计量经济学-肖红叶-第2章简单线性回归方程模型下习题(1)
- 格式:doc
- 大小:145.50 KB
- 文档页数:19
第二章练习题参考解答练习题资料来源:《深圳统计年鉴2002》,中国统计出版社(1)建立深圳地方预算内财政收入对GDP的回归模型;(2)估计所建立模型的参数,解释斜率系数的经济意义;(3)对回归结果进行检验;(4)若是2005年年的国内生产总值为3600亿元,确定2005年财政收入的预测值和预测区间(0.05α=)。
2.2某企业研究与发展经费与利润的数据(单位:万元)列于下表:1995 1996 1997 1998 1999 2000 2001 2002 2003 2004研究与发展经费 10 10 8 8 8 12 12 12 11 11利润额 100 150 200 180 250 300 280 310 320 300 分析企业”研究与发展经费与利润额的相关关系,并作回归分析。
2.3为研究中国的货币供应量(以货币与准货币M2表示)与国内生产总值(GDP)的相互依存关系,分析表中1990年—2001年中国货币供应量(M2)和国内生产总值(GDP)的有关数据:年份货币供应量(亿元)M2国内生产总值(亿元)GDP1990 1529.31 8598.41991 19349.92 1662.51992 25402.2 26651.91993 34879.8 34560.51994 46923.5 46670.01995 60750.5 57494.91996 76094.9 66850.51997 90995.3 73142.71998 104498.5 76967.21999 119897.9 80579.42000 134610.3 88228.12001158301.994346.4资料来源:《中国统计年鉴2002》,第51页、第662页,中国统计出版社对货币供应量与国内生产总值作相关分析,并说明分析结果的经济意义。
2.4表中是16支公益股票某年的每股帐面价值和当年红利:根据上表资料:(1)建立每股帐面价值和当年红利的回归方程; (2)解释回归系数的经济意义;(3)若序号为6的公司的股票每股帐面价值增加1元,估计当年红利可能为多少?2.5美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street Journal 1。
2.2 简单线性回归模型参数的估计一、判断题1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。
(F)2.随机扰动项和残差项是一回事。
(F )3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。
(F )4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。
( F )5.如果观测值i X 近似相等,也不会影响回归系数的估计量。
( F )二、单项选择题1.设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是( D )。
A .()()()i i 12i X X Y -Y ˆX X β--∑∑= B .()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C .i i 122iX Y -nXY ˆX -nX β∑∑= D .i i i i 12x n X Y -X Y ˆβσ∑∑∑= 2.以Y 表示实际观测值,ˆY 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。
A .i i ˆY Y 0∑(-)=B .2i i ˆY Y 0∑(-)=C .i i ˆY Y ∑(-)=最小D .2i i ˆY Y ∑(-)=最小 3.设Y 表示实际观测值,ˆY 表示OLS 估计回归值,则下列哪项成立( D )。
A .ˆYY = B .ˆY Y = C .ˆY Y = D .ˆY Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。
A .X Y (,)B . ˆX Y (,)C .ˆX Y (,)D .X Y (,) 5.以Y 表示实际观测值,ˆY表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01iˆˆˆY X ββ+=满足( A )。
A .i i ˆY Y 0∑(-)=B .2i i Y Y 0∑(-)= C . 2i i ˆY Y 0∑(-)= D .2i i ˆY Y 0∑(-)=6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。
第二章练习题及参考解答2.1 为研究中国的货币供应量(以货币与准货币M2表示)与国内生产总值(GDP)的相互依存关系,分析表中1990年—2007年中国货币供应量(M2)和国内生产总值(GDP )的有关数据:表2.9 1990年—2007年中国货币供应量和国内生产总值(单位:亿元)资料来源:中国统计年鉴2008,中国统计出版社对货币供应量与国内生产总值作相关分析,并说明相关分析结果的经济意义。
练习题2.1 参考解答:计算中国货币供应量(以货币与准货币M2表示)与国内生产总值(GDP)的相关系数为:计算方法: 2222()()i i i iXY i i i i n X Y X Y r n X X n Y Y -=--∑∑∑∑∑∑∑或 ,22()()()()ii X Y iiX X Y Y r X X Y Y --=--∑∑∑计算结果:M2GDPM2 1 0.996426148646 GDP0.9964261486461经济意义: 这说明中国货币供应量与国内生产总值(GDP)的线性相关系数为0.996426,线性相关程度相当高。
2.2 为研究美国软饮料公司的广告费用X 与销售数量Y 的关系,分析七种主要品牌软饮料公司的有关数据表2.10 美国软饮料公司广告费用与销售数量 资料来源:(美) Anderson D R 等. 商务与经济统计.机械工业出版社.1998. 405绘制美国软饮料公司广告费用与销售数量的相关图, 并计算相关系数,分析其相关程度。
能否在此基础上建立回归模型作回归分析?练习题2.2参考解答美国软饮料公司的广告费用X 与销售数量Y 的散点图为年份货币供应量M2国内生产总值GDP1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 200715293.4 19349.9 25402.2 34879.8 46923.5 60750.5 76094.9 90995.3 104498.5 119897.9 134610.4 158301.9 185007.0 221222.8 254107.0 298755.7 345603.6 40342.218718.3 21826.2 26937.3 35260.0 48108.5 59810.5 70142.5 78060.8 83024.3 88479.2 98000.5 108068.2 119095.7 135174.0 159586.7 184088.6 213131.7 251483.2品牌名称广告费用X(百万美销售数量Y(百万箱)Coca-Cola Classic 131.3 1929.2 Pepsi-Cola 92.4 1384.6 Diet-Coke60.4 811.4 Sprite 55.7 541.5 Dr.Pepper 40.2 546.9 Moutain Dew 29.0 535.6 7-Up11.6219.5说明美国软饮料公司的广告费用X 与销售数量Y 正线性相关。
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
第二章课后答案2.11)设回归模型为: 01i i i Y X u ββ=++其中,Y 为国内生产总值,i X 为地方预算内财政收入对回归模型的参数进行估计,根据回归结果得:i Y = -3.611151+ 0.134582iX (4.161790) (0.003867)t = (-0.867692) (34.80013)2r =0.991810 F=1211.049 S.E.=7.532484 DW=2.0516402)斜率系数的经济意义:国内生产总值每增加1亿元,地方预算内财政收入平均增加0.315亿元。
3)由以上模型可看出,X 的参数估计的t 统计量远大于2,说明GDP 对地方财政收入确有显著影响。
模型在的可决系数为0.991810,说明GDP 解释了地方财政收入变动的99%,模型拟合程度较好。
4)预测点预测:若2005年GDP 为3600亿元,2005年的财政收入预测值为480.884。
区间预测:由X 、Y 的描述统计结果得: 22(1)587.269(121)3793733.66i x x n σ=-=⨯-=∑22()(3600-917.5874)7195337.357f X X -==取α=0.05,f Y 平均值置信度95%的预测区间为:/2f Y t α f X =3600时,480.884 2.228⨯7.5325⨯ 23.61476991 即,2005年财政收入的平均值预测区间为:480.884 23.34796 (457.2692, 504.4988)f Y 个别值置信度95%的预测区间为:/2f Y t α f X =3600,480.884 2.228⨯7.5325⨯ 28.97079 2005年财政收入的个别值预测区间为:480.884 28.97079 (451.91321,509.8548)2.2令Y 为利润额,X 为研究与发展经费研究与发展经费与利润额的相关系数表:设回归模型为:01i i i Y X u ββ=++其中i Y 为利润额,i X 为研究与发展经费。
2.4 回归系数的区间估计和假设检验一、判断题1.如果零假设H 0:B 2=0,在显著性水平5%下不被拒绝,则认为B 2一定是0。
(F )2.k β的置信度为()α-1的置信区间指真实参数落入该区间的概率是()α-1。
(F)3.假设检验为单侧检验还是双侧检验本质上取决于备择假设的形式。
(F )4.回归系数的显著性检验是用来检验解释变量对被解释变量有无显著解释能力的检验。
(T )二、单项选择题1.对回归模型i i 10i u X Y ++=ββ进行检验时,通常假定i u 服从( C )。
A .()2i 0N σ, B .()2n t - C .()20N σ, D .()n t2.用一组有30个观测值的样本估计模型i i 10i u X Y ++=ββ,在0.05的显著性水平下对1β的显著性作检验,则1β显著地不等于零的条件是其统计量大于( D )。
A .()30t 050. B .()30t 0250.) C .()28t 050. D .()28t 0250. 3.回归模型i i i u X Y ++=10ββ中,关于检验010=β:H 所用的统计量)ˆ(ˆ111βββVar -,下列说法正确的是( D )。
A .服从)(22-n χB .服从)(1-n tC .服从)(12-n χ D .服从)(2-n t 4.用一组有30个观测值的样本估计模型后,在0.05的显著性水平上对的显著性作检验,则显著地不等于零的条件是其统计量大于等于( C ) A. B. C. D. 三、简答题1.当α给定后,回归系数2β的置信区间是什么样的?答:总体方差2σ已知时,置信区间为⎥⎥⎦⎤⎢⎢⎣⎡+-∑∑2i 22i2x z xz σβσβˆ,ˆ;总体方差2σ未知则使用2n e 2i2-=∑σˆ估计2σ:①样本容量充分大时,统计量仍服从正态,则置信区间为t t 01122t t t t y b b x b x u =+++1b t 1b t )30(05.0t )28(025.0t )27(025.0t )28,1(025.0F⎥⎥⎦⎤⎢⎢⎣⎡+-∑∑2i 22i 2x z x z σβσβˆˆ,ˆˆ;②样本容量较小时,统计量服从t 分布,则置信区间为⎥⎥⎦⎤⎢⎢⎣⎡+-∑∑2i 222i22x t xt σβσβααˆˆ,ˆˆ 。
计量经济学练习题答案计量经济学练习题答案计量经济学是应用数学和统计学方法来解决经济问题的一门学科。
通过对经济数据的收集、整理和分析,计量经济学可以帮助我们理解经济现象和进行经济预测。
在学习计量经济学的过程中,练习题是非常重要的一部分,通过解答练习题可以帮助我们巩固所学知识并提高解决实际问题的能力。
下面是一些计量经济学练习题的答案,希望对大家的学习有所帮助。
第一题:简单线性回归模型考虑一个简单的线性回归模型,表示为:Y = β0 + β1X + ε,其中Y是被解释变量,X是解释变量,β0和β1是回归系数,ε是误差项。
我们的目标是通过最小二乘法估计出β0和β1的值。
答案:最小二乘法是通过最小化残差平方和来估计回归系数的方法。
对于简单线性回归模型,我们可以使用公式来计算β0和β1的估计值。
β1的估计值为:β1 = Σ((Xi - Xbar)(Yi - Ybar)) / Σ((Xi - Xbar)^2),其中Xi和Yi 分别是第i个观测值的X和Y的值,Xbar和Ybar分别是X和Y的样本均值。
β0的估计值为:β0 = Ybar - β1 * Xbar,其中Ybar是Y的样本均值。
第二题:多元线性回归模型考虑一个多元线性回归模型,表示为:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε,其中Y是被解释变量,X1、X2、...、Xk是解释变量,β0、β1、β2、...、βk是回归系数,ε是误差项。
我们的目标是通过最小二乘法估计出β0、β1、β2、...、βk的值。
答案:对于多元线性回归模型,我们可以使用矩阵表示来计算回归系数的估计值。
假设我们有n个观测值和k个解释变量,可以将回归模型表示为矩阵形式:Y = Xβ + ε,其中Y是n×1的向量,X是n×(k+1)的矩阵,β是(k+1)×1的向量,ε是n×1的向量。
回归系数的估计值为:β = (X'X)^(-1)X'Y,其中X'表示X的转置,^(-1)表示矩阵的逆。
第2章 一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
A 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
A 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
A 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
A 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
A i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
A ()()()i i 12iX X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
第二章单方程计量经济学模型理论与方法(下)一、填空题:1.在多元线性回归模型中,解释变量间呈现线性关系的现象称为__________问题,给计量经济建模带来不利影响,因此需检验和处理它。
2.检验样本是否存在多重共线性的常见方法有:__________和逐步回归法。
3.处理多重共线性的方法主要有两大类:__________和__________。
4.普通最小二乘法、加权最小二乘法都是__________的特例。
5.随机解释变量与随机误差项相关,可表示为__________。
6.工具变量法并没有改变原模型,只是在原模型的参数估计过程中用工具变量“替代”__________。
7.对于模型,i=1,2,…,n,若用工具变量代替其中的随机解释变量,则采用工具变量法所得新的正规方程组仅仅是将原正规方程组中的方程用方程____________________代替,而其他方程则保持不变。
8.狭义工具变量法参数估计量的统计性质是小样本下__________,大样本下__________。
9.对于线性回归模型,i=1,2,…,n,其矩阵表示为。
若用工具变量代替其中的随机解释变量,则采用工具变量法所得参数估计量的矩阵表示为__________,其中被称为__________。
10.以截面数据为样本建立起来的计量经济模型中的随机误差项往往存在__________。
11.以时间序列数据为样本建立起来的计量经济模型中的随机误差项往往存在__________。
二、单选题:1.在线性回归模型中,若解释变量和 的观测值成比例,既有 ,其中 为非零常数,则表明模型中存在()。
A.方差非齐性 B.多重共线性C.序列相关D.设定误差2.在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在()。
A.多重共线性B.异方差性C.序列相关D.高拟合优度3.戈德菲尔德—匡特检验法可用于检验()。
A.异方差性B.多重共线性C.序列相关D.设定误差4.若回归模型中的随机误差项存在异方差性,则估计模型参数应采用()。
A.普通最小二乘法B.加权最小二乘法C.广义差分法D.工具变量法5.如果回归模型中的随机误差项存在异方差,则模型参数的普通最小二乘估计量()。
A.无偏且有效B.无偏但非有效C.有偏但有效D.有偏且非有效6.设回归模型为,其中,则的最有效估计量为()。
A. B.C. D.7.对于模型,如果在异方差检验中发现,则用权最小二乘法估计模型参数时,权数应为()。
A. B.C. D.8.若回归模型中的随机误差项存在一阶自回归形式的序列相关,则估计模型参数应采用()。
A.普通最小二乘法B.加权最小二乘法C.广义差分法D.工具变量法9.用于检验序列相关的DW统计量的取值范围是()。
A.0≤DW≤1B.-1≤DW≤1C.-2≤DW≤2D.0≤DW≤410.已知DW统计量的值接近于2,则样本回归模型残差的一阶自相关系数近似等于()。
A.0B.-1C.1D.0.511.已知样本回归模型残差的一阶自相关系数接近于-1,则DW统计量近似等于()。
A.0B.1C.2D.412.在给定的显著性水平之下,若DW统计量的下和上临界值分别为d L和d u,则当d L<DW<d u时,可认为随机误差项()。
A.存在一阶正自相关B.存在一阶负相关C.不存在序列相关D.存在序列相关与否不能断定13.某企业的生产决策是由模型描述(其中为产量,为价格),又知:如果该企业在期生产过剩,决策者会削减期的产量。
由此判断上述模型存在()。
A. 异方差问题B. 序列相关问题C. 多重共线性问题D. 随机解释变量问题14.对于模型,若存在序列相关,同时存在异方差,即有,,则广义最小二乘法随机误差项方差—协方差矩阵可表示为这个矩阵是一个()。
A.退化矩阵B.单位矩阵C.长方形矩阵D.正方形矩阵15.用矩阵形式表示的广义最小二乘参数估计量为,此估计量为()。
A.有偏、有效的估计量B.有偏、无效的估计量C.无偏、无效的估计量D.无偏、有效的估计量16.采用广义最小二乘法关键的一步是得到随机误差项的方差—协方差矩阵Ω,这就需要对原模型首先采用()以求得随机误差项的近似估计量,从而构成矩阵Ω的估计量。
A.一阶差分法B.广义差分法C.普通最小二乘法17.如果模型中出现随机解释变量并且与随机误差项相关时,最常用的估计方法是()。
A.普通最小二乘法B.加权最小二乘法C.差分法D.工具变量法18.在下图a、b、c、d、e中,为解释变量,e为相对应的残差。
图形()表明随机误差项的方差随着解释变量的增加而呈U性变化。
三、多选题:1.针对存在异方差现象的模型进行估计,下面哪些方法可能是适用的()。
A. 加权最小二乘法B. 工具变量法C. 广义差分法D. 广义最小二乘法E. 普通最小二乘法2.异方差性的检验方法有()。
A.图示检验法B.戈里瑟检验C.回归检验法D.DW检验3.序列相关性的检验方法有()。
A.戈里瑟检验B.冯诺曼比检验C.回归检验D.DW检验4.序列相关性的后果有()。
A.参数估计量非有效B.变量的显著性检验失去意义C.模型的预测失效5.DW检验是用于下列哪些情况的序列相关检验( )。
A. 高阶线性自相关形式的序列相关B. 一阶非线性自回归形式的序列相关C. 正的一阶线性自回归形式的序列相关D. 负的一阶线性自回归形式的序列相关6.检验多重共线性的方法有()。
A.等级相关系数法B.戈德菲尔德—匡特检验法法C.工具变量法D.判定系数检验法E.差分法F.逐步回归法7.选择作为工具变量的变量必须满足以下条件()。
A.与所替代的随机解释变量高度相关B.与所替代的随机解释变量无关C.与随机误差项不相关D.与模型中其它解释变量不相关,以避免出现多重共线性8.工具变量法适用于估计下列哪些模型(或方程)的参数()。
A.存在异方差的模型B.包含有随机解释变量的模型C.存在严重多重共线性的模型D.联立方程模型中恰好识别的结构方程四、名词解释:1.工具变量五、简答题:1.简述多重共线性的含义。
2.简述多重共线性的后果(4)变量的显著性检验失去意义(5)模型的预测功能失效3.列举多重共线性的检验方法。
4.列举多重共线性的解决办法。
5.简述异方差性的含义。
6.简述异方差性的后果。
7.列举异方差性的检验方法。
8.简述异方差性检验方法的共同思路。
9.列举异方差的解决办法。
10.简述序列相关性的含义。
11.简述序列相关性的后果。
12.列举序列相关性的检验方法。
13.DW检验的局限性主要有哪些?14.简述序列相关性检验方法的共同思路。
15.列举序列相关性解决办法。
16.选择作为工具变量的变量必须满足哪些条件?17.什么是虚假序列相关?如何避免虚假序列相关问题。
18.根据我国1985——2001年城镇居民人均可支配收入和人均消费性支出资料,按照凯恩斯绝对收入假说建立的消费函数计量经济模型为:=;;;=;;;(1)解释模型中137.422和0.772的意义;(2)简述什么是模型的异方差性;(3)检验该模型是否存在异方差性;19.根据我国1978——2000年的财政收入和国内生产总值的统计资料,可建立如下的计量经济模型:(2.5199)(22.7229)=0.9609,=731.2086,=516.3338,=0.3474请回答以下问题:(1)何谓计量经济模型的自相关性?(2)试检验该模型是否存在一阶自相关及相关方向,为什么?(3)自相关会给建立的计量经济模型产生哪些影响?(临界值,)第二章单方程计量经济学模型理论与方法(下)一、填空题:1. 多重共线性2. 判定系数检验法3. 排除引起共线性的变量,差分法4. 广义最小二乘法5.6. 随机解释变量7.8. 有偏,渐近无偏9. ,工具变量矩阵10. 异方差11. 序列相关二、单选题:1. B2. A3. A4. B5. B6. C7. D阅读使人充实,会谈使人敏捷,写作使人精确。
——培根8. C9. D10. A11. D12. D13. B14. D15. D16. C17. D18. e三、多选题:1. AD2. AB3. BCD4. ABC5. CD6. DF7. ACD8. BD四、名词解释:1. 在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量。
五、简答题:1. 答:对于模型i=1,2,…,n其基本假设之一是解释变量是互相独立的。
如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。
如果存在i=1,2,…,n其中c不全为0,即某一个解释变量可以用其它解释变量的线性组合表示,则称为完全共线性。
2. 答:(1)完全共线性下参数估计量不存在(2)一般共线性下普通最小二乘法参数估计量无偏,但方差较大。
(3)参数估计量经济含义不合理。
参数并不反映各自与被解释变量之间的结构关系,而是反映它们对被解释变量的共同影响。
3. 答:主要有判定系数检验法和逐步回归检验法。
4. 答:主要有两类排除引起共线性的变量,差分法。
5. 答:对于模型i=1,2,…,n同方差性假设为:常数i=1,2,…,n如果出现i=1,2,…,n即对于不同的样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性。
6.答:(1)参数估计量仍然具有无偏性,但非有效,在大样本情况下仍不具有一致性。
(2)变量的显著性检验失去意义。
(3)模型的预测失效。
7.答:主要有图示检验法、等级相关系数法、戈里瑟检验、巴特列特检验、戈德菲尔特—夸特检验等。
8.答:由于异方差性,相对于不同的样本点,也就是相对于不同的解释变量观测值,随机误差项具有不同的方差,那么检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性。
各种检验方法就是在这个思路下发展起来的。
9.答:加权最小二乘法。
10.答:对于模型i=1,2,…,n随机误差项互相独立的基本假设表现为:i≠j,i,j=1,2,…,n如果对于不同的样本点,随机误差项之间不再是完全互相独立,而是存在相关关系,即i≠j,i,j=1,2,…,n则认为出现了自相关性。
11.答:(1)参数估计量仍然具有无偏性,但非有效,在大样本情况下仍不具有一致性。
(2)变量的显著性检验失去意义。
(3)模型的预测失效。
12.答:图示检验法、冯诺曼比检验法、回归检验法、D.W.检验等。
13. 答:(1)回归模型必须含有截距项;(2)解释变量必须是非随机的;(3)解释变量中不能包含被解释变量的滞后期;(4)不能用于联立方程模型中各方程组的自相关检验;(5)只适用于随机误差项存在一阶自回归形式的自相关检验;(6)DW检验存在两个不能确定是否存在自相关的范围,目前还没有比较好的解决办法。