数学必修1考试试题
- 格式:doc
- 大小:820.50 KB
- 文档页数:9
高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
高一数学必修一试题含答案一、选择题(每题4分,共48分)1、下列哪个选项正确地表示了直线、平面、体之间的关系?A.直线与平面是平行关系B.平面与平面是垂直关系C.两个平面可能相交也可能平行D.以上说法都不正确2、在下列四个选项中,哪个选项的图形是由旋转得到的?A.圆锥体B.正方体C.球体D.圆柱体3、下列哪个函数在区间[0, 1]上是增函数?A. y = sin(x)B. y = cos(x)C. y = x^2D. y = log(x)4、下列哪个选项能正确表示函数y = x^3在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增5、对于集合A和B,如果A ∪ B = A,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∩ B = ∅D. A = B6、下列哪个选项能正确表示函数y = x^2在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增7、下列哪个选项能正确表示函数y = log(x)在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增8、对于集合A和B,如果A ∩ B = B,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∪ B = BD. A = B二、填空题(每题4分,共16分)9、在空间四边形ABCD中,E、F分别是AB、AD的中点,则用符号表示空间中下列向量之间的关系:向量____________与____________是共线向量。
高一数学必修一试卷与答案一、选择题1、下列选项中,哪个选项是正确的?A. (1,2)和 (2,3)是同一个集合B. {1,2,3}和 {3,2,1}是同一个集合C. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}是同一个集合D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合答案:D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合。
数学高中必修一试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. y = x^2B. y = 3x + 5C. y = √xD. y = log(x)答案:B2. 如果a > 0,b < 0,且|a| < |b|,那么a + b的符号是:A. 正B. 负C. 零D. 不确定答案:B3. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值:A. 17B. 29C. 35D. 38答案:B4. 圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内切答案:B5. 函数f(x) = 2x - 3在点x=1处的导数是:A. 2B. -3C. -2D. 1答案:A6. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B7. 集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B8. 已知等比数列的首项a1=2,公比q=2,求第5项a5的值:A. 16B. 32C. 64D. 128答案:C9. 函数y = x^3 - 3x^2 + 2在点x=1处的极值情况是:A. 极大值B. 极小值C. 无极值D. 不确定答案:B10. 已知向量a=(2, -1),b=(-3, 4),求向量a与b的点积:A. 5B. -5C. -10D. 10答案:B二、填空题(每题2分,共20分)11. 已知函数f(x) = x^2 + 2x + 1,求f(-1)的值。
答案:012. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:513. 已知集合M={x | x < 5},N={x | x > 3},求M∩N。
必修1数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式 \(x^2 - 5x + 6 < 0\) 的解集?A. \(x < 2\)B. \(x > 2\)C. \(2 < x < 3\)D. \(x < 3\) 或 \(x > 2\)答案:C2. 函数 \(f(x) = 2x^3 - 6x^2 + 9x + 1\) 的导数 \(f'(x)\) 是:A. \(6x^2 - 12x + 9\)B. \(6x^2 - 12x + 3\)C. \(6x^2 - 12x + 9x\)D. \(6x^2 - 12x + 1\)答案:A3. 已知 \(a\) 和 \(b\) 是两个非零实数,且 \(a^2 - b^2 = 0\),则 \(a\) 和 \(b\) 的关系是:A. \(a = b\)B. \(a = -b\)C. \(a = b\) 或 \(a = -b\)D. \(a\) 和 \(b\) 无关系答案:C4. 直线 \(y = 2x + 3\) 与 \(y = -x + 1\) 的交点坐标是:A. \((-2, -1)\)B. \((1, 3)\)C. \((-1, 1)\)D. \((2, 5)\)答案:B5. 集合 \(A = \{x | x^2 - 4x + 3 < 0\}\) 和集合 \(B = \{x | x - 2 < 0\}\) 的交集是:A. \(\{x | 1 < x < 2\}\)B. \(\{x | 1 < x < 3\}\)C. \(\{x | x < 2\}\)D. \(\{x | x < 1\}\)答案:A6. 已知 \(\sin A = \frac{3}{5}\),且 \(A\) 为锐角,则 \(\cos A\) 的值是:A. \(\frac{4}{5}\)B. \(\frac{1}{5}\)C. \(\frac{3}{4}\)D. \(\frac{4}{3}\)答案:A7. 函数 \(y = \log_2(x)\) 的定义域是:A. \(x > 0\)B. \(x < 0\)C. \(x \leq 0\)D. \(x \geq 0\)答案:A8. 函数 \(y = x^3 - 3x^2 + 4\) 的单调递增区间是:A. \((-\infty, 1)\)B. \((1, +\infty)\)C. \((-\infty, 2)\)D. \((2, +\infty)\)答案:B9. 已知 \(\tan \alpha = 2\),求 \(\sin \alpha \cos \alpha\) 的值:A. \(\frac{2}{5}\)B. \(\frac{1}{5}\)C. \(\frac{2}{3}\)D. \(\frac{1}{3}\)答案:A10. 函数 \(y = \frac{1}{x}\) 的图像关于:A. 原点对称B. \(y\) 轴对称C. \(x\) 轴对称D. 直线 \(y = x\) 对称答案:A二、填空题(每题4分,共20分)1. 函数 \(f(x) = x^2 - 6x + 9\) 的最小值是 \(\boxed{3}\)。
必修1数学测试题及答案一、选择题1.设函数f(x)=2x+1,那么f(-2)的值是多少?A. -5B. -3C. 3D. 52.下列四个数中,最小的是:A. -5B. 0C. 5D. 103.若x=3,y=4,则x²+y²的值是多少?A. 5B. 9C. 16D. 254.已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度是多少?A. 5cmB. 7cmC. 9cmD. 12cm5.若a:b=2:3且b:c=5:4,求a:c的值。
A. 1:2B. 2:3C. 4:5D. 6:15二、填空题1.5÷(2-1)的值是多少?2.解方程2x+3=7的解是多少?3.已知正方形的边长为8cm,则它的周长是多少?4.一个正方形的面积是64cm²,则它的边长是多少?5.已知直角三角形的斜边长为10cm,一个直角边长为6cm,则另一个直角边长是多少?三、解答题1.已知函数f(x)=3x-2,求f(2)的值。
2.解方程2(x+1)=6,求x的值。
3.计算下列各式的值:A. 7-2×3B. 4+5÷2C. 6×(2-3)+4四、应用题老师给小明发了30元奖金,小明用一部分买了一本价值15元的书,还剩下的钱他全部存入银行。
求小明存入银行的钱数。
答案:一、选择题1. B2. A3. C4. A5. B二、填空题1. 52. 23. 324. 85. 8三、解答题1. f(2) = 3(2) - 2 = 42. 2(x+1) = 62x + 2 = 62x = 4x = 23. A. 7-2×3 = 7-6 = 1B. 4+5÷2 = 4+2.5 = 6.5C. 6×(2-3)+4 = 6×(-1)+4 = -2四、应用题小明花了15元买书,所以存入银行的钱数为30-15=15元。
以上是必修1数学测试题及答案。
高一数学必修一测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是 ( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数是同一函数的是 ( )①()f x =()g x =()f x x =与()g x = ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①② B 、①③ C 、③④ D 、①④6.根据表格中的数据,可以断定方程02=--x e x 的一个根所在的区间是 ( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 8、 若定义运算b a ba b aa b <⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上的最大值与最小值的和为3,则=a( )A .21B .2C .4D .41 10. 下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。
$\varnothing \in A$ B。
$2\in A$ C。
$2\in A$ D。
$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。
$2$ B。
$5$ C。
$6$ D。
$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。
若 $A\subseteq B$,则 $a$ 的范围是()A。
$a\geq 2$ B。
$a\leq 1$ C。
$a\geq 1$ D。
$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。
$(,\infty)$ B。
$[。
\infty)$ C。
$(-\infty,)$ D。
$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。
$\{0,2,3,6\}$ B。
$\{0,3,6\}$ C。
$\{2,1,5,8\}$ D。
$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。
$(2,3)$ B。
$[-1,5]$ C。
$(-1,5)$ D。
$(-1,5]$7.下列函数是奇函数的是()A。
$y=x$ B。
$y=2x-3$ C。
$y=x^2$ D。
$y=|x|$8.化简:$(\pi-4)+\pi=$()A。
$4$ B。
$2\pi-4$ C。
$2\pi-4$ 或 $4$ D。
$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。
高中数学必修1检测题本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分、共120分,考试时间90分钟、第Ⅰ卷(选择题,共48分) 一、选择题:本大题共12小题,每小题4分,共48分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确得有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确得有 ( ) (1)A 中得任一元素在B 中必须有像且唯一; (2)A 中得多个元素可以在B 中有相同得像; (3)B 中得多个元素可以在A 中有相同得原像; (4)像得集合就就是集合B 、A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 得取值范围就是 ( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数就是同一函数得就是 ( )①()f x =()g x =()f x x =与()g x =; ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①② B 、①③ C 、③④ D 、①④6.根据表格中得数据,可以断定方程02=--x e x 得一个根所在得区间就是 ( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 8、 若定义运算ba ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕得值域就是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上得最大值与最小值得与为3,则=a ( )A .21 B .2 C .4 D .41 10、 下列函数中,在()0,2上为增函数得就是( )A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化得一组数据,判断它最可能得函数模型就是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好得顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于就是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只就是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。
已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。
5D .6 4。
下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。
设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。
2 B .3 C .9 D 。
187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。
1.已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数2.如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z},则集合A ,B 的关系3.设A ={x ∈Z||x |≤2},B ={y |y =x 2+1,x ∈A },则B 的元素个数是4.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆ (P ∩Q )成立的所 有实数a 的取值范围为5.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b ,若4和10的原象分别对应是6和9, 则19在f 作用下的象为6.函数f (x )=3x -12-x (x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元素是7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为8.下列各组函数中,表示同一函数的是 A.f (x )=1,g (x )=x 0B.f (x )=x +2,g (x )=x 2-4x -2C.f (x )=|x |,g (x )=⎩⎨⎧x x ≥0-x x <0D.f (x )=x ,g (x )=(x )29. f (x )=⎩⎪⎨⎪⎧x 2 x >0π x =00 x <0 ,则f {f [f (-3)]}等于10.已知2lg(x -2y )=lg x +lg y ,则xy的11.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则a 取值范围是12.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数 A.5 B.7 C.9 D.112.如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z},则A.A BB.B AC.A =BD.A ∩B =∅3.设A ={x ∈Z||x |≤2},B ={y |y =x 2+1,x ∈A },则B 的元素个数是 A.5 B.4 C.3 D.2 4.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆ (P ∩Q )成立的所有实数a 的取值范围为 A.(1,9) B.[1,9] C.[6,9)D.(6,9]5.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =a x +b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为 A.18B.30C. 272D.286.函数f (x )=3x -12-x (x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元素是 A.2 B.-2 C.-1 D.-3 7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为 A.3x -2 B.3x +2 C.2x +3 D.2x -3 8.下列各组函数中,表示同一函数的是 A.f (x )=1,g (x )=x 0B.f (x )=x +2,g (x )=x 2-4x -2C.f (x )=|x |,g (x )=⎩⎨⎧x x ≥0-x x <0D.f (x )=x ,g (x )=(x )29. f (x )=⎩⎪⎨⎪⎧x 2 x >0π x =00 x <0 ,则f {f [f (-3)]}等于A.0B.πC.π2D.910.已知2lg(x -2y )=lg x +lg y ,则xy 的值为A.1B.4C.1或4D. 14或4 11.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则 A.a ≥1 B.a >1 C.0<a ≤1 D.a <112.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是A.(0,12 )B.(0,⎥⎦⎤21C.( 12,+∞)D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)13.若不等式x 2+ax +a -2>0的解集为R ,则a 可取值的集合为__________. 14.函数y =x 2+x +1 的定义域是______,值域为__ ____.15.若不等式3ax x 22->(13)x +1对一切实数x 恒成立,则实数a 的取值范围为___ ___.16. f (x )=]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为_____ _. 17.函数y =12x +1的值域是__________. 18.方程log 2(2-2x )+x +99=0的两个解的和是______.三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤) 19.全集U =R ,A ={x ||x |≥1},B ={x |x 2-2x -3>0},求(C U A )∩(C U B ).20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1. (1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.23.已知函数f (x )=a a 2-2 (a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.答案1、由题知A ∪B={0,1},所以A=∅或{0 }或{1}或{0,1};对应的集合B 可为{0,1}或{1},{0,1}或{0},{0,1}或∅,{0},{1},{0,1}2、解:当k 为偶数即k=2m,时A ={x |x =4m π+π,m ∈Z},为奇数即k=2m+1,时A ={x |x =4m π+2π,m ∈Z},故.B A ;注意m , k 都是整数,虽字母不同但意义相同3、解:A ={-2,-1, 0,1,2},则B ={5,2, 1}4、解:由Q ⊆ (P ∩Q )知Q ⊆ P ,故 53122253312-<+≤->+a a a a 得6<a ≤95、解:由题知ba b a +=+=91064得a =2 b=-8,19×2-8=286、解:令y=3x -12-x 得x=yy ++312,当y=-3时x 不存在,故-3是不属于N 的元素 7、解:设f (x )= a x +b ,则2(2a+b) -3(a+b) =5, 2(0a+b)-[(-1)a+b] =1,解得a =3 b=-2 故f (x )= 3x -28、解:A. f (x )定义域为R ,g (x )定义域为x ≠0 B. f (x )定义域为R ,g (x )定义域为x ≠2 C f (x )去绝对值即为g (x ),为同一函数 D f (x )定义域为R ,g (x )定义域为x ≥29、解:-3<0,则f (-3)=0,f (0)=π,π>0,f (π)=π2,f {f [f (-3)]}=π2 10、解(x -2y ) 2=xy ,得(x -y ) (x -4y ) =0,x =y 或,x =4y 即x y =14或411、解:要使a <lg(|x -3|+|x +7|)恒成立,须a 小于lg(|x -3|+|x +7|)的最小值,由于y =lg x 是增函数,只需求|x -3|+|x +7|的最小值,去绝对值符号得|x -3|+|x +7|= 10)3(42)37(1010772最小值为最小值为)(>+≤<--≤--x x x x x 故lg(|x -3|+|x +7|)的最小值为lg 10=1,所以.a <112、解:由x ∉(-1,0),得x +1∉(0,1),要使f (x )>0,由函数y =log a x 的图像知0<2a <1, 得0<a <121、由题知A ∪B={0,1},所以A=∅或{0 }或{1}或{0,1};对应的集合B 可为{0,1}或{1},{0,1}或{0},{0,1}或∅,{0},{1},{0,1}2、解:当k 为偶数即k=2m,时A ={x |x =4m π+π,m ∈Z},为奇数即k=2m+1,时A ={x |x =4m π+2π,m ∈Z},故.B A ;注意m , k 都是整数,虽字母不同但意义相同3、解:A ={-2,-1, 0,1,2},则B ={5,2, 1}4、解:由Q ⊆ (P ∩Q )知Q ⊆ P ,故 53122253312-<+≤->+a a a a 得6<a ≤95、解:由题知ba ba +=+=91064得a =2 b=-8,19×2-8=286、解:令y=3x -12-x 得x=yy ++312,当y=-3时x 不存在,故-3是不属于N 的元素 7、解:设f (x )= a x +b ,则2(2a+b) -3(a+b) =5, 2(0a+b)-[(-1)a+b] =1,解得a =3 b=-2 故f (x )= 3x -28、解:A. f (x )定义域为R ,g (x )定义域为x ≠0 B. f (x )定义域为R ,g (x )定义域为x ≠2 C f (x )去绝对值即为g (x ),为同一函数 D f (x )定义域为R ,g (x )定义域为x ≥29、解:-3<0,则f (-3)=0,f (0)=π,π>0,f (π)=π2,f {f [f (-3)]}=π2 10、解(x -2y ) 2=xy ,得(x -y ) (x -4y ) =0,x =y 或,x =4y 即x y =14或411、解:要使a <lg(|x -3|+|x +7|)恒成立,须a 小于lg(|x -3|+|x +7|)的最小值,由于y =lg x 是增函数,只需求|x -3|+|x +7|的最小值,去绝对值符号得|x -3|+|x +7|= 10)3(42)37(1010772最小值为最小值为)(>+≤<--≤--x x x x x 故lg(|x -3|+|x +7|)的最小值为lg 10=1,所以.a <112、解:由x ∉(-1,0),得x +1∉(0,1),要使f (x )>0,由函数y =log a x 的图像知0<2a <1, 得0<a <1213、解:要不等式的解集为R ,则△<0,即a 2-4a +a <0,解得a ∈∅14、要使x 2+x +1 由意义,须x 2+x+1≥0, 解得x ∈R , 由x 2+x+1=(x+12 )2+43≥43,所以函数定义域为R 值域为[32,+∞) 15、解:原不等式可化为3axx22->3-(x+1)对一切实数x 恒成立,须x 2-2ax >-(x +1) 对一切实数x 恒成立,即 x 2-(2a -1)x +1> 0对一切实数x 恒成立,须△<0得-12 < a < 3216、解:因3x-1-2=3x 31•是增函数,当x ≤1时0<3x <3,-2<3x-1-2≤-1,而31-x -2=3·3-x 是减函数,当x >1时0<3-x <31,-2<31-x -2<-1,故原函数值域为(-2,-1]17、解:∵ 2x >0, ∴2x+1>1 ∴0<12x +1 <1 函数值域为(0,1)19.解:全集U =R ,A ={x ||x |≥1},∴C U A ={x |x <1} ,B ={x |x 2-2x -3>0}={x | x ≤-1或x ≥3},∴C U B ={x |-1<x <3} ∴(C U A )∩(C U B )={x |-1<x <1}20(1)【证明】 由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2) 又∵f (2)=1 ∴f (8)=3(2)【解】 不等式化为f (x )>f (x -2)+3∵f (8)=3 ∴f (x )>f (x -2)+f (8)=f (8x -16)∵f (x )是(0,+∞)上的增函数∴⎩⎨⎧->>-)2(80)2(8x x x 解得2<x <16721.【解】 (1)当每辆车月租金为3600元时,未租出的车辆数为 3600-300050=12,所以这时租出了88辆.(2)设每辆车的月租金定为x 元,则公司月收益为f (x )=(100-x -300050 )(x -150)-x -300050×50整理得:f (x )=-x 250 +162x -2100=-150 (x -4050)2+307050∴当x =4050时,f (x )最大,最大值为f (4050)=307050 元22.【解】 令t =log 41x ∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412, ∴t ∈[-1,-12 ]∴f (t )=t 2-t +5=(t -12 )2+194,t ∈[-1,-12 ]∴当t =-12 时,f (x )取最小值 234 当t =-1时,f (x )取最大值7.23.【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2则f (x 2)-f (x 1)= aa 2-2 (a 2x -a 2x --a 1x +a 1x -)=aa 2-2 (a 2x -a 1x )(1+211x x a a ⋅) 由于a >0,且a ≠1,∴1+211x x aa >0 ∵f (x )为增函数,则(a 2-2)( a 2x -a 1x )>0 于是有⎪⎩⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-02002121222x x x x a a a a a a 或, 解得a > 2 或0<a <1。
巩义二中2010—-—-2011学年度上学期期中考试试卷高一数学注意事项:1。
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
分别答在答题卡(Ⅰ卷)和答题卷(Ⅱ卷)上。
全卷满分150分,时间120分钟. 2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,每个小题选出答案后,用2B 铅笔将答题卡对应的答案标号涂黑.(考试类型涂A )3.第Ⅱ卷的答案直接答在答卷(Ⅱ卷)上,答卷前将密封线内的项目写清楚。
答卷必须使用0.5mm 的黑色墨水签字笔书写,字迹工整,笔迹清晰。
并且必须在题号所指示的答题区域内作答,超出答题区域书写无效。
4.不交试题卷,只交第Ⅰ卷的答题卡和第Ⅱ卷的答题卷第Ⅰ卷(选择题60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1。
已知U 为全集,集合P ⊆Q,则下列各式中不成立...的是 ( ) A. P ∩Q =P B. P ∪Q =QC . P∩(CU Q ) =∅D 。
Q∩(C UP)=∅2. 函数()lg(31)f x x =-的定义域为 ( )A 。
R B.1(,)3-∞ C.1[,)3+∞ D.1(,)3+∞(01)b a a =>≠且,则 ( )A。
2log 1a b = B。
1log 2ab = C .12log a b = D 。
12log b a = 4.已知定义在R 上的函数f (x )的图象是连续不断的,且有如下对应值表:那么函数 f (x )一定存在零点的区间是 ( )A. (-∞,1) B 。
(1,2) C 。
(2,3) D 。
(3,+∞)5.如果函数2(1)2y x a x =+-+在区间(—∞,4]上是减函数,那么实数a 的取值范围是( )A.9≥a B 。
3-≤a C 5≥a D .7-≤a6.下列说法中,正确的是 ( )A.对任意x∈R,都有3x>2x;B .xy -=)3(是R 上的增函数;C.若x ∈R 且0x ≠,则222log 2log x x =;D.在同一坐标系中,y=2x与2log y x =的图象关于直线y x =对称。
7。
下列四类函数中,具有性质“对任意的x〉0,y >0,函数f (x )满足f(x +y )=f (x )f (y )"的是ﻩ ﻩﻩ ﻩ ( ) ﻩ(A )幂函数 ﻩ (B )对数函数 (C)指数函数 (D )二次函数8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A。
0<a<b 〈1<d 〈c B 。
0<b 〈a<1<c〈dC 。
0<d <c 〈1<a <b ﻩ D. 0<c <d<1〈a<b9.函数()412x xf x +=的图象 ( )A 。
关于原点对称B 。
关于直线y=x 对称C 。
关于x 轴对称D 。
关于y 轴对称10.给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(0,1)上单调递减的函数序号是 ( )(A)①② (B)②③ (C )③④ (D )①④11.设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -=( ) (A)-3 (B)—1 (C )1 (D)312.若函数f (x)=212log,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a )>f(—a),则实数a 的取值范围是( )x(C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)第Ⅱ卷二、填空题(共4小题,每道小题5分,共20分。
请将正确答案填写在答题表中)13.已知全集U =R ,集合{}|23A x x =-≤≤,{}1-<=x x B ,那么集合B A 等于 14.函数()()2log 31xf x =+的值域为____ ___ __15、若幂函数y =()x f 的图象经过点(9,13), 则f (25)的值是_________-16、若奇函数()f x 在(,0)-∞上是增函数,且(1)0f -=,则使得()0f x >的x 取值范围是__________________.三、解答题:(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤。
) 17(本题满分10分)已知集合A={}.,0232R a x ax R x ∈=+-∈ 1)若A 是空集,求a 的取值范围;2)若A 中只有一个元素,求a 的值,并把这个元素写出来;18、(本题满分12分)已知函数21()1f x x =-. (1)设()f x 的定义域为A ,求集合A ;(2)判断函数()f x 在(1,+∞)上单调性,并用定义加以证明.19、(本题满分12分)已知函数1()(01)x f x aa a -=>≠且(1)若函数()y f x =的图象经过P (3,4)点,求a 的值;(2)比较1(lg)( 2.1)100f f -与大小,并写出比较过程; 20、已知甲、乙两个工厂在今年的1月份的利润都是6万元,且甲厂在2月份的利润是14万元,乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x 之间的函数关系式分别符合下列函数模型:211()6f x a x b x =++,22()3x g x a b =+,1212(,,,)a a b b R ∈。
(1)求甲、乙两个工厂今年5月份的利润;(2)在同一直角坐标系下画出函数()f x 与()g x 的草图,并根据草图比较今年甲、乙两个工厂的利润的大小情况.21、已知()23g x x =--,()f x 是二次函数,()()g x f x +是奇函数,且当[1,2]x ∈-时,()f x 的最小值是1,求()f x 的表达式.22、(本小题满分12分)已知函数22()log (1)log (1)f x x x =--+, (1)求函数()f x 的定义域; (2)判断()f x 的奇偶性;(3)方程()1f x x =+是否有根?如果有根0x ,请求出一个长度为14的区间(,)a b ,使0(,)x a b ∈;如果没有,请说明理由?(注:区间 (,)a b 的长度b a =-).2010-—2011学年度上学期期中考试试卷高一数学座号/////////////////////////不能在密封线内答题///////////////////////// ――――――――――――――――密――――――――――――封―――――――――――线―――――――――――――――――请在各题目答题区域内作答,超出黑色矩形边框限定区域的答案无效.得分评卷人20题(本题满分12分)请在各题目答题区域内作答,超出黑色矩形边框限定区域的答案无效.得分评卷人21题(本题满分12分)请在各题目答题区域内作答,超出黑色矩形边框限定区域的答案无效.得分评卷人22题(本题满分12分)――――――――――――――――密―――――――――――封―――――――――――――线――――――――――――――――/////////////////////////不能在密封线内答题/////////////////////////请在各题目答题区域内作答,超出黑色矩形边框限定区域的答案无效.高一数学2010—---2011学年度上学期期中考试参考答案一、选择题: 1~5:DDACA, 6~10:DCDDB , 11~12: AC二、填空题: 13、{}12-<≤-x x 14、()0,+∞ 15、1516、(1,0)(1,)-+∞ 三、解答题17、 1)a>89; 2)a=0或a=89;…………10分 18、解:(1)由210x -≠,得1x ≠±,所以,函数21()1f x x =-的定义域为{|1}x x ∈≠±R ……………………… 4分 (2)函数21()1f x x =-在(1,)+∞上单调递减. ………………………………6分证明:任取12,(1,)x x ∈+∞,设12x x <, 则210,x x x ∆=->12122122222112()()1111(1)(1)x x x x y y y x x x x -+∆=-=-=---- )1)(1)(1)(1())((22112121+-+-+-=x x x x x x x x …………………… 8分121,1,x x >>01,0121>->-x x ,021>+x x又12x x <,所以120,x x -< 故0.y ∆<因此,函数21()1f x x =-在(1,)+∞上单调递减. (2)说明:分析y ∆的符号不具体者,适当扣1-2分.19、解:⑴∵函数()y f x =的图象经过(3,4)P∴3-14a=,即24a =. (2)分又0a >,所以2a =. ……………………………………… 4分 ⑵当1a >时,1(lg)( 2.1)100f f >-; 当01a <<时,1(lg)( 2.1)100f f <-。
…………………………………… 6分 因为,31(lg)(2)100f f a -=-=, 3.1( 2.1)f a --= 当1a >时,xy a =在(,)-∞+∞上为增函数,∵3 3.1->-,∴33.1a a -->.即1(lg)( 2.1)100f f >-. 当01a <<时,xy a =在(,)-∞+∞上为减函数,∵3 3.1->-,∴33.1aa --<.即1(lg)( 2.1)100f f <-. ………………………………12分 20、解:(1)依题意:由(1)6(2)14f f =⎧⎨=⎩,有11110428a b a b +=⎧⎨+=⎩,解得:114,4a b ==-∴2()446f x x x =-+; ………………………………………………2分由(1)6(2)8g g =⎧⎨=⎩,有22223698a b a b +=⎧⎨+=⎩,解得:221,53a b ==∴11()35353xx g x -=+=+. ……………………………………………4分 所以甲在今年5月份的利润为(5)86f =万元,乙在今年5月份的利润为(5)86g =万元,故有(5)(5)f g =,即甲、乙两个工厂今年5月份的利润相等. ……………6分(2)作函数图象如下:…………………………………8分从图中,可以看出今年甲、乙两个工厂的利润: 当1x =或5x =时,有()()f x g x =; 当15x <<时,有()()f x g x >;当512x <≤时,有()()f x g x <; …………………………………………12分 21、解:设()()20f x ax bx c a =++≠, …………………………………………1分则()()()213,f x g x a x bx c +=-++-又()()f x g x +为奇函数,()()221313a x bx c a x bx c ∴--+-=----+对x R ∈恒成立, ……………3分1133a a c c -=-+⎧∴⎨-=-+⎩,解得13a c =⎧⎨=⎩, ……………………………………………………5分 ()23f x x bx ∴=++,其对称轴为2bx =-. ………………………………………6分(1)当12b-<-即2b ≥时,()()min 141,3f x f b b =-=-=∴=; ……………8分 (2)当122b -≤-≤即42b -≤≤时,()22min 31242b b b f x f ⎛⎫=-=-+= ⎪⎝⎭,解得22b =-22b =(舍) ; …………………………………………………10分 (3)当22b->即4b <-时,()()min 2721,3f x f b b ==+=∴=-(舍),……12分 综上知()233f x x x =++或()2223f x x =-22、解:(1)要使函数有意义,则1010x x ->⎧⎨+>⎩,∴11x -<<,故函数的定义域为(1,1)- (3)分(2)∵22()log (1)log (1)()f x x x f x -=+--=-,∴()f x 为奇函数。