【教材分析】_平行线的性质1_数学_初中_
- 格式:doc
- 大小:19.50 KB
- 文档页数:1
浙教版数学七年级下册1.4《平行线的性质》教学设计1一. 教材分析《平行线的性质》是浙教版数学七年级下册1.4节的内容,主要包括平行线的传递性质、同位角、内错角和同旁内角的概念及它们之间的关系。
本节内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经掌握了平行线的概念,但对平行线的性质和角度关系还不够了解。
学生的空间想象力有所不同,逻辑思维能力也各有差异。
因此,在教学过程中,需要关注学生的个体差异,引导学生通过观察、操作、思考、交流和总结,逐步掌握平行线的性质。
三. 教学目标1.知识与技能:使学生掌握平行线的传递性质,理解同位角、内错角和同旁内角的概念及它们之间的关系。
2.过程与方法:培养学生观察、操作、思考、交流和总结的能力,提高空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.教学重点:平行线的传递性质,同位角、内错角和同旁内角的概念及它们之间的关系。
2.教学难点:平行线性质的灵活运用,角度关系的推导和证明。
五. 教学方法1.情境教学法:通过生活实例和几何图形,引导学生发现平行线的性质,激发学生的学习兴趣。
2.动手操作法:让学生通过折纸、拼图等动手操作活动,观察和体验平行线的性质,培养学生的空间想象能力。
3.合作交流法:鼓励学生分组讨论,共同探讨平行线的性质,提高学生的团队协作能力。
4.引导发现法:教师引导学生发现问题,引导学生通过思考和总结,得出平行线的性质,培养学生的逻辑思维能力。
六. 教学准备1.教学素材:准备相关的图片、图形和实例,制作PPT。
2.教学工具:准备黑板、粉笔、直尺、圆规等。
3.学生活动材料:准备折纸、拼图等动手操作材料。
七. 教学过程1.导入(5分钟)通过展示生活中常见的平行线现象,如楼梯、铁路等,引导学生回顾平行线的概念,激发学生的学习兴趣。
北京版数学七年级下册《平行线的性质》教学设计一. 教材分析《平行线的性质》是北京版数学七年级下册的一个重要内容。
本节内容主要引导学生探究平行线的性质,包括平行线的判定和性质。
通过本节内容的学习,学生能理解并掌握平行线的性质,并能够运用平行线的性质解决一些实际问题。
二. 学情分析学生在学习本节内容之前,已经学习了直线、射线、线段的知识,对图形的概念有一定的理解。
但是,对于平行线的性质的理解和应用还需要进一步的引导和培养。
因此,在教学过程中,需要关注学生的认知水平,通过适当的引导和练习,帮助学生理解和掌握平行线的性质。
三. 教学目标1.知识与技能:学生能理解并掌握平行线的性质,能够运用平行线的性质解决一些实际问题。
2.过程与方法:通过观察、操作、推理等过程,学生能探索并理解平行线的性质。
3.情感态度与价值观:学生能积极参与数学学习,对数学产生兴趣。
四. 教学重难点1.重点:学生能理解并掌握平行线的性质。
2.难点:学生能运用平行线的性质解决一些实际问题。
五. 教学方法1.引导发现法:通过问题引导,让学生主动发现平行线的性质。
2.实践操作法:通过学生的实际操作,让学生加深对平行线性质的理解。
3.合作交流法:通过学生的合作交流,促进学生对平行线性质的理解和应用。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示平行线的性质。
2.教学素材:准备一些相关的数学题目,用于学生的练习和巩固。
七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回顾直线、射线、线段的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示平行线的性质,引导学生观察并思考平行线的性质。
3.操练(10分钟)教师提出一些有关平行线性质的题目,让学生进行实际操作,巩固对平行线性质的理解。
4.巩固(10分钟)教师学生进行小组讨论,让学生通过合作交流,加深对平行线性质的理解。
5.拓展(10分钟)教师提出一些有关平行线性质的应用题目,让学生进行思考和解答,提高学生解决问题的能力。
第03讲平行线的性质(核心考点讲与练)平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.考点一:平行线的性质【例题1】(2021秋•宜宾期末)如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90° D.β+γ﹣α=180°【变式训练1】((2020秋•宁波期末)如图,已知AB∥CD,则下列结论中正确的是()A.∠EAD=∠ABC B.∠BAC=∠DCA C.∠ADB=∠DBC【变式训练2】((2021•浙江模拟)如图,三根木条相交形成∠1,∠2,∠3,∠4(∠1为锐角)固定木条b,c,转动木条a,则可能和∠1相等的角是()A.∠2 B.∠3 C.∠4 D.不存在【变式训练3】((2021秋•鄞州区月考)如图,AB∥CD,∠A=25°,∠E=80°,则∠C的度数是.【变式训练4】((2020秋•温州期末)一副直角三角板,按如图方式叠放在一起,其中∠A=45°,∠D=30°.若DF∥BC,则∠AGE等于.【变式训练5】((2021秋•温州月考)已知:如图,直线m∥n,将Rt△ABC按如图方式放置,其中点C在直线n上,点A在直线m上,若∠1=50°,则∠2的度数为.【变式训练6】((2021春•上虞区期末)如图,将直角三角板ABC与直尺贴在一起,使三角板ABC的直角顶点C在直尺的一边上,若∠1=63°,则∠2的度数为.【变式训练7】((2021秋•琼海期末)一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FD∥AB,∠B=30°,则∠ADB的度数是()A.95°B.105°C.115°D.125°【变式训练8】((2021•浙江模拟)如图,将一副直角三角板按如图所示位置摆放,∠A=∠FDE=90°,∠B=45°,∠E=30°,点D在边AC上,若EF∥BC,则∠ADE的度数为()A.60°B.65°C.75°D.80°【变式训练9】((2021•义乌市模拟)如图,一辆汽车经过两次转弯后,行驶的方向与原来保持平行,如果第一次转过的角α为64°,则第二次转过的角β为°.【变式训练10】((2020秋•柯桥区期末)如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线l上,点O都落在直线MN上,直线MN∥l.在△ABC中,若∠BOC=125°,则∠BAC的度数为()A.60°B.65°C.70°D.75°【变式训练11】((2021秋•平阳县期中)如图1是一个消防云梯,其示意图如图2所示,此消防云梯由救援台AB,延展臂BC(B在C的左侧),伸展主臂CD,支撑臂EF构成,在操作过程中,救援台AB,车身GH及地面MN三者始终保持平行.当∠EFH=65°,BC∥EF时,∠ABC=度;如图3,为了参与另外一项高空救援工作,需要进行调整,使得延展臂BC与支撑臂EF所在直线互相垂直,且∠EFH=68°,则这时∠ABC=度.【变式训练12】((2021春•嵊州市期末)如图,AB∥CD,∠BOC=100°,BE,CF分别平分∠ABO,∠OCD,则∠2﹣∠1=.【变式训练13】((2021春•嵊州市期末)如图,将长方形纸片沿EB,CF折叠成图1,使AB,CD 在同一直线上,再沿BF折叠成图2,使点D落在点D'处,BD'交CF于点P,若∠CEB=37°,则∠CPB的度数为()A.110°B.111°C.112°D.113°【变式训练14】((2021春•诸暨市期末)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气发生折射,光线变成FH,点G在射线EF上,已知∠HFB=25°,∠FED=65°,则∠GFH=.考点二:平行线的判定与性质【例题2】(2021春•浦江县期末)如图是小聪同学的作业,在※处填的理由是()如图,∠A+∠D=180°,则∠DCE=∠B.完成下面的说理过程.解:已知∠A+∠D=180°,根据(同旁内角互补,两直线平行),得AB∥CD又根据(※)得∠DCE=∠BA.两直线平行,同位角相等B.两直线平行,内错角相等C.两直线平行,同旁内角互补D.同位角相等,两直线平行【变式训练1】(2021春•拱墅区期末)如图,能判定BE∥CD的条件是()A.∠BAD+∠2=180°B.∠1=∠BC.∠BAD+∠B=180°D.∠1=∠D【变式训练2】(2021春•拱墅区期末)如图,已知直线AB,CD被EF所截,EG是∠AEF的角平分线,若∠1=∠2,∠2+∠4=120°,则∠3=.【变式训练3】(2021春•镇海区期中)如图,∠1=∠2=∠3=55°,求∠4的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠1=∠2=55°(已知),∴∥(),∴∠3+∠4=180°(),∵∠3=55°(已知),∴∠4=.【变式训练4】(2021春•鹿城区校级期中)如图,已知a,b,c,d四条直线,若∠1=105°,∠2=75°,∠3=65°,则∠4=度.【变式训练5】(2021•金华)某同学的作业如下框,其中※处填的依据是()如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补【变式训练6】(2021•椒江区校级开学)如图,AD与BC交于点O,点E在AD上,∠C=∠3,∠2=80°,∠1+∠3=140°,∠A=∠D,求∠B的度数.【变式训练7】(2021春•嵊州市期末)如图,D是BC上一点,DE∥AB,交AC于点E.(1)若∠1=∠A,判断DF与AC是否平行,并说明理由;(2)若DF∥AC,∠B+∠C=120°,求∠1的度数.【变式训练8】(2021春•任丘市期末)如图,直线l1,l2被l3所截,下列条件:①∠1=∠2;②∠3=∠4;③l1∥l2,其中能判断AC∥BD的条件是.【变式训练9】(2021•温州三模)如图,已知AB⊥BC,DE⊥AB,∠1=∠2.(1)请说明BD∥FG的理由.(2)若D是AC的中点,F是BC的中点,已知AB=4,BC=3,求FG的长度.【变式训练10】(2021春•长兴县月考)如图,已知CF∥AG,E是直线AB上的一点,CE平分∠ACD,射线CF⊥CE,∠2=58°.(1)求∠ACE的度数;(2)若∠1=32°,说明:AB∥CD.类型一、平行线的性质例1、如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.【变式】如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132° B.134° C.136° D.138°类型二、两平行线间的距离例2、如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.类型三、平行的性质与判定综合应用例3、如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为 ( )A.600m2 B.551m2 C.550m2 D.500m2例4、如图所示,∠ABC的边BC与∠DEF的边DE交于点K,下面给出三个论断:①∠B=∠E;②AB∥DE;③BC∥EF.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断为结论,填人“试说明”栏中,使之成为一个完整的正确命题,并将理由叙述出来.已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,________,________,试说明________.【变式】已知,如图,∠1=∠2,∠3=65°,则∠4= .例5、如图,AB∥CD,点M,N分别为AB,CD上的点.(1)若点P1在两平行线内部,∠BMP1=45°,∠DNP1=30°,则∠MP1N=;(2)若P1,P2在两平行线内部,且P1P2不与AB平行,如图,请你猜想∠AMP1+∠P1 P2N与∠MP1 P2+∠P2ND的关系,并证明你的就论;(3)如图,若P1,P2,P3在两平行线内部,顺次连结M,P1,P2,P3,N,且P1P2,P2P3不与AB平行,直接写出你得到的就论.【变式】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( )A.120° B.130° C.140° D.150°题组A 基础过关练一.选择题(共6小题)1.(2021春•上虞区期末)如图,将一条两边沿互相平行的纸带折叠,设∠1为x度,用关于x的代数式表示α,则表示正确的是()A.α=120°﹣x B.α=90°﹣x C.α=60°+x D.α=45°+x2.(2021春•北仑区期末)如图,平行直线a,b被直线c所截,∠1=120°,则∠2的度数为()A.50°B.60°C.70°D.80°3.(2021春•西湖区期末)如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=60°,若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转()分层提分A.60°B.40°C.30°D.20°4.(2021春•拱墅区期中)下列语句中正确的是()A.经过一点有只有一条直线与已知直线平行B.如果两个角的两边分别平行,那么这两个角相等C.垂直于同一直线的两条直线互相平行D.平行于同一条直线的两条直线互相平行5.(2020•奎文区一模)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠4 C.∠1=∠3 D.∠2=∠3 6.(2020春•曹县期末)如图,点D、E、F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需再有条件()A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD二.填空题(共6小题)7.(2021春•拱墅区期末)如图,AB∥CD,CB∥DE,若∠D=2∠B+30°,则∠C的度数为°.8.(2021春•镇海区校级期末)如图,已知DE∥BC,CD是∠ACB的平分线,∠A=60°,∠B=76°,则∠EDC的度数为.9.(2021•宁波模拟)如图,AB⊥CD于点B,BE∥AC,∠DBE=40°,则∠A的度数为度.10.(2021•江干区模拟)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=35°,∠EFC=120°,则∠A=.11.(2020春•如皋市期末)如图,已知∠1=80°,∠2=100°,∠3=70°,则∠4=.12.(2020春•下城区期末)如图,已知∠1=∠2=∠3=50°,则∠4=.三.解答题(共8小题)13.(2021春•宁阳县期末)如图,CD是∠ACB的平分线,∠ACB=82°,∠B=48°,DE∥BC.求∠EDC和∠BDC的度数.14.(2019春•鹿城区校级期中)如图,已知AB∥CD,∠B=60°,∠FCG=90°,CF平分∠BCE,求∠BCG的度数.15.(2018春•椒江区校级月考)如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,求∠2的度数.16.(2021春•嘉兴期末)如图,已知∠DEB=100°,∠BAC=80°.(1)判断DF与AC的位置关系,并说明理由;(2)若∠ADF=∠C,∠DAC=120°,求∠B的度数.17.(2021春•慈溪市期末)如图,已知AB∥CD,∠ABC=∠CDA,说明AD∥BC的理由.18.(2021春•双辽市期末)如图所示,AD与BE相交于点F,∠A=∠C,∠1与∠2互补.证明:AB∥CE.19.(2021春•鹿城区校级期中)如图,已知∠1+∠2=180°,∠4=∠A,试说明∠ACB=∠DEB.解:∵∠1+∠2=180°(已知),又∵+∠5=180°(平角的意义),∴∠2=(同角的补角相等),∴AB∥EF(),∴∠3=(两直线平行,内错角相等).∵∠4=∠A(已知),∴=∠A(等量代换),∴∥AC(),∴∠ACB=∠DEB().20.(2021春•拱墅区期中)如图,FG∥CD,∠1=∠3,∠B=60°,求∠BDE的度数,请把下面的解答过程补充完整.解:∵FG∥CD(已知),∴∠1=().又∵∠1=∠3(已知),∴∠3=(),∴BC∥(),∴∠B+ =180°().又∵∠B=60°(已知),∴∠BDE=().题组B 能力提升练一.选择题(共7小题)1.(2021春•浦江县期末)如图,AD∥BE,AC与BC相交于点C,且∠1=∠DAB,∠2=∠EBA.若∠C=45°,则n=()A.2 B.3 C.4 D.52.(2021春•椒江区期末)如图,BD为∠ABC的角平分线,AD∥BC,∠BDC=90°,∠A与∠C的数量关系为()A.∠A+∠C=180°B.∠A=2∠CC.∠A﹣∠C=90°D.∠A+∠C=90°3.(2021春•望城区期末)将一个直角三角板和一把直尺按如图所示摆放,若∠1=35°,则∠2的度数为()A.35°B.45°C.50°D.55°4.(2021•启东市模拟)如图,把长方形ABCD沿EF对折,若∠1=44°,则∠AEF等于()A.136°B.102°C.122°D.112°5.(2021春•奉化区校级期末)如图,将一副三角板如图放置,则下列结论:①∠1=∠3;②如果∠2=45°,则有BC∥AE;③如果∠2=30°,则有DE∥AB;④如果∠2=45°,必有∠4=∠E.其中正确的有()A.①②B.①③C.①②④D.①③④6.(2021春•奉化区校级期末)如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F:③HE平分∠AHG;④HE⊥AB,其中正确的有()A.1个B.2个C.3个D.4个7.(2021春•奉化区校级期末)如图,小明用两块同样的三角板,按下面的方法作出了平行线,则AB∥CD的理由是()A.∠2=∠4 B.∠3=∠4C.∠5=∠6 D.∠2+∠3+∠6=180°二.填空题(共9小题)8.(2021•深圳模拟)将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CDE=42°,那么∠BAF的度数为.9.(2020秋•奉化区校级期末)在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若∠1=55°,则∠2的度数是.10.(2020春•东阳市期末)已知直线AB∥CD,点P、Q分别在AB、CD上,如图所示,射线PB按顺时针方向以每秒4°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按顺时针方向每秒1°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为;(2)若射线QC先转45秒,射线PB才开始转动,当射线PB旋转的时间为秒时,PB′∥QC′.11.(2021秋•平阳县期中)如图,放置在水平操场上的篮球架的横梁EF始终平行于AB,EF与上拉杆CF形成的∠F=150°,主柱AD垂直于地面,通过调整CF和后拉杆BC的位置来调整篮筐的高度.当∠CDB=40°时,点H,D,B在同一直线上,则∠H的度数是.12.(2020春•海曙区期末)两块不同的三角板按如图所示摆放,两个直角顶点C重合,∠A=60°,∠D=45°.接着保持三角板ABC不动,将三角板CDE绕着点C旋转,但保证点D在直线AC 的上方,若三角板CDE有一条边与斜边AB平行,则∠ACD=.13.(2021春•滨江区校级期末)如图a,已知长方形纸带ABCD,将纸带沿EF折叠后,点C、D 分别落在H、G的位置,再沿BC折叠成图b,若∠DEF=72°,则∠GMN=°.14.(2021春•奉化区校级期末)如图,C为∠AOB的边OA上一点,过点C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB交BO的延长线于点H,若∠EFD=α,现有以下结论:①∠COF=α;②∠AOH=180°﹣2α;③CH⊥CD;④∠OCH=2α﹣90°.其中正确的是(填序号).15.(2021春•奉化区校级期末)某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ ∥MN.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动秒,两灯的光束互相平行.16.(2021春•奉化区校级期末)如图,AE∥CF,∠ACF的平分线交AE于点B,G是CF上的一点,∠GBE的平分线交CF于点D,且BD⊥BC,下列结论:①BC平分∠ABG;②AC∥BG;③与∠DBE互余的角有2个;④若∠A=α,则∠BDF=.其中正确的有.(把你认为正确结论的序号都填上)三.解答题(共9小题)17.(2021春•温州期末)如图,AB∥CD,E是CD上一点,AE交BC于点F,且∠ABE=∠DBC,∠ABC =∠AEB.(1)试判断AE与BD的位置关系,并说明理由;(2)若BE平分∠CBD,∠AEB=40°,求∠D的度数.18.(2021春•诸暨市月考)推理填空:如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程及依据填写完整.∵EF∥AD,∴∠2=(),又∵∠1=∠2,∴∠1=∠3(),∴AB∥(),∴∠BAC+ =180°(),∵∠BAC=70°,∴∠AGD=.19.(2021春•鹤城区期末)如图,E,G是分别是AB,AC上的点,F,D是BC上的点,连接EF,AD,DG,如果AB∥DG,∠1+∠2=180°.(1)判断AD与EF的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠2=145°,求∠B的度数.20.(2021春•拱墅区月考)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.21.(2021春•奉化区校级期末)如图,∠ABC和∠BCD的平分线交于点P,延长CP交AB于点Q,且∠PBC+∠PCB=90°.(1)求证:AB∥CD.(2)探究∠PBC与∠PQB的数量关系.22.(2021春•奉化区校级期末)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)DF与AC平行吗?请说明理由.(2)若∠1=110°,DF平分∠BDE,求∠C的度数.23.(2020秋•北仑区期末)如图1,点O在直线AB上,过点O引一条射线OC,使∠AOC=50°,将一个直角三角尺的直角顶点放在点O处,直角边OM在射线OB上,另一边ON在直线AB的下方.【操作一】:将图1中的三角尺绕着点O以每秒15°的速度按顺时针方向旋转.当它完成旋转一周时停止,设旋转的时间为t秒.(1)∠BOC的度数是,图1中与它互补的角是.(2)三角尺旋转的度数可表示为(用含t的代数式表示):当t=时,MO⊥OC.【操作二】:如图2将一把直尺的一端点也放在点O处,另一端点E在射线OC上.如图3,在三角尺绕着点O以每秒15°的速度按顺时针方向旋转的同时,直尺也绕着点O以每秒5°的速度按顺时针方向旋转,当一方完成旋转一周时停止,另一方也停止旋转,设旋转的时间为t秒.(3)当t为何值时,OM⊥OE,并说明理由?(4)试探索:在三角尺与直尺旋转的过程中,当0≤t≤,是否存在某个时刻,使得∠COM 与∠COE中其中一个角是另一个角的两倍?若存在,请求出所有满足题意的t的值;若不存在,请说明理由.24.(2021春•诸暨市期末)如图,直线FG∥直线HK,一块三角板的顶点A在直线HK上,边BC、AC 分别交直线FG于D、E两点.∠BAC=60°,∠B=90°,∠C=30°.(1)如图1,∠BAH=40°,则:①∠FDB=°;②若∠CDE与∠CAK的角平分线交于点I,则∠I=°.(2)如图2,点I在∠EDC的平分线上,连接AI,且∠CAI:∠KAI=1:3,若∠I=35°,求∠FDB的度数;(3)如图3,若∠CDI:∠GDI=1:n,∠CAI:∠KAI=1:n,则∠I=°(用含n的式子表示).25.(2021春•嵊州市期末)如图,直线AB、CD被DQ所截,AB∥CD,∠BDC=50°,点E是直线CD上的动点(点E与点D不重合),连结BE,作∠ABE的角平分线交直线CD于点F.(1)如图1,点E在点D左侧,若∠DBE=20°,求∠EBF的度数.(2)射线BG平分∠EBQ.①如图2,点E在点D左侧,求∠FBG的度数.②若F′是BF反向延长线上的一点,求∠F′BG的度数.题组C 培优拔尖练一.解答题(共8小题)1.(2020秋•罗湖区校级期末)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.2.(2021春•临邑县期末)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.3.(2021春•河北区期末)如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB∥CD;(2)若∠2=35°,求∠BFC的度数.4.(2021春•饶平县校级期末)如图,AE∥CF,∠A=∠C.(1)若∠1=35°,求∠2的度数;(2)判断AD与BC的位置关系,并说明理由;(3)若AD平分∠BDF,试说明BC平分∠DBE.5.(2020春•九龙坡区期末)已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.6.(2021春•越城区期末)如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.(1)求证∠APB=∠DAP+∠FBP;(2)利用(1)的结论解答:①如图2,AP1、BP1分别平分∠DAP、∠FBP,请你直接写出∠P与∠P1的数量关系是.②如图3,AP2、BP2分别平分∠CAP、∠EBP,若∠APB=80°,则∠AP2B的度数是.7.(2021春•奉化区校级期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.8.(2018春•金华期中)为更好地理清平行线与相关角的关系,小明爸爸为他准备了四根细直木条AB、BC、CD、DE,做成折线ABCDE,如图1,且在折点B、C、D处均可自由转出.(1)如图2,小明将折线调节成∠B=60°,∠C=85°,∠D=25°,判别AB是否平行于ED,并说明理由;(2)如图3,若∠C=∠D=25°,调整线段AB、BC使得AB∥CD,求出此时∠B的度数,要求画出图形,并写出计算过程.(3)若∠C=85°,∠D=25°,AB∥DE,求出此时∠B的度数,要求画出图形,直接写出度数,不要求计算过程.。
平行线的性质说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是“平行线的性质”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“平行线的性质”是人教版七年级数学下册第五章第三节的内容。
在此之前,学生已经学习了平行线的判定,这为过渡到本节内容的学习起到了铺垫作用。
本节内容是在前一节的基础上,进一步探究平行线的性质,它是空间与图形领域的基础知识,也是后续学习三角形、四边形等知识的重要基础。
平行线的性质在实际生活中也有着广泛的应用,如在建筑设计、测量绘图等方面都有重要的作用。
通过对平行线性质的学习,不仅可以加深学生对几何图形的认识,还能培养学生的逻辑推理能力和空间想象能力。
二、学情分析七年级的学生已经具备了一定的观察、分析和归纳能力,但他们的抽象思维能力和逻辑推理能力还相对较弱。
在学习平行线的判定时,学生已经对平行线有了初步的认识,但对于平行线的性质,还需要通过直观感知和实际操作来深入理解。
此外,这个年龄段的学生好奇心强,喜欢动手操作,在教学中可以充分利用学生的这些特点,引导他们通过自主探究和合作交流来获取知识。
三、教学目标基于对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解平行线的性质,能熟练运用平行线的性质解决相关问题。
(2)经历平行线性质的探究过程,培养学生的观察、分析和推理能力。
2、过程与方法目标(1)通过实际操作、观察、猜想、验证等活动,让学生体会探究数学问题的一般方法。
(2)在探究平行线性质的过程中,培养学生的合作交流意识和创新精神。
3、情感态度与价值观目标(1)让学生在数学活动中体验成功的喜悦,增强学习数学的自信心。
(2)通过对平行线性质的应用,感受数学与生活的密切联系,激发学生学习数学的兴趣。
四、教学重难点教学重点:平行线的性质及应用。
教学难点:平行线性质的探究过程以及对性质的理解和运用。
《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。
2. 通过实例让学生熟练掌握平行线的性质。
3. 培养学生的空间观念和逻辑思维能力。
二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。
2. 教学难点:如何理解和应用平行线的性质。
三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。
- 提出问题,引导学生思考平行线的相关知识。
2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。
- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。
- 鼓励学生动手操作,亲自验证平行线的性质。
4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。
- 对学生的解答进行点评,帮助他们改正错误,加深理解。
5. 小结与反思:
- 引导学生总结本节课的学习内容。
- 鼓励学生分享自己的学习心得,提出疑问或困惑。
四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。
五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。
- 思考如何改进教学方法,提高教学质量。
华东师大版七年级数学上册《平行线的性质》评课稿一、教材分析本评课稿对华东师大版七年级数学上册中的《平行线的性质》单元进行评价。
该单元是七年级数学上册的第五个单元,主要讲解平行线的概念、平行线之间的性质以及平行线与转角的关系。
通过该单元的学习,学生将了解平行线的定义并能够通过各种方法证明平行线之间的性质。
1.1 教材内容《平行线的性质》单元主要包括以下几个方面的内容:•平行线的概念:介绍了平行线的定义和符号表示法,并通过几个简单的实际例子帮助学生理解平行线的概念。
•平行线之间的性质:–同位角定理:讲解同位角的概念和性质,并通过几个简单的实例进行实际应用。
–内错角定理:介绍内错角的概念和性质,并通过几个画面生动的例子进行说明。
–顶角定理:阐述了顶角的概念和性质,并通过实际的几何图形进行示例讲解。
–外错角定理:引入外错角的概念和性质,通过实例演示了外错角的等于内错角。
•平行线与转角的关系:通过考察直线与转角的结合,引出平行线与转角的关系,阐释了平行线的物理性质。
1.2 教学目标通过本单元的学习,学生将能够达到以下几个目标:1.理解平行线的概念和符号表示法。
2.理解同位角、内错角、顶角、外错角的概念和性质,并能在几何图形中进行应用。
3.了解平行线与转角的关系,并能够解决相关问题。
二、教学设计2.1 教学重点•平行线的概念和符号表示法。
•同位角、内错角、顶角、外错角的概念和性质。
•平行线与转角的关系。
2.2 教学内容和教学步骤教学内容:1.平行线的概念和符号表示法–通过实际生活中的例子引入平行线的概念,帮助学生理解平行线的含义。
–通过绘制平行线和标注符号,让学生熟悉平行线的符号表示法。
2.平行线之间的性质–同位角定理•介绍同位角的定义和性质。
•通过绘制两组平行线和标注同位角,让学生观察同位角的特点。
•引导学生通过同位角的等式来解决实际问题。
–内错角定理•讲解内错角的定义和性质。
•绘制平行线和一条横截线,并标注内错角。
《平行线》讲评课环节教学问题设计教学活动设计试卷分析成绩分析分数段实际人数期望人数优秀2125及格1212不及格78了解学生完成情况,及时反馈通报、交流出现的各种情况.对于部分题目,根据学生完成情况简要讲评.典型错例分析6、如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有。
A. 1个B. 2个C. 3个D. 4个4、如图,将一块含30°角的直角三角板的两个顶点放在长方形的一组对边上,如果∠2=60°,那么∠1的度数为。
A. 60°B. 50°C.40°D.30°教师出示题目.学生先思考,然后小组讨论,看看自己的结果是否正确.教师巡视.教师找部分学生展示自己的成果,及时点评和总结.教学目标知识技能1.进一步熟悉相交线所成的角及其基本结论;2.进一步理解垂线、垂线段的概念及性质,点到直线的距离;过程方法3.熟练掌握三线八角(同位角、内错角、同旁内角),两直线平行的判定及其应用;4.熟练掌握平行线的性质及一些结论,并会应用;5.平移的特征并会应用其解决问题.情感态度让学生积极参与到数学活动中来,感受到数学就在我们的身边,激发学习兴趣.重点垂线的概念,直线平行的判定和平行线的性质,学好这些重点知识的关键是掌握相交线与平行线的有关的角的知识.难点两直线平行的判定与平行线的性质,图形的平移及应用,说理的思路、步骤、格式的掌握,是本章的三个难点.20、如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°求:∠DCN的度数。
矫正补偿1、如图1,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3 = ∠4 B.∠A+∠ADC =0180C. ∠1 =∠2D. ∠A = ∠5图12、如图2,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=15°,则∠2的度数是()A. 25°B. 30°C. 60°D. 65°3、如图3,已知∠1 = 070,要使A B∥CD则需具备另一条件()A.∠2 = 070B.∠2 = 0100C.∠ 2 =0110D.∠3=0110教师出示题目.学生根据刚才讲评的知识,独立完成,教师深入学生中进一步了解完成情况,对于出现问题的同学及时的指导,对问题比较集中的统一讲解分析.21图24、已知:如图,直线CD,EF被直线OA,OB所截,∠1 +∠2 = 180°。
案例分析平行线的性质麻晓燕一、教材分析:本节课是浙江出版社义务教育课程标准实验教科书八年级上册第一章第3节平行线的性质,它是平行线及直线平行的延续,是后面研究多边形性质内容的基础,是“空间与图形”的重要组成部分。
二、教学目标:知识与技能:掌握平行线的性质,能应用性质解决相关问题。
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:重点:平行线的性质难点:“性质1”的探究过程四、教学方法:“引导发现法”与“动像探索法”五、教具、学具:教具:多媒体课件学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。
内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。
①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。
(二)数形结合,探究性质1.画图探究,归纳猜想任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角(如图)。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:学生活动:画图——度量——填表——猜想结论:两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。
2.教师用《几何画板》课件验证猜想3.性质1. 两条直线被第三条直线所截,同位角相等。
(两直线平行,同位角相等)(三)引申思考,培养创新问题三:请判断内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。