6第6章 整式的乘除与因式分解测试题
- 格式:doc
- 大小:45.00 KB
- 文档页数:4
整式的乘除及因式分解综合检测(人教版)一、单选题(共10道,每道10分)1.当时,的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:代入求值2.的相反数是( )A.4B.C. D.答案:D解题思路:试题难度:三颗星知识点:负指数幂的运算3.下列各式运算正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:整式的运算4.要计算的值,小明是这么思考的:令,则,因此.仿照以上推理,计算出的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:同底数幂的乘法5.将分解因式,结果是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:因式分解--运用公式法6.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:因式分解--分组分解法7.已知,则的值是( )A.4B.2C.1D.答案:A解题思路:试题难度:三颗星知识点:整体代入8.若,则的值为( )A.0B.3C.9D.12答案:D解题思路:试题难度:三颗星知识点:整体代入9.已知实数满足条件:,那么的平方根是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:因式分解的应用10.若,则的值为( )A.0B.1C.-1D.无法确定答案:A解题思路:试题难度:三颗星知识点:因式分解的应用。
整式的乘法与因式分解一.选择题(共16小题)1.下列运算正确的是()A.||=B.x3•x2=x6C.x2+x2=x4D.(3x2)2=6x42.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a43.若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣14.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣195.若4a2﹣kab+9b2是完全平方式,则常数k的值为()A.6 B.12 C.±12 D.±66.下列运算中正确的是()A.(x4)2=x6B.x+x=x2 C.x2•x3=x5D.(﹣2x)2=﹣4x27.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定8.(﹣a m)5•a n=()A.﹣a5+m B.a5+m C.a5m+n D.﹣a5m+n9.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12D.p=7,q=﹣12 10.(x n+1)2(x2)n﹣1=()A.x4n B.x4n+3C.x4n+1D.x4n﹣111.下列计算中,正确的是()A.a•a2=a2B.(a+1)2=a2+1 C.(ab)2=ab2D.(﹣a)3=﹣a312.下列各式中不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(﹣x﹣y)C.(﹣x﹣y)(x﹣y)D.(x+y)(﹣x+y)13.计算a5•(﹣a)3﹣a8的结果等于()A.0 B.﹣2a8C.﹣a16D.﹣2a1614.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1 D.515.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1 B.b=﹣6,c=2 C.b=﹣6,c=﹣4 D.b=﹣4,c=﹣6 16.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2 D.a2﹣2ab+b2二.填空题(共7小题)17.分解因式:x2﹣1=.18.分解因式:2x3﹣8x=.19.分解因式:3ax2﹣6axy+3ay2=.20.分解因式:m3﹣4m2+4m=.21.x2+kx+9是完全平方式,则k=.22.化简:(﹣2a2)3=.23.因式分解:y3﹣4x2y=.三.解答题(共3小题)24.分解因式:(1)(a2+b2)2﹣4a2b2(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.25.已知,求的值.26.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.整式的乘法与因式分解参考答案与试题解析一.选择题(共16小题)1.下列运算正确的是()A.||=B.x3•x2=x6C.x2+x2=x4D.(3x2)2=6x4【分析】分别利用绝对值以及同底数幂的乘法运算法则、合并同类项、积的乘方运算法则分别化简求出答案.【解答】解:A、|﹣1|=﹣1,正确,符合题意;B、x3•x2=x5,故此选项错误;C、x2+x2=2x2,故此选项错误;D、(3x2)2=9x4,故此选项错误;故选:A.【点评】此题主要考查了绝对值以及同底数幂的乘法运算、合并同类项、积的乘方运算等知识,正确掌握运算法则是解题关键.2.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.【点评】本题主要考查幂的运算和整式的加法,掌握同类项的定义和同底数幂相乘、幂的乘方法则是解题的关键.3.若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19【分析】把x2+y2利用完全平方公式变形后,代入x+y=﹣5,xy=3求值.【解答】解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.【点评】本题的关键是利用完全平方公式求值,把x+y=﹣5,xy=3当成一个整体代入计算.5.若4a2﹣kab+9b2是完全平方式,则常数k的值为()A.6 B.12 C.±12 D.±6【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:∵4a2﹣kab+9b2是完全平方式,∴﹣kab=±2•2a•3b=±12ab,∴k=±12,故选:C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.下列运算中正确的是()A.(x4)2=x6B.x+x=x2 C.x2•x3=x5D.(﹣2x)2=﹣4x2【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、(x4)2=x8,错误;B、x+x=2x,错误;C、x2•x3=x5,正确;D、(﹣2x)2=4x2,错误;故选:C.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.7.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定【分析】根据多项式乘多项式的运算法则进行计算,比较即可得到答案.【解答】解:M=(x﹣3)(x﹣7)=x2﹣10x+21,N=(x﹣2)(x﹣8)=x2﹣10x+16,M﹣N=(x2﹣10x+21)﹣(x2﹣10x+16)=5,则M>N.故选:B.【点评】本题考查的是多项式乘多项式,掌握多项式乘以多项式的法则是解题的关键.8.(﹣a m)5•a n=()A.﹣a5+m B.a5+m C.a5m+n D.﹣a5m+n【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加计算即可.【解答】解:(﹣a m)5•a n=﹣a5m+n.故选:D.【点评】本题考查幂的乘方的性质和同底数幂的乘法的性质,熟练掌握运算性质是解题的关键.9.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12D.p=7,q=﹣12【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p、q的值.【解答】解:由于(x﹣3)(x+4)=x2+x﹣12=x2+px+q,则p=1,q=﹣12.故选:A.【点评】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.10.(x n+1)2(x2)n﹣1=()A.x4n B.x4n+3C.x4n+1D.x4n﹣1【分析】根据幂的乘方法计算.【解答】解:(x n+1)2(x2)n﹣1=x2n+2•x2n﹣2=x4n.故选:A.【点评】本题主要考查了幂的乘方与积的乘方,注意把各种幂运算区别开,从而熟练掌握各种题型的运算.11.下列计算中,正确的是()A.a•a2=a2B.(a+1)2=a2+1 C.(ab)2=ab2D.(﹣a)3=﹣a3【分析】根据同底数幂的乘法法则对A进行判断;根据完全平方公式对B进行判断;根据幂的乘方与积的乘方对C、D进行判断.【解答】解:A、a•a2=a3,所以A选项不正确;B、(a+1)2=a2+2a+1,所以B选项不正确;C、(ab)2=a2b2,所以C选项不正确;D、(﹣a)3=﹣a3,所以D选项正确.故选:D.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了同底数幂的乘法以及幂的乘方与积的乘方.12.下列各式中不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(﹣x﹣y)C.(﹣x﹣y)(x﹣y)D.(x+y)(﹣x+y)【分析】根据公式(a+b)(a﹣b)=a2﹣b2的左边的形式,判断能否使用.【解答】解:A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A正确;B、两个括号中,﹣x相同,含y的项的符号相反,故能使用平方差公式,B错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C错误;D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D错误;故选:A.【点评】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.13.计算a5•(﹣a)3﹣a8的结果等于()A.0 B.﹣2a8C.﹣a16D.﹣2a16【分析】先根据同底数幂相乘,底数不变指数相加计算,再合并同类项.【解答】解:a5•(﹣a)3﹣a8=﹣a8﹣a8=﹣2a8.故选:B.【点评】同底数幂的乘法的性质:底数不变,指数相加.合并同类项的法则:只把系数相加减,字母与字母的次数不变.14.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1 D.5【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积转换成以m+n,mn为整体相加的形式,代入求值.【解答】解:∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n),=1﹣(m+n)+mn,=1﹣2﹣2,=﹣3.故选:A.【点评】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.15.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1 B.b=﹣6,c=2 C.b=﹣6,c=﹣4 D.b=﹣4,c=﹣6【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:由多项式2x2+bx+c分解因式为2(x﹣3)(x+1),得2x2+bx+c=2(x﹣3)(x+1)=2x2﹣4x﹣6.b=﹣4,c=﹣6,故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.16.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2 D.a2﹣2ab+b2【分析】根据两数的符号相同,所以利用完全平方和公式计算即可.【解答】解:(﹣a﹣b)2=a2+2ab+b2.故选:C.【点评】本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.二.填空题(共7小题)17.分解因式:x2﹣1= (x+1)(x﹣1).【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了平方差公式分解因式的知识.题目比较简单,解题需细心.18.分解因式:2x3﹣8x= 2x(x﹣2)(x+2).【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.19.分解因式:3ax2﹣6axy+3ay2= 3a(x﹣y)2.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2﹣6axy+3ay2,=3a(x2﹣2xy+y2),=3a(x﹣y)2,故答案为:3a(x﹣y)2.【点评】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.分解因式:m3﹣4m2+4m= m(m﹣2)2.【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解.【解答】解:m3﹣4m2+4m=m(m2﹣4m+4)=m(m﹣2)2.故答案为:m(m﹣2)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.x2+kx+9是完全平方式,则k=±6 .【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3的积的2倍,故k=±6.【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.22.化简:(﹣2a2)3= ﹣8a6.【分析】根据积得乘方与幂的乘方的运算法则计算即可.【解答】解:(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6.故答案为:﹣8a6.【点评】本题主要考查的是积得乘方与幂的乘方的运算,掌握积得乘方与幂的乘方的运算法则是解题的关键.23.因式分解:y3﹣4x2y= y(y+2x)(y﹣2x).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解答】解:y3﹣4x2y,=y(y2﹣4x2),=y(y+2x)(y﹣2x).【点评】本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三.解答题(共3小题)24.分解因式:(1)(a2+b2)2﹣4a2b2(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【分析】(1)直接利用平方差公式分解因式,进而利用完全平方公式分解因式即可;(2)直接利用完全平方公式分解因式得出即可.【解答】解:(1)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.【点评】此题主要考查了公式法分解因式,熟练应用平方差公式和完全平方公式是解题关键.25.已知,求的值.【分析】把两边平方得到+2=9,进而求出的值.【解答】解:∵,∴+2=9,∴=7.【点评】本题主要考查了完全平方式的知识点,解答本题的关键是把两边平方,此题基础题,难度不大.26.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.【分析】(1)直接把两个正方形的面积相加或利用大正方形的面积减去两个长方形的面积;(2)利用面积相等把(1)中的式子联立即可;(3)注意a,b都为正数且a>b,利用(2)的结论进行探究得出答案即可.【解答】解:(1)两个阴影图形的面积和可表示为:a2+b2或(a+b)2﹣2ab;(2)a2+b2=(a+b)2﹣2ab;(3)∵a,b(a>b)满足a2+b2=53,ab=14,∴①(a+b)2=a2+b2+2ab=53+2×14=81∴a+b=±9,又∵a>0,b>0,∴a+b=9.②∵a4﹣b4=(a2+b2)(a+b)(a﹣b),且∴a﹣b=±5又∵a>b>0,∴a﹣b=5,∴a4﹣b4=(a2+b2)(a+b)(a﹣b)=53×9×5=2385.【点评】本题考查对完全平方公式几何意义的理解与运用,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.。
整式的乘除与因式分解考点归纳知识网络归纳互逆因式分解的意义因式分解的步骤专题归纳专题一:基础计算【例1】完成下列各题:1. 计算:2x 3 •(- 3x ) 2 __________ .2. 下列运算正确的是()A. x • x = xB.(- 6x )-(- 2x )= 3xC. 2 a - 3a =- aD. (x — 2) 2= x 2-43. 把多项式2mf — 4mxy + 2m?分解因式的结果是 ___________ .24 分解因式:(2a - b ) + 8ab = ________________ .专题二:利用幕的有关运算性质和因式分解可使运算简化 【例2】用简便方法计算.(1 ) 0. 252009X 42°°9 — 8100X 0. 5300.(2) 4292-仃 12.整式的乘法ma(a m)(ab)n单项式 单项式 整式的乘法多项式幕的运算法则n=amnmna n j na(m, n 为正整数, a,b 可为一个单项式或一个式项式)特殊的单项式多项式:m(a b) ma 多项式:(m n)(a b) 乘法公式平方差公式:(a b)(a 2mb ma mb na nb 完全平方公式:(a b)2b) 2a2 2 a b2ab b 2因式分解 因式分解的方法提公因式法运用公式法完全差公式式a 「 (a 2ab b)(a b) b 2(ab)2专题三:简捷计算法的运用【例3】设m2+ m—2= 0,求m3+ 3m2+ 2000 的值.专题四:化简求值【例4】化简求值:2 25 ( m+n) (m-n) - 2(m+n) - 3(m-n),其中m=-2,n=专题五:完全平方公式的运用2 【例5】已知a b 11,2 2 2a b 5,求(1) a b ; (2) ab例题精讲基础题【例1】填空:1. (- a b)3• (a b2)2=;(3x 3 2+3x)十(x +1)=2. ( a+b)( a-2b)= ;( a+4b)(m+n)=3. (- a+b+c)( a+b-c)=[b-( )l[b+( )]. ____4. 多项式x2+kx+25是另一个多项式的平方,则k=.5. 如果(2a+ 2b+ 1) (2a + 2b—1)=63,那么a+ b 的值为【例2】选择:6.从左到右的变形,是因式分解的为( )2 23 3A.m a+mb-c=m(a+b)-cB.( a-b)( a +a b+b )=a -bC. a2-4 a b+4b2-仁a( a-4b)+(2b+1)(2b-1)D.4x 2-25y 2=(2x+5y)(2x-5y)7.下列多项式中能用平方差公式分解因式的是()2 2 22 2 (A)a(b)(B)5m 20mn(C)x y2 c(D) X 98.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x,y表示小矩形的两边长(x >y),请观察图案,指出以下关系式中,不正确的是()A.x+y=7B.x-y=22 2C.4xy+4=49D.x +y =25【例3】9计算:1(1)(-3xy2) 3•( 6x3y) 2; (2) 4a2x2- (- 5a4x3y3) + (—2 a5xy2);⑶(x y 9)(x y 9)⑷[(3x 4y)23x(3x 4y)] ( 4y)(6) [ (x+y) 2-(x —y) 2](2xy)2 1 2x (x 2)(x 2)-( x -) ⑸X中档题【例1】10.因式分解:⑴X2X 1(2)(3a 2b)2(2 a 3b)24227) 9a 2(x-y)+4b 2(y-x) ;28)(x+y) 2 +2(x +y)+1例 2】 11.化简求值:(1) 2(x 3)(x 2) (3 a)(3 a)其中 a 2., x=1【例3】12若(x 2+ px + q ) (x 2— 2x - 3)展开后不含x 2, x 3项,求p 、q 值.【例4】13对于任意的正整数 n ,代数式n(n+7) -(n+3)(n-2)的值是否总能被6整除,请说明理由23)2x2y -8xy +8y4)a 2(x -y) -4b 2(x -y)22 (5) x 2xy yz 2(6)1 x x(1 x)能力题【例1】14下面是对多项式(x2—4x+2) (x2—4x+6) +4进行因式分解的过程.解:设x2—4x=y原式=(y+2) (y+6) +4(第一步)=y2+8y+16(第二步)=(y+4) 2(第三步)=(x2—4x+4) 2(第四步)回答下列问题:(1)_____________________________________ 第二步到第三步运用了因式分解的 .A •提取公因式B•平方差公式C •两数和的完全平方公式D •两数差的完全平方公式(2)_____________________________________ 这次因式分解的结果是否彻底?•(填彻底”或不彻底”若不彻底,请直接写出因式分解的最后结果_____________ .(3)请你模仿以上方法尝试对多项式( x2—2x) (x2—2x+2)+1进行因式分解.b2c2ab bc ac 0【例2】已知a、b、c ABC的三边,且满足a2(1)说明△ ABC的形状;(2)如图①以A为坐标原点, AB所在的直线为x轴建立平面直角坐标系,D是y轴上一点,连DB、DO DC DB之间有何数量关系,并证明你的猜想。
人教版八年级上册数学《整式的乘除与因式分解》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列运算正确的是A .321ab ab -=B .246a a a ⋅=C .()325x x = D .232x x x ÷=2.如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数3.若23x =,45y =,则22x y +的值为( )A .15B .2-C .654.下列分解因式正确的是( )A 、2x 2﹣xy ﹣x=2x (x ﹣y ﹣1)B 、﹣xy 2+2xy ﹣3y=﹣y (xy ﹣2x ﹣3)C 、x (x ﹣y )﹣y (x ﹣y )=(x ﹣y )2D 、x 2﹣x ﹣3=x (x ﹣1)﹣35.在多项式①x 2+2xy ﹣y 2;②﹣x 2﹣y 2+2xy ;③x 2+xy+y 2;④4x 2+1+4x 中,能用完全平方公式分解因式的有( )A 、①②B 、②③C 、①④D 、②④6.若a*b=a 2+2ab ,则x 2*y 所表示的代数式分解因式的结果是( )A 、x 2(x 2+2y )B 、x (x+2)C 、y 2(y 2+2x )D 、x 2(x 2﹣2y )7.已知2011200920102010201020092011X =⨯⨯﹣,那么X 的值是( )A 、2008B 、2009C 、2010D 、20118.若m >﹣1,则多项式m 3﹣m 2﹣m+1的值为( )A 、正数B 、负数C 、非负数D 、非正数9.若(p ﹣q )2﹣(q ﹣p )3=(q ﹣p )2E ,则E 是( )A 、1﹣q ﹣pB 、q ﹣pC 、1+p ﹣qD 、1+q ﹣p10.把x 2﹣y 2﹣2y ﹣1分解因式结果正确的是( )A 、(x+y+1)(x ﹣y ﹣1)B 、(x+y ﹣1)(x ﹣y ﹣1)C 、(x+y ﹣1)(x+y+1)D 、(x ﹣y+1)(x+y+1)二 、填空题(本大题共5小题,每小题3分,共15分)11.若87a =,78b =,用含a 、b 的代数式表达5656为12.计算:⑴232223(2)8()()()______x y x x y -+⋅-⋅-=⑵2(2)(2)()______a b a b a b +--+=⑶22()()()_______x y x y y x -+--+=13.已知32131a a x x x x +⋅⋅=,则a 的值为14.⑴如果多项式219x kx ++是一个完全平方式,那么k 的值为⑵如果多项式24x kx -+是一个完全平方式,那么k 的值为15.填空:(1)222()______a b a b +=+-;(2)222()______a b a b +=-+;(3)22()()_______a b a b -=+-;三 、解答题(本大题共7小题,共55分)16.如果12m x =,3n x =,求23m n x +的值17.分解因式:2x x5129+---2383x x18.分解因式:22--=x xy y12111519.计算(1)2-+(2)(2)(2)x y(23)--a b b a(3)2222++-+(4)(22)(22) ()()a ab b a ab b-+-+x y y x20.已知实数a、b满足2a b()25-=,求22+=,2()1a b++的值.a b ab21.计算:222222224--÷+.(3)()(4)89xy x y x y y x y22.分解因式:5544+-+()x y x y xy人教版八年级上册数学《整式的乘除与因式分解》单元测试卷答案解析一 、选择题1.B2.C3.A4.C5.D6.A7.B ;已知20102011﹣20102009=2010x ×2009×2011,则有20102009×2009×2011=2010x×2009×2011,则有x=2009.8.C ;多项式m 3﹣m 2﹣m+1=(m 3﹣m 2)﹣(m ﹣1)=m 2(m ﹣1)﹣(m ﹣1)=(m ﹣1)2(m+1),∵m >﹣1,∴(m ﹣1)2≥0,m+1>0,∴m 3﹣m 2﹣m+1=(m ﹣1)2(m+1)≥0,故选C .9.C ;(p ﹣q )2﹣(q ﹣p )3=(q ﹣p )2(1﹣q+p ).故选C .10.A ;原式=x 2﹣(y 2+2y+1)=x 2﹣(y+1)2=(x+y+1)(x ﹣y ﹣1).故选A .二 、填空题11.()()()78565687567878=⨯=⨯,当87a =,78b =时,原式78a b =12.⑴原式=6316x y -;⑵原式=22232a ab b ++;⑶原式=44x y -13.914.完全平方:2222()a ab b a b ±+=±, ⑴参看公式我们可以发现23k =±,学生在此极易少答案;⑵4k =±. 15.⑴2ab ;⑵2ab ;⑶4ab ;三 、解答题16.()()2323m n m n x x x +=⋅,12m x =,3n x =,∴原式274=17.2383(31)(3)x x x x --=+-;25129(3)(53)x x x x +-=+-18.22121115(35)(43)x xy y x y x y --=-+19.(1)原式222(23)4129x y x xy y =-=-+(2)原式22222(2)(44)44a b a ab b a ab b =--=--+=-+-(3)原始22224224()()a b ab a b ab a a b b ⎡⎤⎡⎤=+++-=++⎣⎦⎣⎦(4)原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-20.2222()()132a b a b a b ++-+==,22()()64a b a b ab +--==-,227a b ab ++=. 21.原式2222442249()1689x y x y x y y x y =--÷+422442244299297x y x y x y x y x y =--+=22.原式44()()x x y y x y =---44()()x y x y =--22()()()()x y x y x y x y =--++222()()()x y x y x y =-++。
一、选择题 (每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)1.计算(-a )3·(a 2)3·(-a )2的结果正确的是( )(A )a 11 (B )a 11 (C )-a 10 (D )a 132.下列计算正确的是( )(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =13.4m ·4n 的结果是( )(A )22(m +n ) (B )16mn (C )4mn (D )16m +n4.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( )(A )5 (B )25(C )25 (D )10 5.下列算式中,正确的是( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=91(C )(0.00001)0=(9999)0 (D )3.24×10-4=0.0000324 6.(-a +1)(a +1)(a 2+1)等于( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4 7.若(x +m )(x -8)中不含x 的一次项,则m 的值为( )(A )8 (B )-8 (C )0 (D )8或-8 8.已知a +b =10,ab =24,则a 2+b 2的值是( )(A )148 (B )76 (C )58 (D )52 9.已知多项式ax ²+bx +c因式分解的结果为(x -1)(x +4),则abc 为…( )A .12B .9C .-9D .-1210.如图:矩形花园中ABCD ,AB =a ,AD =b ,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。
六年级数学下册第六章整式的乘除单元测试卷 一、选择题共10小题,每小题3分,共30分 1.下列运算正确的是A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2 A. 1- B. 1 C. 0 D. 19973.设()()A b a b a +-=+223535,则A= A. 30ab B. 60ab C. 15ab D. 12ab4.已知,3,5=-=+xy y x 则=+22y x A. 25. B 25- C 19 D 、19- 5.已知,5,3==b a x x 则=-b a x 23 A 、2527 B 、109 C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①2a +bm +n ; ②2am +n +bm +n ;③m 2a +b +n 2a +b ; ④2am +2an +bm +bn ,你认为其中正确的有A 、①② B 、③④ C、①②③ D 、①②③④ 7.如x+m 与x+3的乘积中不含x 的一次项,则m 的值为 A 、 –3B 、3C 、0D 、18.已知.a+b 2=9,ab= -112,则a2+b 2的值等于A 、84B 、78C 、12D 、6 9.计算a -ba+ba 2+b 2a 4-b 4的结果是A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 10.已知m m Q m P 158,11572-=-=m 为任意实数,则P 、Q 的大小关系为n mDA 、Q P >B 、Q P =C 、Q P <D 、不能确定 二、填空题共6小题,每小题4分,共24分11.设12142++mx x 是一个完全平方式,则m =_______. 12.已知51=+x x ,那么221xx +=_______. 13.方程()()()()41812523=-+--+x x x x 的解是_______. 14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______.15.已知2a=5,2b=10,2c=50,那么a 、b 、c 之间满足的等量关系是___________. 16.若622=-n m ,且3=-n m ,则=+n m . 三、解答题共8题,共66分 17计算:本题9分(1)()()02201214.3211π--⎪⎭⎫ ⎝⎛-+-- 2()()()()233232222x y x xy y x ÷-+-⋅18、本题9分1先化简,再求值:()()()()221112++++-+--a b a b a b a ,其中21=a ,2-=b . 19.本题8分如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a,BC=3b,且E 为AB 边的中点,CF=13 BC,现打算在阴影部分种植一片草坪,求这片草坪的面积.20、本题8分若x 2+mx-8 x 2-3x+n 的展开式中不含x 2和x 3项,求m 和n 的值21、本题8分若a =2005,b =2006,c =2007,求ac bc ab c b a ---++222的值. 22、本题8分.说明代数式[]y y y x y x y x +-÷-+--)2())(()(2的值,与y 的值无关. 23、本题8分如图,某市有一块长为3a+b 米,宽为2a+b 米的长方形地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面 积是多少平方米•并求出当a=3,b=2时的绿化面积.24、本题8分某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过a 吨,每吨m 元;若超过a 吨,则超过的部分以每吨2m 元计算.•现有一居民本月用水x 吨,则应交水费多少元 参考答案 一、选择题二、填空题11. 44± 12. 23 13. 1411-=x 14. -3 15. a+b=c 16. 2 三、解答题 17计算:本题9分2由31=-x 得13+=x化简原式=444122+--++x x x=122+-x x =1)13(2)13(2++-+ =12321323+--++ =33原式=a a 62+, 当12-=a 时,原式=324-.。
六年级数学下册第六章整式的乘除章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是()A.(﹣a)2=﹣a2B.2a2﹣a2=2C.a2•a=a3D.(a﹣1)2=a2﹣12、下列运算中正确的是()A.a2•a3=a6B.(a2)3=a5C.(2b)3=6b3D.(﹣a)3÷(﹣a)=a23、在下列运算中,正确的是()A.(x4)2=x6B.x3⋅x2=x6C.x2+x2=2x4D.x6⋅x2=x84、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是()A .a (m +n )+b (m +n )=(a +b )(m +n )B .m (a +b )+n (a +b )=(a +b )(m +n )C .am +bm +an +bn =(a +b )(m +n )D .ab +mn +am +bn =(a +b )(m +n )5、下列运算正确的是( )A .a 2+a 4=a 6B .22122a a -=C .(﹣a 2)•a 4=a 8D .(a 2b 3c )2=a 4b 6c 26、若()()2105x mx x x n +-=-+,则m n 的值为( )A .6-B .8C .16-D .187、下面计算正确的是( )A .339x x x ⋅=B .4322a a a ÷=C .222236x x x ⋅=D .()2510x x = 8、若3x y +=,1xy =则(12)(12)x y --的值是( )A .1B .1-C .2D .2-9、已知23m =,326n =,则下列关系成立的是( )A .m +1=5nB .n =2mC .m +1=nD .2m =5+n10、下列计算正确的是( )A .235a a a +=B .()3223a b a b =C .238()a a =D .236()a a -=-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、人类进入5G 时代,科技竞争日趋激烈.据报道,我国已经能大面积生产14纳米的芯片,14纳米即为0.00000014米,将其用科学记数法表示为______米.2、若3m a =,2n a =,则23m n a +=_____.3、母亲节来临之际,某花店购进大量的康乃馨、百合、玫瑰,打算采用三种不同方式搭配成花束,分别是“心之眷恋”、“佳人如兰”、“守候”,三种花束的数量之比为2:3:5,每束花束的总成本为组成花束的康乃馨、百合、玫瑰成本之和(包装成本忽略不计).“心之眷恋”花束包含康乃馨6支、百合1支、玫瑰3支,“佳人如兰”花束包含康乃馨2支、百合2支、玫瑰6支.每束“心之眷恋”的成本是每支康乃馨成本的15倍,销售的利润率是60%;每束“佳人如兰”的售价是成本的74倍:每束“守候”在成本的基础上提价70%标价后打9折出售,获利为每支康乃馨成本的5.3倍.为了促进这三种花束的销售,商家在每束花束中分别赠送一支康乃馨作为礼物,销售结束时,这些花束全部卖完,则商家获得的总利润率为___.4、如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是______.5、关于x 的多项式2x m -与35x +的乘积,一次项系数是25,则m 的值为______.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:()()()()23222x y x x y x y x y y ⎡⎤+--++-÷⎣⎦,其中1x y ==-.2、先化简,再求值:()()()()()()22231313523x x x x x x ⎡⎤----+---⎣⎦,其中12x =-. 3、街心花园有一块长为a 米,宽为b 米(a >b )的长方形草坪,经统一规划后,长方形的长减少x 米,宽增加x 米(x >0),改造后仍得到一块长方形的草坪.(1)求改造后长方形草坪的面积;(2)小明认为无论x 取何值,改造前与改造后两块长方形草坪的面积相同.你认为小明的观点正确吗?请说明理由.4、计算:[7m •m 4﹣(﹣3m 2)2]÷2m 2.5、阅读以下材料:苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若x a N =(0a >且1a ≠),那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式4216=可以转化为对数式24log 16=,对数式32log 9=可以转化为指数式239=.我们根据对数的定义可得到对数的一个性质:()()log log log 0,1,0,0a a a M N M N a a M N ⋅=+>≠>>,理由如下:设log a M m =,log a N n =,则m M a =,n N a =,∴m n m n M N a a a +⋅=⋅=,由对数的定义得()log a m n M N +=⋅.又∵log log a a m n M N +=+,∴()log log log a a a M N M N ⋅=+.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①2log 64= ,②3log 27= ,③7log 1= ;(2)求证:()log log log 0,1,0,0a a a M M N a a M N N=->≠>>;(3)拓展运用:计算455log 64log 7log 35+-.-参考答案-一、单选题1、C【解析】【分析】根据乘方的意义,合并同类项,同底数幂的乘法,完全平方公式逐项分析即可.【详解】解:A.(﹣a )2=a 2,故不正确;B. 2a 2﹣a 2=a 2,故不正确;C. a 2•a =a 3,正确;D.(a ﹣1)2=a 2﹣2 a +1,故不正确;故选C .【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.完全平方公式是(a ±b )2=a 2±2ab +b 2.2、D【解析】【分析】利用同底数幂的乘法法则,幂的乘方与积的乘方的法则,同底数幂的除法法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故A不符合题意;B、(a2)3=a6,故B不符合题意;C、(2b)3=8b3,故C不符合题意;D、(﹣a)3÷(﹣a)=a2,故D符合题意;故选:D.【点睛】此题主要考查同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法运算等幂的运算法则,熟练掌握运算法则是解答本题的关键.3、D【解析】【分析】由题意依据幂的乘方和同底数幂的乘法以及合并同类项逐项进行判断即可.【详解】解:A. (x4)2=x8,故A选项错误;B. x3⋅x2=x5,故B选项错误;C. x2+x2=2x2,故C选项错误;D. x6⋅x2=x8,故D选项正确.故选:D.【点睛】本题考查幂的运算和整式的加法,熟练掌握幂的乘方和同底数幂的乘法以及合并同类项运算法则是解题的关键.4、D【解析】【分析】由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可【详解】解:如图②,S长方形ABCD=(a+b)(m+n),A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;故选:D.【点睛】本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.5、D【解析】【分析】由题意合并同类项原则和积的乘方以及幂的乘方和负指数幂运算逐项进行运算判断即可.【详解】解:A. 无法合并同类项,故本选项运算错误; B. 2222a a -=,故本选项运算错误; C. (﹣a 2)•a 4=6a -,故本选项运算错误;D. (a 2b 3c )2=a 4b 6c 2,故本选项运算正确.故选:D.【点睛】本题考查整式加法和积的乘方以及幂的乘方和负指数幂运算,熟练掌握相关运算法则是解题的关键.6、D【解析】【分析】根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.【详解】解:()()2555x x n x nx x n -+=+--,()()2105x mx x x n +-=-+,5nx x mx ∴-=,510n -=-,5n m ∴-=,2n =,解得:3m =-,2n =,3128m n -∴==. 故选:D .【点睛】本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.7、D【解析】【分析】利用同底数幂乘法、单项式除以单项式、单项式乘以单项式、幂的乘方等运算法则分别计算,判断即可.【详解】解:A 、336x x x ⋅=,原式计算错误,不符合题意;B 、4322a a a ÷=,原式计算错误,不符合题意; C 、2242?36x x x =,原式计算错误,不符合题意;D 、()2510x x =,计算正确,符合题意;故选:D .【点睛】本题考查了同底数幂乘法、单项式除以单项式、单项式乘以单项式、幂的乘方等知识点,熟练掌握相关运算法则是解本题的关键.8、B【解析】【分析】 ()()()1212124x y x y xy --=-++,代值求解即可.【详解】解:∵()()()1212124123411x y x y xy --=-++=-⨯+⨯=-∴(1−2x)(1−2x)=−1故选B.【点睛】本题考查了代数式求值.解题的关键在于将代数式化成与已知式子相关的形式.9、A【解析】【分析】利用积的乘方、幂的乘方把32n=6化成25n=6,2m=3化成2m+1=6,再比较求解即可.【详解】解:∵32n=6,∴25n=6,∵2m=3,∴2m×2=3×2,即2m+1=6,∴2m+1=25n,∴m+1=5n,故选:A.【点睛】本题主要考查了积的乘方、幂的乘方,关键是掌握计算法则,并能熟练应用.10、D【解析】【分析】根据合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方分别计算即可.解:A 、2a 与3a 不属于同类项,不能合并,故A 不符合题意;B 、2363()a b a b =,故B 不符合题意;C 、236()a a =,故C 不符合题意;D 、236()a a -=-,故D 符合题意.故选:D .【点睛】本题主要考查了合并同类项,幂的乘方与积的乘方,解答的关键是对相应的运算法则的掌握.二、填空题1、81.410-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000014=1.4×10−8,故答案为:1.4×10−8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2、72【解析】根据同底数幂的乘法法则和幂的乘方法则求解.【详解】解:23m n a +,23m n a a =⋅,23()()m n a a =⨯,98=⨯,72=.故答案为:72.【点睛】本题考查了幂的乘方和同底数幂的乘法的逆运算,解题的关键是掌握运算法则.3、59.67%【解析】【分析】设康乃馨、百合、玫瑰的单价分别为x ,y ,z ,由心之春恋的成本得y +3z =9x ,佳人如兰的成本为20x ,佳人如兰的利润为:(714-)×20x =15x ,由守候的利润为5.3x ,得守候的成本为10x ,求出总成本及总利润,根据利润率公式得到答案.【详解】解:∵三种花束的数量比固定后单种花束的数量并不影响总利润率,∴按题目顺序设三种花束分别为2,3,5束,设康乃馨、百合、玫瑰的单价分别为x ,y ,z ,则心之春恋的成本为:6x +y +3z =15x ,∴y +3z =9x ,佳人如兰的成本为:2x +2y +6z =2x +2(y +3z )=20x ,佳人如兰的利润为:(714-)×20x =15x ,由题意得守候的利润为5.3x ,守候的成本为:()5.310170%0.91x x =+⨯-, ∴总成本为2×15x +3×20x +5×10x +1(2+3+5)x =150x ,∵总利润为:2×9x +3×15x +5×5.3x =89.5x , ∴总利润率为:89.5100%59.67%150x x⨯≈. 故答案为:59.67%.【点睛】此题考查了列代数式,整式的混合运算,正确理解题意,掌握利润问题的计算公式正确解答是解题的关键.4、()()2111x x x -=+-【解析】【分析】根据图形可以用代数式表示出图1和图2的面积,由此得出等量关系即可.【详解】解:由图可知,图1的面积为:x 2−12,图2的面积为:(x +1)(x −1),所以x 2−1=(x +1)(x −1).故答案为:x 2−1=(x +1)(x −1).【点睛】本题考查平方差公式的几何背景,解答本题的关键是明确题意,列出相应的代数式.5、5-【解析】【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m 的一次方程,求解即可.【详解】解:(2x −m )(3x +5)=6x 2−3mx +10x −5m=6x 2+(10−3m )x −5m .∵积的一次项系数为25,∴10−3m =25.解得m =−5.故答案为:-5.【点睛】本题考查了多项式乘以多项式和解一元一次方程,掌握多项式乘多项式法则是解决本题的关键.三、解答题1、45y x +,-9【解析】【分析】先根据完全平方公式和平方差公式以及单项式乘以多项式的计算法则去小括号,然后根据整式的加减计算法则合并,再计算多项式除以单项式,最后代值计算即可.【详解】解:()()()()23222x y x x y x y x y y ⎡⎤+--++-÷⎣⎦()2222269242x xy y x xy x y y =++-++-÷()28102y xy y =+÷45y x =+,当1x y ==-时,原式()()4151459=⨯-+⨯-=--=-.【点睛】本题主要考查了整式的化简求值和去括号,乘法公式,熟知相关计算法则是解题的关键.2、-14x -5,2【解析】【分析】先根据平方差公式,多项式乘多项式和完全平方公式进行计算,再合并同类项,去括号,再合并同类项,最后代入求出答案即可.【详解】解:(2x )2-[(3x -1)(3x -1)-(x +3)(x -5)-(2x -3)2]=4x 2-(9x 2-1-x 2+5x -3x +15-4x 2+12x -9)=4x 2-(4x 2+14x +5)=4x 2-4x 2-14x -5=-14x -5,当x =12-时,原式=-14×(12-)-5=7-5=2.【点睛】本题考查了整式的化简与求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.3、 (1)(ab +ax ﹣bx ﹣x 2)米2(2)不正确,理由见解析【解析】【分析】(1)根据长×宽可得面积;(2)根据矩形的面积公式和作差法比较大小可得结论.(1)依题意得:改造后长方形草坪的面积=(a ﹣x )(b +x )=(ab +ax ﹣bx ﹣x 2)米2.(2)小明的观点不正确,理由如下:设改造前长方形草坪的面积为S 前,改造后长方形草坪的面积为S 后,则S 后-S 前22()()ab ax bx x ab ax bx x x a b x =+---=--=--.∵x >0,a >b ,∴当a ﹣b ﹣x >0,即0<x <a ﹣b 时,S 后﹣S 前>0,即S 后>S 前;当a ﹣b ﹣x =0,即x =a ﹣b 时,S 后﹣S 前=0,即S 后=S 前;当a ﹣b ﹣x <0,即x >a ﹣b 时,S 后﹣S 前<0,即S 后<S 前.【点睛】本题考查了列代数式和多项式乘以多项式,解决问题的关键是读懂题意,找到所求的量的等量关系. 4、327922m m -【解析】【分析】根据同底数幂的乘法,幂的乘方和积的乘方,整式的除法计算即可.【详解】解:原式542(79)2m m m =-÷52427292m m m m =÷-÷327922m m =-. 【点睛】本题考查了同底数幂的乘法,幂的乘方和积的乘方,整式的除法,掌握()n n n ab a b =是解题的关键.5、 (1)①6;②3;③0(2)见解析(3)2【解析】【分析】(1)利用对数的定义,即可求解;(2)设log a M m =,log a N n =,则m M a =,n N a =,可得m n M a N -=,从而得到log a M m n N-=,即可求证;(3)根据对数的定义,代入即可求解.(1)解:①∵6264= ,∴2log 646=;②∵3327=∴3log 273=;③∵021= ,∴7log 10=;(2)设log a M m =,log a N n =,则m M a =,n N a =, ∴mm n n M a a N a-==, 由对数的定义得log a M m n N-=. 又∵log log a a m n M N -=- ∴log log log aa a M M N N =-; (3)455log 64log 7log 35+-()5533log 5log 7=--53log 5=-31=-2= .【点睛】本题主要考查了幂的运算,同底数幂相除,明确题意,理解对数的定义是解题的关键.。
第六章 因式分解 测试题
一、 选择题(每小题4分,共24分)
1、些列计算中正确的是( ) A a 2+b 3=2a 5 B a 4÷a=a 4 C a 2·a 4=a 8 D (-a 2)3=-a 6
2、(x-a )(x 2+ax+a 2)的计算结果是( ) A x 3+2ax 2-a 3 B x 3-a 3
C x 3+2ax-a 3
D x 2+2ax 2+2a 2-a 3
3、下面是某同学在一次检测中的计算摘录: ①3x 3·(-2x 2)=-6x 5 ②4a 3b ÷(-2a 2b)=-2a ③(a 3)2=a 5 ④(-a)3÷(-a)=-a 2 其中正确的个数有( )
A 1个
B 2个
C 3个
D 4个
4、若x 2是一个正整数的平方,则比x 大1 的整数的平方是( )
A x 2+1
B x+1
C x 2+2x+1
D x 2-2x+1 5、下列分解因式正确的是( )
A x 3-x=x(x 2-1)
B m 2+m-6=(m+3)(m-2)
C (a+4)(a-4)=a 2-16
D x 2+y 2=(x+y)(x-y)
6、如图,矩形花园ABCD 中,AB=a ,AD=b ,花园中建有一条矩形的小路LMPQ 及一条平行四边形道路 RSTK.若LM=RS=c ,则花园中可绿化部分的面积为( )。
A 、 bc-ab+ac+b 2
B 、a 2
+ab +bc-ac C 、
222-ab
二、 填空题(每小题4分,共28分)
T
K
M L C
B
A
7、(1)当x≠时,(x-4)0等于。
2)2002×(1.5)2003÷(-1)2004= (2)(
3
8、分解因式:a2-1+b2-2ab= .
9、要给n个长、宽、高分别为x,y,z的箱子打包,其打包的方式如图所示,则打包带的总长至少要
10、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值为
.
11、下表为杨辉三角系数的一部分,作用是指导读者按照规律写出形如(a+b)n(n为正整数)的展开式的系数,请仔细观察下表中的规律,填出(a+b)4展开式中所缺的系数。
(a+b)=a+b (a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
则(a+b)4=a4+ a3b+ a2b2+ ab3+b4
1
1 1
1 2 1
1 3 3 1
......
12、某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽。
发芽规律见下表(设第一年前的新芽数为a),照这样下去,第8年老芽数与总芽数的比值为(精确到0.001).
13、若x2+4x+a=(x+2)2-1成立,则满足上式a的值为
.
三、解答题:
14、(12分)
计算: [x(x2y2-xy)-y(x2-x3y)]÷x2y
15、(18分)已知m2=n+2,n2=m+2(m≠n),求m3-2mn+n3
16、(18分)
某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下的销售方案,将价格提高到原来的2.5倍,再做3次降价处理:第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.3次降价处理结果如下表:
(1)“跳楼价”占原价的百分比是多少?
(2)该商品按新销售方案销售,相比原价售完,哪种方案更盈利?。