与上式相同的形式,只不过节点位移是动位移,节点载荷是动载荷,它们都是时间的函数。
上面的方程成为)}({)}(]{[t Q t K =δ (6.1)上式中{})(t δ为节点的动位移,它是时间的函数,)}(]{[t K δ是t 时刻的节点位移产生的弹性恢复力,它与该时刻的节点外力{})(t Q 构成动态平衡。
在动态情况下,结构承受的载荷(集中载荷 ,分布载荷 )可随时间而变化,是时间的函数。
ANSYS有限元分析实用教程第六章通用后处理器对模型进行有限元分析后,通常需要检查求解结果,这种检查在ANSYS中称为后处理。
本章和第七章将分别介绍ANSYS中的两个后处理器:通用后处理器(POST1)和时间历程后处理器(POST26)。
6.1 后处理器概述后处理可能是分析中最重要的一个环节,因为在任何一个分析中用户总是试图搞清楚作用荷载如何影响设计、单元划分是否合理等。
需要用户单击工具栏上的(1)将光盘目录“\ch06\data\”中的文件复制到工作目录,启动ANSYS,单击工具栏上的按钮,打开数据库文件“beam.db”。
(2)单击Main Menu>General Postproc>Results Summary菜单查看计算得到数据集合情况,如图6.1所示。
可参考此表有目的地读入某个荷载步的结果。
第六章:通用后处理图6.1 计算结果数据情况(3)单击Main Menu>General Postproc>Read Results>Last Set菜单,可读入最后一子步的结果数据。
接下来就可以显示了查看最后一子步的结果数据了,显示的操作将在6.2节中详细讲述。
读取结果数据菜单,如图6.2所示。
常用的读取结果数据的菜单还有:图6.2 读取数据菜单●【First Set】:单击此菜单,可读入第一子步的结果数据。
●【Next Set】:单击此菜单,可读入当前子步的下一子步的结果数据。
●【Previous Set】:单击此菜单,可读入当前子步的上一子步的结果数据。
此外,用户还可以按如下几种方式读取结果数据:1.选择子步直接读取用户可以直接选择某一子步的数据进行读取。
操作如下:(1)单击Main Menu>General Postproc>Read Results>By Pick菜单,将弹出如图6.3所示的对话框。
ANSYS 有限元分析实用教程图6.3 选取子步数据 (2)选中某一子步,然后单击按钮即可把该子步数据读入数据库。
可编辑修改精选全文完整版目录第六章 Simulation有限元分析 (2)6.1 Simulation基础知识 (2)6.1.1 有限元法概述 (2)6.1.2 Simulation概述 (2)6.1.3 Simulation使用指导 (4)6.1.4 Simulation有限元分析的一般步骤 (8)6.2 SimulationXPress应力分析 (10)6.3 Simulation结构有限元分析 (16)6.3.1 轴静态分析 (16)6.3.2 夹钳装配体静态分析 (36)6.4 Simulation优化分析 (50)6.4.1 优化设计概述 (50)6.4.2 优化设计基础知识 (51)6.4.3 轴的优化分析 (51)6.5 小结 (59)第六章 Simulation有限元分析在制造业中,为了缩短产品设计周期,提高产品质量,广泛采用计算机辅助工程(Computer Aided Engineering,CAE),机械设计已逐渐实现了由静态、线性分析向动态、非线性分析的过渡,由经验类比向最优设计的过渡。
CAE在产品开发研制中显示出了无与伦比的优越性,使其成为现代企业在日趋激烈的竞争中取胜的一个重要条件,因而越来越受到科技界和工程界的重视。
在CAE技术中,有限元分析(Finite Element Analysis,FEA)是应用最为广泛、最为成功的一种数值分析方法。
SolidWorks Simulation即是一款基于有限元(即FEA数值)技术的分析软件,通过与SolidWorks的无缝集成,在工程实践中发挥了愈来愈大的作用。
6.1 Simulation基础知识6.1.1 有限元法概述有限元法(Finite Element Method,FEM)是随着计算机的发展而迅速发展起来的一种现代计算方法,是一种求解关于场问题的一系列偏微分方程的数值方法。
有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。