第一轮教案:解三角形(答案)
- 格式:doc
- 大小:663.50 KB
- 文档页数:8
把握三角函数与解三角形中的最值问题微点聚焦突破类型一三角函数的最值角度1可化为“y=A sin(ωx+φ)+B”型的最值问题【例1-1】如图所示,在平面直角坐标系xOy中,扇形AOB的半径为2,圆心角为错误!,点M是弧AB上异于A,B的点。
(1)若点C(1,0),且CM=2,求点M的横坐标;(2)求△MAB面积的最大值.解(1)连接OM,依题意可得,在△OCM中,OC=1,CM=2,OM=2,所以cos ∠COM=错误!=错误!,所以点M的横坐标为2×错误!=错误!。
(2)设∠AOM=θ,θ∈错误!,则∠BOM=错误!-θ,S△MAB=S△OAM+S△OBM-S△OAB=错误!×2×2错误!-错误!×2×2×错误!=2错误!sin错误!-错误!,因为θ∈错误!,所以θ+错误!∈错误!,所以当θ=错误!时,△MAB的面积取得最大值,最大值为错误!。
思维升华化为y=A sin(ωx+φ)+B的形式求最值时,特别注意自变量的取值范围对最大值、最小值的影响,可通过比较区间端点的取值与最高点、最低点的取值来确定函数的最值.角度2可化为y=f(sin x)(或y=f(cos x))型的最值问题【例1-2】函数y=cos 2x+2sin x的最大值为________.解析y=cos 2x+2sin x=-2sin2x+2sin x+1。
设t=sin x,则-1≤t≤1,所以原函数可以化为y=-2t2+2t+1=-2错误!错误!+错误!,所以当t=错误!时,函数y取得最大值为错误!。
答案错误!思维升华可化为y=f(sin x)(或y=f(cos x))型三角函数的最值或值域可通过换元法转化为其他函数的最值或值域。
【训练1】(1)(角度1)函数f(x)=3sin x+4cos x,x∈[0,π]的值域为________.(2)(角度2)若函数f(x)=cos 2x+a sin x在区间错误!上的最小值大于零,则a的取值范围是________.解析(1)f(x)=3sin x+4cos x=5错误!=5sin(x+φ),其中cos φ=错误!,sin φ=错误!,错误!〈φ<错误!。
教学过程一、复习预习1.内角和定理;2.正弦定理;3.余弦定理;二、知识讲解考点1 内角和定理:在△ABC 中,A B C π++=;()sin sin A B C +=;()cos cos A B C +=-面积公式:111sin sin sin 222ABC S ab C bc A ac B ===; 在三角形中大边对大角,反之亦然.考点2 正弦定理在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:2sin sin sin a b c R A B C=== (解三角形的重要工具) 形式二:2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩(边角转化的重要工具)形式三:::sin :sin :sin a b c A B C = 形式四:sin 2a A R =,sin 2b B R =,sin 2c C R=考点3 余弦定理三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:2222cos a b c bc A =+-2222cos b c a ca B =+- (解三角形的重要工具)2222cos c a b ab C =+-形式二:222cos 2b c a A bc +-=222cos 2a c b B ac +-=222cos 2a b c C ab +-=三、 例题精析【例1】【题干】在ABC ∆中,若5b =,4B π∠=,1sin 3A =,则a = .【解析】正弦定理的直接应用【答案】:3【题干】在△ABC 中,已知a =3,b =2,B=45°,求A 、C 和c .【解析】:正弦定理的应用【答案】∵B=45°<90°且a sinB <b <a ,∴△ABC 有两解.由正弦定理得sinA=b Ba sin =245sin 3︒ =23,则A 为60°或120°. ①当A=60°时,C=180°-(A+B)=75°, c=B Cb sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+. ②当A=120°时,C=180°-(A+B)=15°, c=B Cb sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-. 故在△ABC 中,A=60°,C=75°,c=226+或A=120°,C=15°, c =226-【题干】设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,41cos =C . (Ⅰ)求ABC ∆的周长;(Ⅱ)求()C A -cos 的值.解题思路:本小题主要考查三角函数的基本公式和余弦定理,同时考查基本运算能力【解析】:(Ⅰ)∵441441cos 2222=⨯-+=-+=C ab b a c ∴2=c∴ABC ∆的周长为5221=++=++c b a . (Ⅱ)∵41cos =C ,∴415411cos 1sin 22=⎪⎭⎫ ⎝⎛-=-=C C , ∴8152415sin sin ===c C a A ∵c a <,∴C A <,故A 为锐角,∴7cos 8A ===∴()C A -cos C A C A sin sin cos cos +=16114158154187=⨯+⨯=. 【注】常利用到的三角公式两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-【例4】 设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c ,且32b +32c -32ab c .(Ⅰ) 求sinA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值.【解析】:(Ⅰ)由余弦定理,得222cos 2b c a A bc +-==, 又0A π<<,故1sin 3A =. (Ⅱ)原式=2sin sin 441cos 2A A A πππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭-22sin sin 442sin A A Aππ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=222sin A A A A A⎫+⎪⎪⎝⎭⎝⎭= 222sin cos 72sin 2A A A -==-.【例5】在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cosC 2c-a =cos B b. (I )求sin sin C A的值; (II )若cosB=14,∆ABC 的周长为5,求b 的长。
第3节两角和与差的正弦、余弦和正切公式考试要求 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3。
能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4。
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β.cos(α∓β)=cos αcos β±sin αsin β。
tan(α±β)=错误!。
2。
二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α。
tan 2α=错误!。
3.函数f(α)=a sin α+b cos α(a,b为常数),可以化为f(α)=错误!sin(α+φ)错误!或f(α)=错误!·cos(α-φ)错误!.[常用结论与微点提醒]1。
tan α±tan β=tan(α±β)(1∓tan αtan β)。
2。
cos2α=1+cos 2α2,sin2α=错误!。
3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=错误!sin错误!。
诊断自测1。
判断下列结论正误(在括号内打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.()(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.()(3)公式tan(α+β)=错误!可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立。
()(4)存在实数α,使tan 2α=2tan α。
第7节解三角形应用举例最新考纲能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题.知识梳理1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.5.解决与平面几何有关的计算问题关键是找清各量之间的关系,从而应用正、余弦定理求解.[微点提醒]1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混.2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.基础自测1.判断下列结论正误(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( )(2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( )(3)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√2.(必修5P11例1改编)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为()A.50 2 mB.50 3 mC.25 2 mD.2522 m解析 由正弦定理得AB sin ∠ACB =ACsin ∠CBA ,又∵∠CBA =30°,∴AB =AC sin ∠ACBsin ∠CBA=50×2212=502(m).答案 A3. (必修5P15练习T3改编)如图所示,D ,C ,B 三点在地面的同一条直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.解析 由已知得∠DAC =30°,△ADC 为等腰三角形, AD =3a ,所以在Rt △ADB 中,AB =12AD =32a .答案 32a4.(2019·雅礼中学月考)如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A.北偏东10°B.北偏西10°C.南偏东80°D.南偏西80°解析 由条件及图可知,∠A =∠CBA =40°, 又∠BCD =60°,所以∠CBD =30°, 所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 答案 D5.(2017·浙江卷)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________.解析 如图,连接正六边形的对角线,将正六边形分成六个边长为1的正三角形,从而S 6=6×12×12×sin 60°=332.答案3326.(2018·福州模拟)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.解析 因为sin ∠BAC =223,且AD ⊥AC ,所以sin ⎝ ⎛⎭⎪⎫π2+∠BAD =223,所以cos ∠BAD =223,在△BAD 中,由余弦定理, 得BD =AB 2+AD 2-2AB ·AD cos ∠BAD=(32)2+32-2×32×3×223= 3. 答案3考点一 求距离、高度问题 多维探究角度1 测量高度问题【例1-1】 如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析 由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°, 解得BC =3002(m).在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). 答案 100 6规律方法 1.在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.3.注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.【训练1】 如图,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于( )A.5 6B.15 3C.5 2D.15 6解析 在△BCD 中,∠CBD =180°-15°-30°=135°. 由正弦定理得BC sin 30°=30sin 135°, 所以BC =15 2. 在Rt △ABC 中,AB =BC tan ∠ACB =152×3=15 6. 答案 D角度2测量距离问题【例1-2】如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250米,请问:两位登山爱好者能否在2个小时内徒步登上山峰?(即从B点出发到达C点)解在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1 km,因为∠ABD=120°,由正弦定理得ABsin ∠ADB=ADsin ∠ABD,解得AD= 3 km,在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32CD,即CD2+3CD-6=0,解得CD=33-32km(负值舍去),BC=BD+CD=33-12km,两个小时小王和小李可徒步攀登1 250×2=2 500米,即2.5千米,而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.规律方法 1.选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解. 2.确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.【训练2】海轮“和谐号”从A处以每小时21海里的速度出发,海轮“奋斗号”在A处北偏东45°的方向,且与A相距10海里的C处,沿北偏东105°的方向以每小时9海里的速度行驶,则海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为________小时.解析 设海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为x 小时,如图,则由已知得△ABC 中,AC =10,AB =21x ,BC =9x ,∠ACB =120°. 由余弦定理得:(21x )2=100+(9x )2-2×10×9x ×cos 120°, 整理,得36x 2-9x -10=0,解得x =23或x =-512(舍).所以海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为23小时. 答案 23考点二 测量角度问题【例2】 已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/时的速度向岛屿北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船? ⎝ ⎛⎭⎪⎫参考数据:sin 38°≈5314,sin 22°=3314解 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为每小时x 海里,则BC =0.5x ,AC =5,依题意, ∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos 120°, 所以BC 2=49,所以BC =0.5x =7,解得x =14.又由正弦定理得sin ∠ABC =AC ·sin ∠BAC BC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船. 规律方法 1.测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.2.方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.【训练3】 如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD 等于( )A.30°B.45°C.60°D.75°解析 依题意可得AD =2010 m ,AC =30 5 m , 又CD =50 m ,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =(305)2+(2010)2-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°. 答案 B考点三 正(余)弦定理在平面几何中的应用【例3】 (2019·洛阳二模)如图,已知扇形的圆心角∠AOB =2π3,半径为42,若点C 是AB ︵上的一动点(不与点A ,B 重合).(1)若弦BC =4(3-1),求BC ︵的长; (2)求四边形OACB 面积的最大值.解 (1)在△OBC 中,BC =4(3-1),OB =OC =42,所以由余弦定理得cos ∠BOC =OB 2+OC 2-BC 22OB ·OC =32,所以∠BOC =π6,于是BC ︵的长为π6×42=223π.(2)设∠AOC =θ,θ∈⎝ ⎛⎭⎪⎫0,2π3,则∠BOC =2π3-θ,S 四边形OACB =S △AOC +S △BOC =12×42×42sin θ+12×42×42·sin ⎝ ⎛⎭⎪⎫2π3-θ=24sinθ+83cos θ=163sin ⎝ ⎛⎭⎪⎫θ+π6,由于θ∈⎝ ⎛⎭⎪⎫0,2π3,所以θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,当θ=π3时,四边形OACB 的面积取得最大值16 3.规律方法 1.把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解.2.寻找各个三角形之间的联系,交叉使用公共条件,求出结果,求解时要灵活利用平面几何的性质,将几何性质与正弦、余弦定理有机结合起来.【训练4】(2019·成都诊断)如图,在平面四边形ABCD中,已知A=π2,B=2π3,AB=6.在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=2π3,EC=7.(1)求sin∠BCE的值;(2)求CD的长.解(1)在△BEC中,由正弦定理,知BEsin∠BCE=CEsin B,因为B=2π3,BE=1,CE=7,所以sin∠BCE=BE·sin BCE=327=2114.(2)因为∠CED=B=2π3,所以∠DEA=∠BCE,所以cos∠DEA=1-sin2∠DEA=1-sin2∠BCE=1-328=5714.因为A=π2,所以△AED为直角三角形,又AE=5,所以ED=AEcos∠DEA=55714=27.在△CED中,CD2=CE2+DE2-2CE·DE·cos∠CED=7+28-2×7×27×⎝⎛⎭⎪⎫-12=49.所以CD=7.[思维升华]利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型;(2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义. [易错防范]在三角形和三角函数的综合问题中,要注意边角关系相互制约,推理题中的隐含条件.基础巩固题组(建议用时:40分钟)一、选择题1.在相距2 km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为()A. 6 kmB. 2 kmC. 3 kmD.2 km解析如图,在△ABC中,由已知可得∠ACB=45°,∴ACsin 60°=2sin 45°,∴AC=22×32=6(km).答案 A2.如图所示,为了测量某湖泊两侧A,B间的距离,李宁同学首先选定了与A,B 不共线的一点C(△ABC的角A,B,C所对的边分别记为a,b,c),然后给出了三种测量方案:①测量A,C,b;②测量a,b,C;③测量A,B,a.则一定能确定A,B间的距离的所有方案的序号为()A.①②B.②③C.①③D.①②③解析对于①③可以利用正弦定理确定唯一的A,B两点间的距离,对于②直接利用余弦定理即可确定A ,B 两点间的距离. 答案 D3.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( ) A.102海里 B.103海里 C.203海里D.202海里解析 如图所示,易知,在 △ABC 中,AB =20,∠CAB =30°,∠ACB =45°, 根据正弦定理得BC sin 30°=AB sin 45°,解得BC =102(海里). 答案 A4.(2019·深圳模拟)一架直升飞机在200 m 高度处进行测绘,测得一塔顶与塔底的俯角分别是30°和60°,则塔高为( ) A.4003 m B.40033 m C.20033 mD.2003 m 解析 如图所示.在Rt △ACD 中可得CD =20033=BE ,在△ABE 中,由正弦定理得AB sin 30°=BEsin 60°,则AB =2003,所以DE =BC =200-2003=4003(m). 答案 A5.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A.240(3-1)mB.180(2-1)mC.120(3-1)mD.30(3+1)m解析 如图,∠ACD =30°,∠ABD =75°,AD =60 m ,在Rt △ACD 中,CD =AD tan ∠ACD =60tan 30°=603(m),在Rt △ABD 中,BD =AD tan ∠ABD =60tan 75°=602+3=60(2-3)(m),∴BC =CD -BD =603-60(2-3)=120(3-1)(m). 答案 C 二、填空题6.如图,在△ABC 中,B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =________.解析 在△ACD 中,由余弦定理可得 cos C =49+9-252×7×3=1114,则sin C =5314.在△ABC 中,由正弦定理可得AB sin C =ACsin B ,则AB =AC sin C sin B =7×531422=562.答案5627.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.解析 连接OC ,由题意知CD =150米,OD =100米,∠CDO =60°.在△COD 中,由余弦定理得OC 2=CD 2+OD 2-2CD ·OD ·cos 60°,即OC =507. 答案 5078.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________.解析 在△ABC 中,AB =40,AC =20,∠BAC =120°, 由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207. 由正弦定理,得AB sin ∠ACB =BC sin ∠BAC⇒sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277. 由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°) =cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114.答案 2114 三、解答题9.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m ,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s 后看山顶的俯角为45°,则山顶的高度为多少米?(取2=1.4,3=1.7)解 如图,作CD 垂直于AB 的延长线于点D ,由题意知∠A =15°,∠DBC =45°,所以∠ACB =30°,AB =50×420=21 000(m).又在△ABC 中,BC sin A =ABsin ∠ACB,所以BC=21 00012×sin 15°=10 500(6-2).因为CD⊥AD,所以CD=BC·sin∠DBC=10 500(6-2)×22=10 500(3-1)≈7 350(m).故山顶的高度为10 000-7 350=2 650(m).10.在△ABC中,A=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.解设△ABC的内角A,B,C所对边的长分别是a,b,c,由余弦定理,得a2=b2+c2-2bc cos∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a=310.又由正弦定理,得sin B=b sin∠BACa=3310=1010,由题设知0<B<π4,所以cos B=1-sin2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B.由正弦定理,得AD=AB·sin Bsin(π-2B)=6sin B2sin B cos B=3cos B=10.能力提升题组(建议用时:20分钟)11.(2018·衡水质检)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处(点C在水平地面下方,O为CH与水平地面ABO 的交点)进行该仪器的垂直弹射,水平地面上两个观察点A,B两地相距100米,∠BAC=60°,其中A到C的距离比B到C的距离远40米.A地测得该仪器在C 处的俯角为∠OAC=15°,A地测得最高点H的仰角为∠HAO=30°,则该仪器的垂直弹射高度CH 为( )A.210(6+2)米B.1406米C.2102米D.20(6-2)米解析 由题意,设AC =x 米,则BC =(x -40)米,在△ABC 内,由余弦定理:BC 2=BA 2+CA 2-2BA ·CA ·cos ∠BAC ,即(x -40)2=x 2+10 000-100x ,解得x =420(米).在△ACH 中,AC =420米,∠CAH =30°+15°=45°,∠CHA =90°-30°=60°, 由正弦定理:CH sin ∠CAH =AC sin ∠AHC .可得CH =AC ·sin ∠CAHsin ∠AHC =1406(米).答案 B12.校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10 6 m(如图所示),旗杆底部与第一排在一个水平面上.若国歌时长为50 s ,升旗手应以________m/s 的速度匀速升旗.解析 依题意可知∠AEC =45°,∠ACE =180°-60°-15°=105°, ∴∠EAC =180°-45°-105°=30°. 由正弦定理可知CE sin ∠EAC =AC sin ∠CEA,∴AC =CEsin ∠EAC·sin ∠CEA =20 3 m.∴在Rt △ABC 中,AB =AC ·sin ∠ACB =203×32=30 m.∵国歌时长为50 s ,∴升旗速度为3050=0.6 m/s. 答案 0.613.某人为测出所住小区的面积,进行了一些测量工作,最后将所住小区近似地画成如图所示的四边形,测得的数据如图所示,则该图所示的小区的面积是________km 2.解析 如图,连接AC ,由余弦定理可知AC =AB 2+BC 2-2AB ·BC ·cos B=3,故∠ACB =90°,∠CAB =30°,∠DAC =∠DCA =15°,∠ADC =150°, 由AC sin ∠ADC =ADsin ∠DCA,得AD =AC sin ∠DCA sin ∠ADC=32-62,故S 四边形ABCD =S △ABC +S △ADC =12×1×3+12×⎝ ⎛⎭⎪⎫32-622×12=6-34(km 2).答案6-3414.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.解(1)∵AD∶AB=2∶3,∴可设AD=2k,AB=3k(k>0).又BD=7,∠DAB=π3,∴由余弦定理,得(7)2=(3k)2+(2k)2-2×3k×2k cos π3,解得k=1,∴AD=2,AB=3,sin∠ABD=AD sin∠DABBD=2×327=217.(2)∵AB⊥BC,∴cos∠DBC=sin∠ABD=21 7,∴sin∠DBC=277,∴BDsin∠BCD=CDsin∠DBC,∴CD=7×27732=433.。
解直角三角形教案高一数学教案解三角形篇一一、趣味数学,创设问题悬念。
谁能用牛皮筋很快的拉出一个五角星?(学生动手)你知道五角星的五个内角的和是多少度吗?不知道没有关系,只要你这一节课用心的学习,你自己就能解决这个问题。
二、口述目标,板书课题。
这一节课我们主要研究两个问题1、三角形的外角和他的'内角有什么关系?2、三角形的外角和是多少度?三、学一学。
让学生自己阅读课本第54页的内容,然后结合老师课件上的图形,把你学到的新内容和大家交流一下,其他的学生可以补充。
(三角形的外角和他相邻的内角的关系简单,让学生自己完成)四、猜一猜。
通过自己的努力,知道了三角形的外角和他相邻的内角的关系,那我们下面该研究什么问题?五、动一动。
1、提出问题:∠A+∠C与∠ABD的大小有什么关系?你用什么方法验证你的结论?(小组讨论交流)2、小组:(1)度量的方法(2)叠合法3、小结:∠A+∠C=∠ABD4、你能用语言表述这个结论吗?(让学生互相补充)5、你选谁?∠ABD( )∠A ∠ABD( )∠C (用>,<填空) 6、你能用语言表述这个结论吗? 7、师生共同小结:三角形的外角与他不相邻的两个内角的关系。
六、小试身手七、阅读填空(多媒体) 1、介绍什么叫三角形的外角和? 2、学生通过阅读总结结论。
3、随堂练习。
八、小结让学生说一说自己的收获。
九、解决趣味数学。
十、拓展练习(课后作业) 用牛皮筋拉出其他的形状,并求出所有内角的和。
高一数学教案解三角形篇二目标: 1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、了解三角形的高,并能在具体的三角形中作出它们。
重点:在具体的三角形中作出三角形的高。
教学难点:画出钝角三角形的三条高。
活动准备:学生预先剪好三种三角形,一副三角板。
教学过程:过三角形的一个顶点A,你能画出它的对边BC的垂线吗?试试看,你准行!从而引出新课:1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
解直角三角形教学目标【知识与技能】使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.【过程与方法】通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.【情感态度】渗透数形结合的数学思想,培养学生良好的学习习惯.【教学重点】直角三角形的解法.【教学难点】三角函数在解直角三角形中的灵活运用.教学过程一、情景导入,初步认知1.什么是锐角三角函数?2.你知道哪些特殊的锐角三角函数值?【教学说明】通过复习,使学生便于应用.二、思考探究,获取新知1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)边、角之间的关系:sinA=∠A的对边/斜边 cosA=∠A的邻边/斜边tanA=∠A的对边/∠A的邻边(2)三边之间的关系:a2+b2=c2 (勾股定理)(3)锐角之间的关系:∠A+∠B=90°.3.做一做:在直角三角形ABC 中,已知两边,你能求出这个直角三角形中其它的元素吗?4.做一做:在直角三角形ABC 中,已知一角一边,你能求出这个直角三角形中其它的元素吗?5.想一想:在直角三角形ABC 中,已知两角,你能求出这个直角三角形中其它的元素吗?6.如图,在Rt △ABC 中,∠C=90°,∠A=30°,a=5.求∠B 、b 、c.解:∵∠B=90°-∠A=60°,又∵tanB=b/a ,∴b=a ·tanB=5·tan60°.∵sinA=a/c ,∴c=a/sinA=5/sin30°=10.【归纳结论】像这样,在直角三角形中,利用已知元素求其余未知元素的过程,叫作解直角三角形.7.在解直角三角形中,两个已知元素中至少有一条边.【教学说明】我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.三、运用新知,深化理解1.见教材P 122例2 .2.已知在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,c =,∠A =60°,求∠B 、a 、b .解:a =csin60°=/2=12,b =ccos60°=·1/2=,∠B =30°.3.已知在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,a =, ∠A=30°,求∠B 、b 、c. 解:∠B =90°-30°=60°,b =atanB=·3=92,.4.已知在△ABC中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,c -2,a -1 , 求∠A 、∠B 、 b.5.已知在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,a =6,b =,求 ∠A 、∠B 、c.解:由于 tanA =ab ,所以则∠A =60°,∠B =90°-60°=30°,且有c =2b =2×=.6.在直角三角形ABC 中,锐角A 为30°,锐角B 的平分线BD 的长为8cm ,求这个三角形的三条边的长.解:由已知可得△BCD 是含30°的直角三角形,所以CD =1/2BD =1/2× 8=4 (cm ),△ADB 是等腰三角形,所以AD =BD =8(cm ),则有 AC =8+4=12(cm ),BC =ACcot60°= 12×33=43(cm ),AB =(43)2+122=48+144=83(cm).7.如图,在三角形纸片ABC 中,∠C=90°,AC=6,折叠该纸片,使点C 落在AB 边上的D 点处,折痕BE 与AC 交于点E ,若AD=BD ,则折痕BE 的长为多少?分析:先根据图形翻折变换的性质得出BC=BD ,∠BDE=∠C=90°,再根据AD=BD 可知AB=2BC ,AE=BE ,故∠A=30°,由锐角三角函数的定义可求出BC 的长,设BE=x ,则CE=6-x ,在Rt △BCE 中根据勾股定理即可得出BE 的长.解:∵△BDE 是由△BCE 翻折而成,∴BC=BD ,∠BDE=∠C=90°,∵AD=BD ,∴AB=2BC ,AE=BE ,∴∠A=30°,在Rt △ABC 中,∵AC=6,,设BE=x ,则CE=6-x ,在Rt △BCE 中,∵,BE=x ,CE=6-x ,BE 2=CE 2+BC 2,∴x 2=(6-x )2+()2,解得x=4.即BE=4.【教学说明】解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了针对各种条件的练习,培养学生熟练解直角三角形和运算的能力.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.3”中第1、3、4 题.教学反思解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.第1课时俯角和仰角问题教学目标【知识与技能】比较熟练地应用解直角三角形的知识解决与仰角、俯角有关的实际问题.【过程与方法】通过学习进一步掌握解直角三角形的方法.【情感态度】培养学生把实际问题转化为数学问题的能力.【教学重点】应用解直角三角形的知识解决与仰角、俯角有关的实际问题.【教学难点】选用恰当的直角三角形,分析解题思路.一、情景导入,初步认知海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.【教学说明】经历探索船是否有触礁危险的过程,进一步体会三角函数在解决实际问题中的应用.二、思考探究,获取新知1.某探险者某天到达如图所示的点A处,他准备估算出离他的目的地——海拔为3500m 的山峰顶点B处的水平距离.你能帮他想出一个可行的办法吗?分析:如图,BD表示点B的海拔,AE表示点A的海拔,AC⊥BD,垂足为点C.先测量出海拔AE,再测出仰角∠BAC,然后用锐角三角函数的知识就可以求出A、B之间的水平距离AC.【归纳结论】当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫作仰角,在水平线下方的角叫作俯角.2.如图,在离上海东方明珠塔底部1000m的A处,用仪器测得塔顶的仰角为25°,仪器距地面高为1.7m.求上海东方明珠塔的高度.(结果精确到1m)解:在Rt△ABC中,∠BAC=25°,AC=1000m,因此t an25°=BC/AC=BC/1000∴BC=1000×tan25°≈466.3(m),∴上海东方明珠塔的高度(约)为466.3+1.7=468米.【教学说明】利用实际问题承载数学问题,提高了学生的学习兴趣.教师要帮助学生学会把实际问题转化为解直角三角形问题,从而解决问题.三、运用新知,深化理解1.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地平面控制点B的俯角α=16°31′,求飞机A到控制点B的距离.(精确到1米)分析:利用正弦可求.解:在Rt△ABC中sinB=AC/AB∴AB=AC/sinB=1200/0.2843≈4221(米)答:飞机A到控制点B的距离约为4221米.2.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?解析:在Rt△ABD中,α=30°,AD=120.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.解:如图,α=30°,β=60°,AD=120.答:这栋高楼约高277.1m.3.如图,在离树BC12米的A处,用测角仪测得树顶的仰角是30°,测角仪AD高为1.5米,求树高BC.(计算结果可保留根号)分析:本题是一个直角梯形的问题,可以通过过点D作DE⊥BC于E,把求CB的问题转化求BE的长,从而可以在△BDE中利用三角函数.解:过点D作DE⊥BC于E,则四边形DECA是矩形,∴DE=AC=12米.CE=AD=1.5米.在直角△BED中,∠BDE=30°,4.广场上有一个充满氢气的气球P,被广告条拽着悬在空中,甲乙二人分别站在E、F 处,他们看气球的仰角分别是30°、45°,E点与F点的高度差AB为1米,水平距离CD为5米,FD的高度为0.5米,请问此气球有多高?(结果保留到0.1米)分析:由于气球的高度为PA+AB+FD,而AB=1米,FD=0.5米,故可设PA=h米,根据题意,列出关于h的方程可求解.解:设AP=h米,∵∠PFB=45°,∴BF=PB=(h+1)米,∴EA=BF+CD=h+1+5=(h+6)米,在Rt△PEA中,PA=AE·tan30°,∴h=(h+6)tan30°,∴气球的高度约为PA+AB+FD=8.2+1+0.5=9.7米.【教学说明】巩固所学知识.要求学生学会把实际问题转化成数学问题;根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.4”中第2、4、5 题.教学反思本节课我们学习了有关仰角、俯角的解直角三角形的应用题,对于这些问题,一方面要把它们转化为解直角三角形的数学问题,另一方面,针对转化而来的数学问题应选用适当的数学知识加以解决.第2课时坡度和方位角问题教学目标【知识与技能】1.了解测量中坡度、坡角的概念;2.掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度、与弧长的有关实际问题.【过程与方法】通过对例题的学习,使学生能够利用所学知识解决实际问题.【情感态度】进一步培养学生把实际问题转化为数学问题的能力.【教学重点】能利用解直角三角形的知识,解决与坡度、与弧长有关的实际问题.【教学难点】能利用解直角三角形的知识,解决与坡度、与弧长的有关实际问题.教学过程一、情景导入,初步认知如图所示,斜坡AB和斜坡A1B1,哪一个倾斜程度比较大?显然,斜坡A1B1的倾斜程度比较大,说明∠A1>∠A.即tanA1>tanA.【教学说明】通过实际问题的引入,提高学生学习的兴趣.二、思考探究,获取新知1.坡度的概念,坡度与坡角的关系.如上图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平前进的距离的比叫作坡度(或坡比),记作i,即i=AC/BC,坡度通常用l∶m的形式,例如上图中的1∶2的形式.坡面与水平面的夹角叫作坡角,记作α.从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡.2.如图,一山坡的坡度为i=1∶2,小刚从山脚A出发,沿山坡向上走了240米到达点C,这座山坡的坡角是多少度?小刚上升了多少米?(角度精确到0.01°,长度精确到0.1米)3.如图,一艘船以40km/h的速度向正东航行,在A处测得灯塔C在北偏东60°方向上,继续航行1h到达B处,这时测得灯塔C在北偏东30°方向上,已知在灯塔C的四周30km内有暗礁.问这艘船继续向东航行是否安全?【教学说明】教师引导学生分析题目中的已知条件分别代表的是什么,将图形中的信息转化为图形中的已知条件,再分析图形求出问题.学生独立完成.三、运用新知,深化理解1.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是 5.5m,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).分析:引导学生将实际问题转化为数学问题画出图形.解:已知:在Rt△ABC中,∠C=90°,AC=5.5,∠A=24°,求AB.在Rt△ABC中,cosA=AC/AB,∴AB=AC/cosA=5.5/0.9135≈6.0(米)答:斜坡上相邻两树间的坡面距离约是6.0米.2.同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).解:作BE⊥AD,CF⊥AD,在Rt△ABE和Rt△CDF中,BE/AE=1/3,CF/FD=1/2.5∴AE=3BE=3×23=69(m).FD=2.5CF=2.5×23=57.5(m).∴AD=AE+EF+FD=69+6+57.5=132.5(m).因为斜坡AB 的坡度i =tan α=1/3≈0.3333,所以α≈18°26′.∵BE/AB=sin α,∴AB=BE/sin α=23/0.3162≈72.7(m ).答:斜坡AB 的坡角α约为18°26′,坝底宽AD 为132.5米,斜坡AB 的长约为72.7米.3.庞亮和李强相约周六去登山,庞亮从北坡山脚C 处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度i=1,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB 、AC 看成线段,结果保留根号)解:过点A 作AD ⊥BC 于点D ,答:李强以米/分钟的速度攀登才能和庞亮同时到达山顶A .4.某公园有一滑梯,横截面如图所示,AB 表示楼梯,BC 表示平台,CD 表示滑道.若点E ,F 均在线段AD 上,四边形BCEF 是矩形,且sin ∠BAF=2/3,BF=3米,BC=1米,CD=6米.求:(1) ∠D的度数;(2)线段AE的长.解:(1)∵四边形BCEF是矩形,∴∠BFE=∠CEF=90°,CE=BF,BC=FE,∴∠BFA=∠CED=90°,∵CE=BF,BF=3米,∴CE=3米,∵CD=6米,∠CED=90°,∴∠D=30°.(2)∵sin∠BAF=2/3,∴BFAB=2/3,∵BF=3米,∴AB=92米,.5.日本福岛发生核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A处,观测到某港口城市P位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B处,这时观察到城市P位于海检船的南偏西36.9°方向,求此时海检船所在B处与城市P 的距离.(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)分析:过点P作PC⊥AB,构造直角三角形,设PC=x海里,用含有x的式子表示AC,BC的值,从而求出x的值,再根据三角函数值求出BP的值即可解答.解:过点P作PC⊥AB,垂足为C,设PC=x海里.在Rt△APC中,∵tanA=PCAC,∴AC=PC/tan67.5°=5x/12在Rt△PCB中,∵tanB=PC/BC,∴BC=x/tan36.9°=4x/3∵从上午9时到下午2时要经过五个小时,∴AC+BC=AB=21×5,∴5x/12+4x/3=21×5,解得x=60.∵sin∠B=PC/PB,∴PB=PC/sinB=60sin36.9°=60×5/3=100(海里)∴海检船所在B处与城市P的距离为100海里.【教学说明】通过练习,巩固本节课所学内容.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.1”中第1、6、7 题.教学反思通过本节课的学习,使学生知道坡度、坡角的概念,能利用解直角三角形的知识解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决.。
数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。
本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。
在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。
第7讲 正弦定理与余弦定理, )1.正弦定理和余弦定理(1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin_B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.辨明两个易误点(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,可能出现一解、两解或无解,所以要注意分类讨论.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.2.余弦定理的推导过程如图,设CB →=a ,CA →=b , AB →=c .则c =a -b ,所以|c |2=(a -b )2=a 2-2a ·b +b 2=|a |2+|b |2-2|a ||b |cos C . 即c 2=a 2+b 2-2ab cos C . 同理可证a 2=b 2+c 2-2bc cos A .b 2=c 2+a 2-2ca cos B .3.三角形解的判断1.教材习题改编在△ABC 中,A =45°,C =30°,c =6,则a 等于( ) A .3 2 B .6 2 C .2 6D .3 6B 由正弦定理得a sin A =csin C,所以a =6sin 45°sin 30°=6×2212=6 2.2.教材习题改编在非钝角△ABC 中,2b sin A =3a ,则B 角为( ) A .π6B .π4C .π3D .π2C 由正弦定理得b sin A =a sin B ,所以2a sin B =3a ,即sin B =32,又B 非钝角,所以B =π3,故选C. 3.教材习题改编已知△ABC 的三边之比为3∶5∶7,则最大角为( ) A .2π3B .3π4C .5π6D .7π12A 由三边之比为a ∶b ∶c =3∶5∶7,可设a =3k ,b =5k ,c =7k (k >0),由余弦定理得cos C =a 2+b 2-c 22ab=(3k )2+(5k )2-(7k )22×3k ×5k =-12,又0<C <π,所以C =2π3.4.教材习题改编在非钝角△ABC 中,a =1,b =2,S △ABC =32,则c 等于________. 由三角形面积公式得12×1×2×sin C =32,即sin C =32,又0°<C ≤90°, 所以C =60°,由余弦定理得c 2=a 2+b 2-2ab cos C =1+4-2×1×2×cos 60°=3, 所以c = 3. 3利用正、余弦定理解三角形(高频考点)利用正、余弦定理解三角形是高考的热点,三种题型在高考中时有出现,其试题为中档题.高考对正、余弦定理的考查主要有以下两个命题角度: (1)由已知求边和角;(2)解三角形与三角函数相结合.(1)(2016·高考全国卷乙)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a=5,c =2,cos A =23,则b =( )A . 2B . 3C .2D .3(2)(2016·高考全国卷丙)在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( )A .310 B .1010C .55D .31010(3)(2016·高考全国卷甲)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.【解析】 (1)由余弦定理,得4+b 2-2×2b cos A =5,整理得3b 2-8b -3=0,解得b =3或b =-13(舍去),故选D.(2)设BC 边上的高为AD ,则BC =3AD ,DC =2AD ,所以AC =AD 2+DC 2=5AD .由正弦定理,知ACsin B=BCsin A,即5AD22=3AD sin A,解得sin A =31010,故选D.(3)法一:因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而sin B =sin(A+C )=sin A cos C +cos A sin C =35×513+45×1213=6365.由正弦定理a sin A =bsin B,得b =a sin B sin A =2113. 法二: 因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而cos B =-cos(A+C )=-cos A cos C +sin A ·sin C =-45×513+35×1213=1665.由正弦定理a sin A =csin C,得c =a sin C sin A =2013.由余弦定理b 2=a 2+c 2-2ac cos B ,得b =2113.法三:因为cos A =45,cos C =513,所以sin A =35,sin C =1213,由正弦定理a sin A =c sin C ,得c =a sin C sin A =2013.从而b =a cos C +c cos A =2113.法四:如图,作BD ⊥AC 于点D ,由cos C =513,a =BC =1,知CD =513,BD =1213.又cos A =45,所以tan A =34,从而AD =1613.故b =AD +DC =2113.【答案】 (1)D (2)D (3)2113利用正、余弦定理解三角形的应用(1)解三角形时,如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.角度一 由已知求边和角1.在△ABC 中,2a cos A +b cos C +c cos B =0,则角A 为( ) A .π6B .π3C .2π3D .5π6C 由余弦定理得2a cos A +b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=0,即2a cos A +a =0,所以cos A =-12,A =2π3.故选C.角度二 解三角形与三角函数相结合2.(2017·安徽皖南八校联考)已知向量m =⎝ ⎛⎭⎪⎫32,-sin x ,n =(1,sin x +3cos x ),x ∈R ,函数f (x )=m ·n .(1)求f (x )的最小正周期及值域;(2)已知△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,若f (A )=0,a =3,bc =2,求△ABC 的周长.(1)由题知f (x )=-sin 2x -3sin x cos x +32=cos 2x -3sin x cos x +12=cos ⎝ ⎛⎭⎪⎫2x +π3+1,所以f (x )的最小正周期为T =2π2=π,因为x ∈R ,所以-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1, 故f (x )的值域为.(2)f (A )=cos ⎝ ⎛⎭⎪⎫2A +π3+1=0,cos ⎝ ⎛⎭⎪⎫2A +π3=-1,由A ∈(0,π),得A =π3,在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,又a =3,bc =2,所以(b +c )2=9,b +c =3,所以△ABC 的周长为3+ 3.利用正、余弦定理判定三角形的形状在△ABC 中,若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,试判断△ABC 的形状. 【解】 法一:利用边的关系来判断: 由正弦定理得sin C sin B =c b,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又由余弦定理得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又因为a 2+b 2-c 2=ab .所以2b 2-c 2=b 2,所以b 2=c 2, 所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 法二:利用角的关系来判断: 因为A +B +C =180°, 所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B , 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°,所以C =60°, 所以△ABC 为等边三角形.判断三角形形状的两种途径(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角三角函数间的关系,通过三角函数恒等变换,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论,在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形D 因为(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), 所以b 2=a 2,所以2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .法一:由正弦定理知a =2R sin A ,b =2R sin B , 所以sin 2A cos A sinB =sin 2B sin A cos B ,又sin A ·sin B ≠0,所以sin A cos A =sin B cos B ,所以sin 2A =sin 2B . 在△ABC 中,0<2A <2π,0<2B <2π,所以2A =2B 或2A =π-2B .所以A =B 或A +B =π2.所以△ABC 为等腰三角形或直角三角形,故选D. 法二:由正弦定理、余弦定理得:a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,所以a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), 所以(a 2-b 2)(a 2+b 2-c 2)=0, 所以a 2-b 2=0或a 2+b 2-c 2=0, 即a =b 或a 2+b 2=c 2.所以△ABC 为等腰三角形或直角三角形.故选D.与三角形面积有关的问题(2017·唐山统考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c sin B=b cos C =3.(1)求b ;(2)若△ABC 的面积为212,求c .【解】 (1)由正弦定理得sin C sin B =sin B cos C , 又sin B ≠0,所以sin C =cos C ,C =45°. 因为b cos C =3, 所以b =3 2.(2)因为△ABC 的面积S =12ac sin B =212,c sin B =3,所以a =7.又c 2=a 2+b 2-2ab cos C =25,所以c =5.与三角形面积有关问题的解题策略(1)求三角形的面积.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.(3)求有关三角形面积或周长的最值(范围)问题.一般转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,且(2b -c )·cos A=a cos C .(1)求角A 的大小;(2)若a =3,b =2c ,求△ABC 的面积. (1)由(2b -c )cos A =a cos C ,得2sin B cos A =sin A cos C +sin C cos A ,即2sin B cos A =sin(A +C ),所以2sin B cos A =sin B , 因为0<B <π,所以sin B ≠0, 所以cos A =12,因为0<A <π,所以A =π3.(2)因为a =3,b =2c , 由(1)得A =π3,所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12, 解得c =3,所以b =2 3.所以S △ABC =12bc sin A =12×23×3×32=332., )——正、余弦定理的应用(本题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.(1)(2)(1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C ,所以-cos 2B =sin 2C .(3分) 又由A =π4,即B +C =34π,得-cos 2B =sin 2C =2sin C cos C , 解得tan C =2.(6分)(2)由tan C =2,C ∈(0,π),得 sin C =255,cos C =55.(8分)因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010.(9分)由正弦定理得c =22b3,(10分)又因为A =π4,12bc sin A =3,所以bc =62,(11分)故b =3.(12分)(1)本题是解三角形与三角恒等变换的结合,求解中首先利用正弦定理把边的关系转化为三角函数关系,再利用恒等变换,再次应用正弦定理,求解所求问题.(2)计算准确,争取得满分①公式运用要准确,这是计算正确的前提.②算数要准确无误,尤其注意正、负号的选择,计算时要尽量利用学过的公式简化计算过程., )1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =2a sin B ,则A =( ) A .30° B .45° C .60°D .75°A 因为在锐角△ABC 中,b =2a sinB ,由正弦定理得,sin B =2sin A sin B ,所以sinA =12,又0°<A <90°,所以A =30°.2.(2017·兰州一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =7,b =3,c =2,则A =( )A .π6B .π4C .π3D .π2C 易知cos A =b 2+c 2-a 22bc =32+22-(7)22×3×2=12,又A ∈(0,π),所以A =π3,故选C.3.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定C 由正弦定理得b sin B =csin C, 所以sin B =b sin Cc=40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.4.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定B 依据题设条件的特点,由正弦定理,得sin B ·cosC +cos B sin C =sin 2A ,有sin(B +C )=sin 2A ,从而sin(B +C )=sin A =sin 2A ,解得sin A =1,所以A =π2,故选B.5.(2017·东北三校高三模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =13,sin C =3sin B ,且S △ABC =2,则b =( )A .1B .2 3C .3 2D .3A 因为cos A =13,所以sin A =223.又S △ABC =12bc sin A =2,所以bc =3.又sin C =3sin B ,所以c =3b ,所以b =1,c =3,故选A.6.(2017·大连一模)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高为( ) A .32 B .332C .34D . 3B 在△ABC 中,由余弦定理可得,AC 2=AB 2+BC 2-2AB ×BC ×cos B ,因为AC =7,BC =2,B =60°,所以7=AB 2+4-4×AB ×12,所以AB 2-2AB -3=0,所以AB =3,作AD ⊥BC ,垂足为D ,则在Rt △ADB 中,AD =AB ×sin 60°=332,即BC 边上的高为332.7.(2016·高考山东卷改编)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =________.由余弦定理得a 2=b 2+c 2-2bc cos A =2b 2-2b 2cos A ,所以2b 2(1-sin A )=2b 2(1-cosA ),所以sin A =cos A ,即tan A =1,又0<A <π,所以A =π4.π48.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4. 49.(2017·海淀期末检测)已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,a sinA sinB +b cos 2A =2a ,则角A 的取值范围是________.由已知及正弦定理得sin 2A sinB +sin B cos 2A =2sin A ,即sinB (sin 2A +cos 2A )=2sinA ,所以sinB =2sin A ,所以b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac≥23ac 4ac =32,当且仅当c =3a 时取等号,因为A 为三角形的内角,且y =cos x 在(0,π)上是减函数,所以0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎥⎤0,π6.⎝ ⎛⎦⎥⎤0,π610.(2017·广东揭阳一模)已知△ABC 中,角A 、32B 、C 成等差数列,且△ABC 的面积为1+2,则AC 边的长的最小值是________.因为A 、32B 、C 成等差数列,所以A +C =3B ,又A +B +C =π, 所以B =π4,设角A ,B ,C 所对的边分别为a ,b ,c . 由S △ABC =12ac sin B =1+2得ac =2(2+2),由余弦定理及a 2+c 2≥2ac , 得b 2≥(2-2)ac ,即b 2≥(2-2)×2(2+2),所以b ≥2,所以AC 边的长的最小值为2. 211.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,已知c -b =2b cos A . (1)若a =26,b =3,求c ; (2)若C =π2,求角B .(1)由c -b =2b cos A 及余弦定理cos A =b 2+c 2-a 22bc ,得c -b =2b ·b 2+c 2-a 22bc =b 2+c 2-a 2c,即a 2=b 2+bc ,所以(26)2=32+3c ,解得c =5. (2)因为c -b =2b cos A ,所以由正弦定理得sin C -sin B =2sin B cos A ,又C =π2,所以1-sin B =2sin B cos A ,所以1-sin B =2sin B cos ⎝ ⎛⎭⎪⎫π2-B , 所以1-sin B =2sin 2B , 即(2sin B -1)(sin B +1)=0, 所以sin B =12或sin B =-1(舍去),因为0<B <π2,所以B =π6.12.在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________. 如图,在△ABD 中,由正弦定理,得 AD sin B =ABsin ∠ADB , 所以sin ∠ADB =22. 由题意知0°<∠ADB <60°, 所以∠ADB =45°,所以∠BAD =180°-45°-120°=15°. 所以∠BAC =30°,∠C =30°, 所以BC =AB = 2. 在△ABC 中,由正弦定理, 得ACsin B =BCsin ∠BAC,所以AC = 6. 613.(2017·湖北三市第二次联考)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a sin B =-b sin ⎝⎛⎭⎪⎫A +π3.(1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值. (1)因为a sin B =-b sin ⎝ ⎛⎭⎪⎫A +π3,所以由正弦定理得sin A =-sin ⎝⎛⎭⎪⎫A +π3,即sin A =-12sin A -32cos A ,化简得tan A =-33, 因为A ∈(0,π),所以A =5π6. (2)因为A =5π6,所以sin A =12,由S =34c 2=12bc sin A =14bc ,得b =3c , 所以a 2=b 2+c 2-2bc cos A =7c 2,则a =7c , 由正弦定理得sin C =c sin A a =714. 14.(2017·河南郑州模拟)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos 2C -cos 2A =2sin ⎝ ⎛⎭⎪⎫π3+C ·sin ⎝ ⎛⎭⎪⎫π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围. (1)由已知得2sin 2A -2sin 2C=2⎝ ⎛⎭⎪⎫34cos 2C -14sin 2C , 化简得sin A =±32, 因为A 为△ABC 的内角, 所以sin A =32,故A =π3或2π3. (2)因为b ≥a ,所以A =π3.由正弦定理得b sin B =c sin C =asin A=2,得b =2sin B ,c =2sin C , 故2b -c =4sin B -2sin C =4sin B -2sin ⎝⎛⎭⎪⎫2π3-B=3sin B -3cos B =23sin ⎝⎛⎭⎪⎫B -π6.因为b ≥a , 所以π3≤B <2π3,则π6≤B -π6<π2, 所以2b -c =23sin ⎝⎛⎭⎪⎫B -π6∈[3,23).。
数学5 第一章 解三角形第1课时课题: §1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
解三角形(2011高考真题)1.在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,若22a b -=,sin C B =,则A =( A ). A.30︒ B .60︒ C .120︒ D .150︒2.在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2s i nc o sc o s A A B +=(D )A .-12B .12C . -1D .13.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(C) (A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ4.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足22a b 4()c +-=,且C=60°,则ab= (A)(A )43 (B )8-235.若的内角、、满足,则( D)(A)(B)(C) (D)6.在ABC V 中,60,B AC == 2AB BC +的最大值为7.在ABC ∆中,D 为BC 边上一点,3BC BD =,AD =,135ADB ο∠=.若AC =,则BD=_ 8.已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,,12cos()0B C ++=,边BC 上的高213+10.在△ABC 中,若5b =,4B π∠=,tan 2A =,则sin A =552,a =102 11.△ABC 中,AB=AC=2,BC= D 在BC 边上,∠ADC=45°,则AD12.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于213.设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,41cos =C . (Ⅰ)求ABC ∆的周长; (Ⅱ)求()C A -cos 的值.本小题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查基本运算能力 解析:(Ⅰ)∵441441cos 2222=⨯-+=-+=C ab b a c ∴2=c∴ABC ∆的周长为5221=++=++c b a .(Ⅱ)∵41cos =C ,∴415411cos 1sin 22=⎪⎭⎫ ⎝⎛-=-=C C ,∴8152415sin sin ===cCa A ∵c a <,∴C A <,故A 为锐角,∴878151sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=-=A A ∴()C A -cos C A C A sin sin cos cos +=16114158154187=⨯+⨯=. 14.在△ABC 中,角,,A B C 所对的边分别为,,a b c 且满足sin cos .c A a C = (I )求角C 的大小;(IIcos()4A B π-+的最大值,并求取得最大值时角,A B 的大小.解析:(I )由正弦定理得sin sin sin cos .C A A C =因为0,A π<<所以sin 0.sin cos .cos 0,tan 1,4A C C C C C π>=≠==从而又所以则(II )由(I )知3.4B A π=-于是cos()cos()4cos 2sin().63110,,,,46612623A B A A A A A A A A A ππππππππππ-+=--=+=+<<∴<+<+== 从而当即时2sin()6A π+取最大值2.cos()4A B π-+的最大值为2,此时5,.312A B ππ==15.在△ABC 中,角A 、B 、C 所对应的边为c b a ,, (1)若,cos 2)6sin(A A =+π求A 的值; (2)若c b A 3,31cos ==,求C sin 的值.sin()2cos ,sin ,cos 0,tan 63A A A A A A A A πππ+=∴=≠=<<∴=(2)在三角形中,22221cos ,3,2cos 8,3A b c a b c bc A c a ==∴=+-==由正弦定理得:sin sin c A C =,而sin 3A ==1sin 3C ∴=.(也可以先推出直角三角形)(也能根据余弦定理得到1cos sin 3C C C π=<<⇒=) 解析:本题主要考查同角三角函数基本关系式、和差角公式、正余弦定理及有关运算求解能力,容易题.16.在ABC ∆中,角A 、B 、C 的对边分别是a ,b ,c ,已知2sin1cos sin CC C -=+. (1)求C sin 的值;(2)若8)(422-+=+b a b a ,求边c 的值.【解析】(1)由已知得2sin 12sin 212cos 2sin22CC C C -=-+,即 0)12sin 22cos 2(2sin =+-C C C ,由02sin ≠C 得012sin 22cos 2=+-CC即212cos2sin =-C C ,两边平方得:432sin =C (2)由0212c o s 2sin >=-C C 知2cos 2sin C C >,则224ππ<<C ,即ππ<<C 2,则由432sin=C 得47cos -=C 由余弦定理得728cos 2222+=-+=C ab b a c ,所以17+=c .17.在ABC ∆中,C B A ,,的对边分别是c b a ,,,已知C b B c A a cos cos cos 3+=.(1)求A cos 的值; (2)若332cos cos ,1=+=C B a ,求边c 的值. 解:(1)由 C b B c A a cos cos cos 3+=正弦定理得:)sin(cos sin cos sin cos sin 3C B C B B C A A +=+=及:A A As i n c o s s i n 3=所以31c o s =A 。
(2)由332cos cos =+C B ,332cos )cos(=+--C C A π展开易得: 36sin 3sin 2cos =⇒=+C C C , 正弦定理:23sin sin =⇒=c C c A a 【解析】本题考查的主要知识三角函数及解三角形问题,题目偏难。
第一问主要涉及到正弦定理、诱导公式及三角形内角和为180°这两个知识点的考查属于一般难度;第二问同样是对正弦定理和诱导公式的考查但形势更为复杂。
18.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A .(I )求b a;(II )若c 2=b 22,求B .解:(I )由正弦定理得,22sin sin cos A B A A +=,即22sin (sin cos )B A A A +=故sin ,bB A a==所以………………6分(II )由余弦定理和222(1,cos .2ac b B c+=+=得由(I )知222,b a =故22(2.c a =可得21cos ,cos 0,cos 4522B B B B =>== 又故所以 …………12分19.△ ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知A-C=90°,a c +=,求C.【命题立意】:本小题主要考查三角恒等变形、利用正弦、余弦定理处理三角形中的边角关系,突出考查边角互化的转化思想及消元方法的应用.【解析】:由A-C=90°,得A=C+90°()902B A C C π=-+=︒-(事实上045C ︒<<︒)由a c +=,根据正弦定理有:s i n s i n s i n s i n (9A B C C +∴︒+=︒-即22cos sin 2sin )sin )(cos sin )C C C C C C C C C +-+-cos sin 0C C +≠1cos sin 45)45),4560,1522C C C C C C ∴-=+︒=+︒=+︒=︒∴=︒ 20.ABC ∆的内角A B C 、、的对边分别为a b c 、、.己知sin csin sin sin ,a A C C b B += (Ⅰ)求B ;(Ⅱ)若75,2,.A b a c == 求,【解析】(Ⅰ)由正弦定理sin csin sin sin ,a A C C b B +=可变形为222a cb +=,即22a c a c +-=,由余弦定理222cos 2a c b B ac +-===又(0,)B π∈,所以4B π=(Ⅱ)首先sin sin(4530)A =+=sin sin 60C ==由正弦定理2sin 1.sin 2b Aa B===,同理2sin sin 2b Cc B === 21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b.(I ) 求sin sin CA的值; (II )若cosB=14,2b =,求ABC ∆的面积.【解析】(Ⅰ)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以cos A-2cos C 2c-a=cos B b=2sin sin sin C AB-,即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA =2. (Ⅱ)由(Ⅰ)知:sin sin c C a A ==2,即c=2a,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以c=2,又因为cosB=14,所以sinB=4,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯4=4.22.已知函数73()sin()cos()44f x x x ππ=++-,x ∈R . (Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)已知4cos()5βα-=,4cos()5βα+=-,02παβ<<≤,求证:2[()]20f β-=.本小题考查三角函数的性质,同角三角函数的关系,两角和的正、余弦公式、诱导公式等基础知识和基本运算能力,函数与方程、化归与转化等数学思想.(Ⅰ)解析:7733()sin cos cos sin cos cos sin sin4444f x x x x x ππππ=+++x x 2sin()4x π=-,∴()f x 的最小正周期2T π=,最小值min ()2f x =-. (Ⅱ)证明:由已知得4cos cos sin sin 5αβαβ+=,4cos cos sin sin 5αβαβ-=-两式相加得2cos cos 0αβ=,∵02παβ<<≤,∴cos 0β=,则2πβ=.∴22[()]24sin 204f πβ-=-=.23.在ABC ∆中,cos cos AC BAB C=. (Ⅰ)证明:B C =.(Ⅱ)若1cos 3A =-.求sin 43B π⎛⎫+ ⎪⎝⎭的值. 【解】(Ⅰ)在ABC ∆中,由cos cos AC B AB C =及正弦定理得sin cos sin cos B BC C=, 于是sin cos cos sin 0B C B C -=,即()sin 0B C -=, 因为0B π<<,0C π<<,则B C ππ-<-<,因此0B C -=,所以B C =.(Ⅱ)由A B C π++=和(Ⅰ)得2A Bπ=-,所以()1c o s 2c o s 2c o s3B B A π=--=-=,又由B C =知02B π<<,所以sin 23B =.sin 42sin 2cos 29B B B ==. 227cos 4cos 2sin 29B B B =-=-.所以sin 4sin 4cos cos 4sin 333B B B πππ⎛⎫+=+= ⎪⎝⎭.24.已知函数2π()2sin 4f x x x ⎛⎫=+ ⎪⎝⎭,ππ,42x ⎡⎤∈⎢⎥⎣⎦(Ⅰ)求()f x 的最大值和最小值;(Ⅱ)若不等式()2f x m -<在ππ,42x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围 解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+- ⎪⎝⎭. ……………………………………………………3分又ππ,42x ⎡⎤∈⎢⎥⎣⎦∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3,()2f x f x ==∴.……………………………………………………………7分(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ,42x ⎡⎤∈⎢⎥⎣⎦,……………………………9分max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(1,4).……14分25.已知函数()sin ()3f x A x πϕ=+,x R ∈,0A >,02πϕ<<.()y f x =的部分图像,如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A . (Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),23PRQ π∠=,求A 的值.(1)本题主要考查三角函数的图象与性质、三角运算等基础知识。