沪科初中数学七上《1.7 近似数》word教案 (2)
- 格式:doc
- 大小:36.50 KB
- 文档页数:4
沪科版七年级数学上册教学设计:1.7近似数教学设计一. 教材分析《沪科版七年级数学上册》第1.7节近似数教学,主要让学生理解近似数的概念,掌握用四舍五入法求一个数的近似数的方法。
教材通过生活中的实例,引导学生认识近似数在实际生活中的应用,培养学生的数感。
二. 学情分析七年级的学生已经学习了有理数的概念,对数的运算有一定的了解。
但求近似数在实际生活中的应用可能是他们第一次接触,需要通过具体实例来理解和掌握。
三. 教学目标1.了解近似数的概念,能正确理解四舍五入法。
2.能运用四舍五入法求一个数的近似数。
3.认识近似数在实际生活中的应用,培养学生的数感。
四. 教学重难点1.教学重点:近似数的概念,四舍五入法的运用。
2.教学难点:理解四舍五入法的原理,能灵活运用四舍五入法求近似数。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识近似数的概念。
2.实践操作法:让学生动手操作,运用四舍五入法求近似数。
3.小组合作法:学生分组讨论,分享求近似数的方法和经验。
六. 教学准备1.教学课件:制作课件,展示生活中的实例和求近似数的方法。
2.练习题:准备一些求近似数的练习题,用于巩固所学知识。
3.小组讨论:提前分组,让学生有准备地进行合作学习。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如购物时找零、测量身高等,引导学生思考:这些实例中为什么会出现“大约”、“左右”等字眼?通过这些问题,让学生初步认识近似数的概念。
2.呈现(10分钟)介绍近似数的概念,解释四舍五入法的原理,并用课件展示求一个数的近似数的方法。
同时,让学生动手操作,尝试用四舍五入法求一些数的近似数。
3.操练(10分钟)让学生进行练习,运用四舍五入法求近似数。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)选取一些练习题,让学生独立完成,检验他们对四舍五入法的掌握程度。
同时,教师选取部分学生的作业进行点评,总结求近似数的方法和注意事项。
新沪科版七年级数学上册教学设计:《1.7近似数》教学目标【知识与技能】1.使学生初步理解近似数的概念,并由给出的近似数,说出它精确到哪一位.2.给出一个数,能熟练地按要求四舍五入取近似数.【过程与方法】通过近似数的学习,体会近似数的意义及其在生活中的作用.【情感、态度与价值观】通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想.教学重难点【重点】近似数、精确度等概念;给一个数,能按照精确到哪一位或四舍五入取近似数.【难点】由给出的近似数求其精确度.教学过程一、问题引入1.问题.(1)师:同学们,请你们统计一下班上喜欢吃肯德基的同学的人数.(2)量一量课本的宽度.了解准确数和近似数的概念.2.根据学生原有的认知结构提出问题.师:在小学里我们计算圆的面积S=πR2,π一般取多少?生:3.14.师:这是一个精确的数吗?小数位数太多,不便于计算,常常保留两位小数,由“四舍五入”取π≈3.14,这就是“近似数”,小学里在小数计算中经常把最后答案取近似数.3.完成练习.(1)将3.062保留一位小数得;(2)将7.448保留整数得;(3)将15.267保留两位小数得.二、讲授新课1.精确度.师:在实际问题中,我们经常要用近似数.使用近似数就有一个近似程度的问题,也就是精确度的问题.我们都知道,π=3.14159….我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫做精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫做精确到0.01).概括:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.三、例题讲解【例1】十一期间,某商场准备作打8折(即)促销.一种原价为348元的微波炉,打折后,如果要求精确到元,定价是多少?如果要求精确到10元,定价又是多少?【答案】这种微波炉打8折后的价格为348×=278.4(元).要求精确到元的定价为278元;精确到10元的定价为280元.【例2】据2010年上海世博会官方统计,2010年5月1日到10月31日期间,共有7 308.44万人次入园参观,求每次的平均入园人数(精确到0.01万人).【答案】从5月1日到10月31日共有184天,所以每天的平均入园人数为7 308.44÷184≈39.719≈39.72(万人).【例3】用四舍五入法,按括号中的要求把下列各数取近似数.(1)0.340 82(精确到千分位);(2)64.8(精确到个位);(3)1.504(精确到0.01).【答案】(1)0.340 82≈0.341.(2)64.8≈65.(3)1.504≈1.50.注意:(1)例3的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉;(2)有一些量,我们或者很难测出它的准确值,或者没有必要算得它的准确值,这时通过粗略的估算就能得到所要的近似数,有时近似数也并不总是按“四舍五入”法得到的.例如,某地遭遇水灾,约有10万人的生活受到影响.政府拟从外地调运一批粮食救灾,需估计每天要调运的粮食数.如果按一个人平均一天需要0.5千克粮食算,那么可以估计出每天要调运5万千克的粮食.又如某校初中一年级共有112名同学,想租用45座的客车外出秋游.因为112÷45=2.488…,这里就不能用四舍五入法,而要用“进一法”来估计应该租用客车的辆数,即应租3辆.四、课堂练习课本P47练习.【答案】略五、课堂小结本节课教师主要引导学生理解并掌握下列内容:1.正确理解并掌握近似数、准确数、精确度和有效数字等概念.2.要学会给出一个近似数,能准确地确定它精确到哪一位或它有哪几个有效数字;准确、迅速、熟练地按照要求求出一个数的近似数.3.对例题中提到的注意事项应引起重视.。
沪科版七年级数学上册1.7 近似数教学设计1.7 近似数【教学目标】➢知识目标:会说出准确数,近似数及精确度。
➢能力目标:给一个数能按照四舍五入的方法精确到哪一位,并能按要求说出它所表示的范围。
➢情感目标:了解到近似数是由实践中产生的,从而培养数学来源于实践,而又作用于实践的情感。
也使学生了解我国数学的历史文化进行爱国主义教育。
并能对含有较大数字的信息作出合理的解释和推断. 取近似数培养学生分析、判断和解决实际问题的能力【教学重点、难点】➢重点:近似数的表示方法及近似值的取法➢难点:正确地求一个近似数的精确度(包括近似数精确到哪一位)。
【教具】多媒体电脑,墙上大刻度尺。
【教学过程】一、引入课前探究利用电脑设备:讲述饮酒先生的故事;学生体验两个新闻报道。
同时区分准确数和近似数。
■饮酒先生有一先生,喜爱喝酒,常常对学生安排好学业,然后上山■2003年10月16日06:55 新浪科技快讯2019年10月15日,杨利伟搭乘中国自行研制的“神舟”五号飞船进入太空,环绕地球飞行14圈,行程约60万公里,离地高度是343公里,次日06:54在内蒙 古安全降落。
这次为期21小时的太空之旅,使中国继俄罗斯、美国之后成为世界上第三个能独立自主进行载人航天飞行的国家。
二、实践,探索和交流观察,比较上面的数据,引出课题--------准确数和近似数以及它们的概念:与实际完全符合的数称为准确数(accurate number ),与实际接近的数称为近似数(approximate number ).学生感受一下数学和生活,历史的联系,并自主观察对比总结。
从而自行描述准确数和近似数的概念;并能加以区分。
三、互动学习亚洲杯中国胜利挺进八强 “神舟”五号载人航例 1 下列由四舍五入得到的近似数各精确到哪一位?(1)11亿;(2)0.03086;(3)1.2万;(4)3000;(5)1.20万;(6)3000.0 ;(7)3.68×103例2 用四舍五入法,按括号里的要求对下列各数取近似值.(1)0.33448 (精确到千分位);(2)64.8 (精确到个位);(3)1.5952 (精确到0.01).例3 某地遭遇洪灾,约有10万人的生活受到影响.政府拟从外地调运一批粮食救灾,需估计每天要调运的粮食数.如果按一个人平均一天需要0.4千克粮食算,那么可以估计出每天要调运4万千克粮食;如果按一个人平均一天需要0.5千克粮食算,那么可以估计出每天要调运5万千克粮食.(学生板演练习易错点及易漏点,及时纠正并强调)五、练一练P47练习,以小组竞赛的形式展开。
1.7 近似数1.通过实际的操作初步掌握近似数和准确数的概念以及误差的概念.2.能判断一个数是否是近似数.3.能够按照要求对一个数进行四舍五入,精确到某一数位.重点近似数、精确度的意义.难点由给出的近似数求其精确度,按给定的精确度求一个数的近似数.一、创设情境,导入新知问题1:在实际生活中常碰到不可能取准确的数的时候,如1块月饼,平均地分给3个孩子,如何分?问题2:在生活中,你常听到某人的身高为1.7115米吗?问题3:在圆面积计算中,圆周率π常用怎样的数来代替计算?在生活中,有的数据无法取到精确数据或没有必要取到精确数据,因此取近似数.二、自主合作,感受新知回顾以前学的知识、阅读课文并结合生活实际,完成《探究在线·高效课堂》“预习导学”部分.三、师生互动,理解新知探究点一:区别准确数与近似数操作:(1)数一数今天班级上的同学数;(2)查一查你的数学课本的页数;(3)量一量数学课本的宽度;(4)称一称你书包的质量.交流:在上面操作中获得的数据,那些是精确的?哪些是近似的?(1)、(2)中的数据是由计数得来的,是准确值;(3)、(4)中的数据是测量得来的,结果有差别,是近似的.1.准确值和近似数准确数:与实际情况完全吻合的数.近似数:与实际数值很接近的数.2.误差:探究解决操作(3),量一量课本的宽度,课本P45图1-21(1)是用只有厘米的刻度的尺去测量,得到的宽度约18.4 cm,课本P45图1-21(2)是用有毫米刻度的刻度尺去量,得到的宽度约18.43 cm.这里得到的18.4 cm,18.43 cm是课本宽度的近似值,近似值与它的准确值的差,叫误差.误差=近似值-准确值.误差可能是正数,也可能是负数.误差的绝对值越小,近似程度越高,反之,越低.3.近似数产生的原因是不是只有测量才会得到近似数?其他什么情况下还可以得到近似数?在计数、计算等许多条件下,有时很难取得准确数,有时因不必要使用准确数,于是就使用近似数.例如在涉及圆的周长和面积计算时,常取π≈3.14.探究点二:认识近似数的精确度我们都知道,π=3.14159…我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01);一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.像上面我们取3.142为的近似数,它精确到千分位(即精确到0.001).四、应用迁移,运用新知1.区别准确数与近似数例1 下列数据中,不是近似数的是( )A.某次地震中,伤亡10万人B.吐鲁番盆地低于海平面155 mC.小明班上有45人D.小红测得数学书的长度为21.0 cm解析:A.某次地震中,伤亡10万人中的10为近似数,所以A选项错误;B.吐鲁番盆地低于海平面155 m中的155为近似数,所以B选项错误;C.小明班上有45人中45为准确数,所以C选项正确;D.小红测得数学书的长度为21.0 cm中的21.0为近似数,所以D选项错误.方法总结:经过“四舍五入”得到的数叫近似数,一般用工具量出来的数都是近似数;能表示原来物体或事件的实际数量的数是准确数,一般通过计数数出来的数都是准确数.2.认识近似数的精确度例2 见课本P47例3.方法总结:若是汉字单位为“万”、“千”、“百”类的近似数,精确度依然是由其最后一位数所在的数位确定,但必须先把该数写成单位为“个”的数,再确定其精确度.例3 下列说法正确的是( )A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位解析:A.近似数4.60精确到百分位,4.6精确到十分位,故错误;B.近似数5千万精确到千万位,近似数5000万精确到万位,故错误;C.近似数4.31万精确到百位.故错误;D.正确.方法总结:解答此题应掌握数的精确度的知识,保留整数精确度为1,一位小数表示精确到十分之一,两位小数表示精确到百分之一等.3.按要求取近似数例4、例5 见课本P46例1、P47例2.例6 用四舍五入法将下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)47155(精确到百位);(4)130.06(精确到0.1);(5)4602.15(精确到千位).解析:(1)把千分位上的数字2四舍五入即可;(2)把十分位上的数字9四舍五入即可;(3)先用科学记数法表示,然后把十位上的数字5四舍五入即可;(4)把百分位上的数字6四舍五入即可;(5)先用科学记数法表示,然后把百位上的数字6四舍五入即可.解:(1)0.6328≈0.63(精确到0.01);(2)7.9122≈8(精确到个位);(3)47155≈4.72×104(精确到百位);(4)130.06≈130.1(精确到0.1);(5)4602.15≈5×103(精确到千位).方法总结:按精确度找出要保留的最后一个数位,再按下一个数位上的数四舍五入即可.4.根据近似数求原数或原数的取值范围例7 近似数1.70所表示的准确值a的范围是( )A.1.700<a≤1.705B.1.60≤a<1.80C.1.64<a≤1.705 D.1.695≤a<1.705解析:若是向前进1得到的,那么a≥1.695;若是舍去下一位得到的,那么a<1.705,∴1.695≤a<1.705.方法总结:此题不是由准确数求近似数,而是由近似数求准确数的范围,这是对逆向思维能力的考查.五、尝试练习,掌握新知课本P47练习第1、2题.《探究在线·高效课堂》“合作探究”部分.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课初步掌握近似数和准确数的概念,误差的概念;能判断一个数是否是近似数;能够按照要求对一个数进行四舍五入,精确到某一数位.七、深化练习,巩固新知课本P48习题1.7第1~6题.。
2023-2024学年沪科版七年级数学上册教学设计:1.7近似数教学设计一. 教材分析《近似数》是沪科版七年级数学上册的教学内容,主要介绍了近似数的概念、求法以及应用。
通过本节课的学习,使学生理解近似数在实际生活中的重要性,掌握求近似数的方法,提高学生的数感能力。
二. 学情分析学生在之前的学习中已经掌握了有理数的概念,对数的运算也有一定的了解。
但对于近似数的概念和求法可能还存在一定的困惑,需要通过实例来加深理解。
同时,学生对于数学在实际生活中的应用还比较陌生,需要通过生活中的实例来激发兴趣。
三. 教学目标1.理解近似数的概念,掌握求近似数的方法。
2.能够运用近似数解决实际问题,提高数感能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.近似数的概念和求法。
2.近似数在实际生活中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考;通过案例分析,使学生理解近似数的实际意义;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.准备相关的案例材料和实际问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备小组合作的学习材料。
七. 教学过程1.导入(5分钟)通过设置问题:“你平时在生活中遇到过哪些需要求近似数的情况?”引导学生思考近似数在实际生活中的重要性。
2.呈现(15分钟)呈现案例材料,如在购物时需要估算物品的重量、面积等,引导学生了解近似数的实际意义。
3.操练(15分钟)让学生分组讨论,每组选取一个实际问题,运用所学知识求近似数。
如估算一张纸的厚度、一根针的重量等。
4.巩固(10分钟)对学生的成果进行展示和评价,引导学生总结求近似数的方法和注意事项。
5.拓展(10分钟)让学生思考:近似数在科学研究和技术应用中的作用。
通过小组合作,探讨近似数在各种领域的应用。
6.小结(5分钟)引导学生总结本节课所学内容,强化对近似数的理解和应用。
7.家庭作业(5分钟)布置相关的练习题,让学生巩固所学知识,提高实际应用能力。
2023-2024学年沪科版七年级数学上册教案:1.7近似数教案一. 教材分析《近似数》是沪科版七年级数学上册的一章内容。
本章主要让学生了解近似数的概念,掌握近似数的求法,以及能够对实际问题进行近似计算。
本节课是本章的第一节,目标是让学生理解近似数的概念,并学会用四舍五入法求一个数的近似数。
二. 学情分析七年级的学生已经掌握了有理数的基本知识,但对近似数可能还比较陌生。
因此,在教学过程中,需要通过生动的例子和实际问题,让学生理解和掌握近似数的概念和求法。
三. 教学目标1.让学生理解近似数的概念,知道近似数是通过四舍五入法得到的。
2.让学生学会用四舍五入法求一个数的近似数。
3.让学生能够运用近似数解决实际问题。
四. 教学重难点1.近似数的概念。
2.四舍五入法的运用。
五. 教学方法采用问题驱动法,通过实际问题引入近似数的概念,然后引导学生思考如何求一个数的近似数,最后通过练习巩固所学知识。
六. 教学准备1.PPT课件。
2.练习题。
七. 教学过程1.导入(5分钟)–利用PPT展示一个实际问题:测量身高时,为什么通常用厘米作单位,而不是用毫米作单位?–引导学生思考:如果用毫米作单位,身高是1700毫米,那么1701毫米和1700毫米有什么区别?2.呈现(10分钟)–介绍近似数的概念:近似数是通过四舍五入法得到的数。
–解释四舍五入法:如果要省略的数字小于5,就直接省略;如果要省略的数字大于等于5,就进位。
3.操练(10分钟)–让学生练习用四舍五入法求一个数的近似数。
–举例:将3.14159近似到小数点后两位。
4.巩固(10分钟)–让学生回答问题:近似数和准确数有什么区别?–引导学生思考:在实际生活中,为什么常常使用近似数?5.拓展(10分钟)–让学生运用近似数解决实际问题,如计算身高、体重等。
6.小结(5分钟)–总结本节课所学内容:近似数的概念和求法。
–强调近似数在实际生活中的应用。
7.家庭作业(5分钟)–布置练习题,让学生巩固所学知识。
1.7近似数【学习目标】1.通过实际的操作初步掌握近似数、准确数和误差的概念;2.能判断一个数是否是近似数,能按要求对一个数进行四舍五入,精确到某一数位.【学习重点】掌握近似数、准确数和误差的概念.【学习难点】能够按照要求对一个数进行四舍五入,精确到某一数位.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题情境:实物投影,并呈现问题:中国是世界面积第3大国;中国有世界第一高峰——珠穆朗玛峰,海拔8844米;中国共划分34个省级单位,包括23个省,5个自治区,4个直辖市和2个特别行政区,人口约12.9533亿,占世界人口的21.2%;共有56个民族,少数民族人口最多的是壮族,有1600万人,你能找出这篇报道中哪些数是精确数,哪些是近似数吗?解:以上数中3、34、23、5、4、2、56是由计数得来,是准确数,而8844、12.9533、21.2%、1600是由测量得来,是近似数.自学互研生成能力知识模块一准确数与近似数阅读教材P45~P47的内容,回答下列问题:问题1:什么是准确数?什么是近似数?为什么要使用近似数?答:准确数:与实际情况完全吻合的数;近似数:与实际数值很接近的数;在计数、计算等许多条件下,有时很难取得准确数,有时因不必要使用准确数,于是就使用近似数,例如在涉及圆的周长和面积计算时,常取π≈3.14.方法指导:准确数是与实际情况完全吻合的数,近似数是与实际数值很接近的数.一般测量得到的数都是近似数.知识链接:近似数精确到哪一位,只需看这个数的最末一位在原数的哪一位.提示:“近似数4.2×104,精确到哪一位”,学生不易分清,可提示学生将104看成“万”等单位来理解.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.问题3:什么是误差?问题4:误差与准确数和近似数的关系是什么?答:近似值与它的准确值的差,叫误差,误差=近似值-准确值,误差可能是正数,也可能是负数,误差的绝对值越小,近似程度越高;反之,越低.典例:下列各题中的数,哪些是准确数?哪些是近似数?(1)七(4)班有42名同学;(2)每个三角形都有3个内角;(3)我国的领土面积约为960万平方千米;(4)王强的体重是约49千克.解:42、3是准确数;960、49是近似数.仿例1:50名学生和40kg大米中,50是准确数,40是近似数.仿例2:一个闹钟,一昼夜的误差为±10s,这句话的含义是这个闹钟一昼夜跑快不超过10s,跑慢也不超过10s.知识模块二精确度问题:什么是精确度?一般如何表示?答:近似数与准确数的接近程度,通常用精确度表示,近似数一般由四舍五入法取得,四舍五入到哪一位就说这个近似数精确到哪一位.典例:下列由四舍五入法得到的近似数,各精确到哪一位?(1)54.8;(2)0.00204;(3)3.6万.解:(1)精确到十分位;(2)精确到十万分位;(3)精确到千位.仿例:用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.65148(精确到千分位);(2)1.5673(精确到0.01);(3)0.03097(精确到0.0001);(4)75460(精确到万位);(5)90990(精确到千位).解:(1)0.65148≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310;(4)75460≈8×104;(5)90990≈9.1×104.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一准确数与近似数知识模块二精确度检测反馈达成目标【当堂检测】见所赠光盘和学生用书【课后检测】见学生用书课后反思查漏补缺1.收获:________________________________________________________________________ 2.困惑:________________________________________________________________________。
《1.7 近似数》◆教材分析本节课是在小学已接触到的近似数基础上进行的.通过对实际问题的探究,引入有理数的近似数.本节课的教学内容是引导学生了解近似数的概念,理解精确度的意义,从而能够按要求进行四舍五入取近似数.◆教学目标【知识与能力目标】1. 理解近似数的概念;2. 理解精确度的意义,能按给定的精确度求一个数的近似数.【过程与方法目标】通过对实际问题的探究过程,体会用近似数刻画现实问题的思想.【情感态度价值观目标】使学生体验用所学的知识解决实际生活中问题的乐趣,感受学生在生活的价值,激发学生学习数学的兴趣.◆教学重难点【教学重点】近似数的表示方法及近似值的取法.【教学难点】1. 正确地求一个近似数的精确度;2. 按给定的精确度求一个数的近似数.◆课前准备多媒体课件.◆教学过程一、情境引入进行以下操作,并回答问题:(1)数一数今天班上的同学数;(2)查一查你的数学课本的页数;(3)量一量数学课本的宽度;(4)称一称你的书包的质量.问题:在上面的操作中得到的数据,哪些是精确的?哪些是近似的?【设计意图】通过对实际问题的探究,引入近似数的概念,进而引导学生探讨近似数的相关知识.二、探究新知1.近似数的定义.在上述“操作”中,操作(1)和(2)的数据由计数得来,是准确数.操作(3)和(4)的数据由测量得来,由于受测量工具、测量方法、测量者等因素的影响,测量的结果一般只是一个与实际数值很接近的数,我们称此数为近似数.我们在测量数学课本的宽度时,用只有厘米刻度的尺去测量,得宽度约为18.4cm,用有毫米刻度的尺去测量,得宽度约18.43cm.这里得到的18.4cm,18.43cm都是数学课本宽度的近似值.近似值与它的准确值的差,叫做误差,即误差=近似值-准确值.误差可能是正数,也可能是负数. 误差的绝对值越小,近似值就越接近准确值,也就是近似程度越高.【设计意图】经历探索近似数的过程,使学生掌握近似数与准确数的定义,为进一步学习精确度做铺垫.2. 精确度的概念.近似数与准确数的接近程度,通常用精确度表示. 例如18cm是精确到个位(或者说精确到1cm)的近似数.18.4cm是精确到十分位(或者说精确到0.1cm)的近似数.18.43cm是精确到百分位(或者说精确到0.01cm)的近似数.近似数一般由四舍五入法取得,四舍五入到某一位,就说这个近似数精确到那一位.例1按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0158(精确到0.001);(2)30435(精确到百位);(3)1.804(精确到十分位);(4)1.804(精确到百分位).解:(1)0.0158≈0.016;(2)30435≈3.04×;(3)1.804≈1.8;(4)1.804≈1.80.例2 下列由四舍五入法得到的近似数,各精确到哪一位?(1)48. 3;(2)0.03086;(3)2.40万;(4)6.5×.解:(1) 48. 3精确到十分位(或精确到0.1);(2) 0.03086精确十到万分位(精确到0.00001);(3)2.40万精确到百位;(4) 6.5×精确到千位.【设计意图】使学生掌握精确数的定义,并能正确地求一个近似数的精确度,或者按给定的精确度求一个数的近似数.三、巩固练习1. 据2019年上海世博会官方统计,2019年5月1日至10月31日期间,共有7308.44万人次入园参观,求每天平均入园人次(精确到0.01万人次).2. 十一期间某商场准备对商品作打8折(即)促销. 一种原价为348元的微波炉,打折后,如果要求精确到元,定价是多少?如果要求精确到10元,定价又是多少?四、课堂总结问题:通过这节课的学习,你有哪些收获?1. 近似数是一个与实际值很接近的数.2. 精确度表示近似数与准确数的接近程度.3. 按照要求取近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.◆教学反思略.。
1.7 近似数
教学目标:
1、理解精确度和有效数字的意义
2、要准确第说出精确位及按要求进行四舍五入取近似数
教学重点、难点:
重点:近似数、精确度和有效数字的意义,
难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数.
教学过程:
一、近似数的定义
我们常会遇到这样的问题:
(1)初一(4)班有42名同学;
(2)每个三角形都有3个内角.
这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:
(3)我国的领土面积约为960万平方千米;
(4)王强的体重是约49千克.
960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.
我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.
王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克.
我们把象960万、49这些与实际数很接近的数称为近似数(approximate number).
在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是就精确度的问题.
二、精确度
我们都知道,14159.3=π···.
我们对这个数取近似数:
如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位; 如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1); 如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01); 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位. 这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字(significant digits).
象上面我们取3.142为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字3、1、4、2.
三、例题
例1 按括号内的要求,用四舍五入法对下列各数取近似数:
(1)0.015 8(精确到0.001);
(2)30 435(保留3个有效数字);
(3)1.804(保留2个有效数字);
(4)1.804(保留3个有效数字)。
解:(1)0.015 8≈0.016;
(2)30 435≈3.04×104;
(3)1.804≈1.8;
(4)1.804≈1.80
注意:(2)不能写成30 400,这样是有5个有效数字,像这样的数保留几位有效数字一般要用科学计算法,或3.04万。
例2 下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?
(1)132.4;(2)0.0572;(3)2.40万
解:(1)132.4精确到十分位(精确到0.1),共有4个有效数字1、3、2、4;
(2)0.0572精确到万分位(精确到0.0001),共有3个有效数字5、7、2;
(3)2.40万精确到百位,共有3个有效数字2、4、0.
注意由于2.40万的单位是万,所以不能说它精确到百分位.
注意(1)例2的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉;
课堂练习
1.请你列举出生活中准确值和近似值的实例.
2.下列各题中的数,哪些是精确数?哪写是近似数?
(1)东北师大附中共有98个教学班;
(2)我国有13亿人口.
3.用四舍五入法,按括号里的要求对下列各数取近似值:
(1)0.65148 (精确到千分位);
(2)1.5673 (精确到0.01);
(3)0.03097 (保留三个有效数字);
(4)75460 (保留一位有效数字);
(5)90990 (保留二位有效数字).
4.下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?
(1)54.8;(2)0.00204;(3)3.6万.
课堂练习答案
1.略.
2.(1)精确值;(2)近似值.
3.(1)0.65148 ≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310;(4)75460≈8×104;
(5)90990≈9.1×104.
4.(1)精确到个十分位,有3个有效数字;(2)精确到千万分位,有3个有效数字;(3)精确到千位,有2个有效数字.
课后作业
教科书P57-6
课后选作题
1.下列由四舍五入得到的近似数各精确到哪一位?各有几位有效数字?(1)32;(2)17.93;(3)0.084;(4)7.250;(5)1.35×104;(6)0.45万;(7)2.004;(8)3.1416. 2.23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值?
①23.04 ②23.06 ③22.99 ④22.85
课后选作题答案
1.(1)精确到个位,有两位有效数字;
(2)精确到百分位,有四位有效数字;
(3)精确到千分位,有两位有效数字;
(4)精确到千分位,有四位有效数字;
(5)精确到百位,有三位有效数字;
(6)精确到百位,有两位有效数字;
(7)精确到千分位,有四位有效数字;
(8)精确到万分位,有五位有效数字.
2.②和④.。