高考复习考点02集合的运算
- 格式:ppt
- 大小:2.73 MB
- 文档页数:18
高中集合知识点一、集合的基本概念集合是数学中的基本概念之一,它是由一组确定的元素所组成的整体。
集合中的元素可以是任何事物,可以是数字、字母、符号,甚至是其他集合。
集合的表示通常用大括号{}括起来,元素之间用逗号隔开。
二、集合的运算1. 交集:如果两个集合有共同的元素,则它们的交集就是包含这些共同元素的新集合。
2. 并集:两个集合的并集是指包含这两个集合中所有元素的新集合。
3. 差集:差集是指从一个集合中去掉另一个集合中共有的元素后剩下的元素组成的集合。
4. 互斥集:两个集合的交集为空集时,它们被称为互斥集。
5. 补集:对于给定的集合A,所有不属于A的元素组成的集合称为A的补集。
三、集合的性质1. 互相包含关系:如果一个集合A的所有元素都属于另一个集合B,那么集合A被称为集合B的子集,记作A⊆B。
2. 空集:不包含任何元素的集合称为空集,记作∅。
3. 幂集:对于一个集合A,它的幂集是指包含A的所有子集的集合。
四、集合的表示方法1. 列举法:将集合中的所有元素一一列举出来。
2. 描述法:通过给出满足某种条件的元素的特征描述来表示集合。
五、集合的应用1. 概率论:集合论是概率论的基础,通过集合论可以描述随机事件的样本空间和事件的关系。
2. 几何学:集合论可以用来描述几何图形的集合关系,如点、线、平面等。
3. 逻辑学:集合论可以用来描述命题、命题关系和命题的逻辑推理。
4. 数据分析:集合论可以用来描述数据的集合关系、交集和并集的运算。
六、集合的扩展1. 有限集合:集合中元素的个数是有限的。
2. 无限集合:集合中元素的个数是无限的。
3. 数学集合:指数学中研究的集合。
4. 离散集合:集合中的元素是离散的,没有连续性。
5. 连续集合:集合中的元素是连续的,存在无限多个元素。
总结:集合是数学中的基本概念,它可以用来描述事物的整体性质和元素之间的关系。
集合的运算包括交集、并集、差集等,而集合的性质包括包含关系、空集、幂集等。
高中数学考试必备的知识点整理温馨提示:在复习的同时,也要结合课本上的例题去复习,重点是课本,而不是题目应该怎样去做,所以在考前的一天必须回归课本复习,心中无公式,是解不出任何题目来的,只要心中有公式,中等的题目都可以解决。
必修一:一、集合的运算:交集:定义:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B 并集:定义:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B补集:定义:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为C UA 二、指数与指数函数1、幂的运算法则:(1)a m •a n =a m + n ,(2)a m ÷a n =a m -n ,(3)(a m )n =a m n (4)(ab )n = a n •b nn -11a n⎛a ⎫nm-n (5) ⎪=n (6)a 0 = 1 ( a ≠0)(7)a =n (8)am=a(9)am=mna b ⎝b ⎭a 2、根式的性质⎧a ,a ≥0n n n n n n n n (1)(a )=a .(2)当为奇数时,a =a ;当为偶数时,a =|a |=⎨.-a ,a <0⎩n n 5.指数式与对数式的互化:log aN =b ⇔a b =N (a >0,a ≠1,N >0).6、对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N (6)log a (MN) = log a M + log a N(7)log a (log b N M ) = log a M -log a N(8)log a N b = b log a N (9)换底公式:log a N =Nlog banlog a b (a >0,且a >1,m ,n >0,且m ≠1,n ≠1,N >0).m (10)推论:log a m b n =(11)log a N =1(12)常用对数:lg N = log 10N(13)自然对数:ln A = log e Alog Na必修4:1、特殊角的三角函数值角α0°30°45°60°πππ角α的弧度数643Sinα12223290°π21180°π0270°3π2-1360°2π0321Cosα12220-101tanα03313不存在0不存在02、诱导公式:函数名不变,符号看象限(把α看成锐角)公式一:Sin(α+2kπ)=Sinα公式二:Sin(α+π)=-SinαCos(α+2kπ)=Cosα Cos(α+π)=-Cosαtan(α+2kπ)=tanα tan(α+π)=tanα公式三:Sin(-α)=-Sinα公式四:Sin(π-α)=SinαCos(-α)= Cosα Cos(π-α)=-Cosαtan(-α)=-tanα tan(π-α)=-tanα公式五:Sin(π2-α)=Cosα公式六:Sin(π2+α)=CosαCos(ππ2-α)=Sinα Cos(2+α)=-Sinα3、两角和与角差的正弦、余弦和正切公式①sin(α+β)=sin αcos β+cos αsin β②sin(α-β)=sin αcos β-cos αsin β③cos(α+β)=cos αcos β-sin αsin β④cos(α-β)=cos αcos β+sin αsin β⑤tan(α+β)=tan α+tan β1-tan αtan β⑥tan(α-β)=tan α-tan β1+tan αtan β4.二倍角的正弦、余弦和正切公式①sin 2α=2sin αcos α②cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos α2-1③tan 2α=2tan α1-tan 2α④sin 2α=1-cos 2α2⑤cos 2α=1+cos 2α2sin αcos α=12sin 2α5、向量公式:→→→→①a ∥b ⇔x 1x =y 1(x 2,y 2≠0)(a ∥b ⇔x 1y 2-x 2,y 1=0)2y2→→→→→②a +b =(a +b )2=a 2+2a →⋅b →→+b 2=→2a +2a →⋅b →⋅cos θ+b→2→→③cos θ=a ⋅b =x 1x 2+y 1y2→(求向量的夹角)a ⋅→bx21+y2x2212+y2⑥④a ⊥b ⇔a ⋅b =0⑥平面内两点间的距离公式:设a =(x ,y ),则→2→→→→→a =x +y 或a =x 2+y 2→22→⑦平面内两点间的距离公式:a =(x 1-x 2)+(y 1-y 2)2222高中数学必修5知识点归纳第一章解三角形1、正弦定理:在∆AB C 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为∆AB C 的外接圆的a b c半径,则有===2R .sin A sin B sin C2、正弦定理的变形公式:①a =2R sin A ,b =2R sin B ,c =2R sin C ;a b c②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;2R 2R 2R a +b +c a b c④.===sin A +sin B +sin C sin A sin B sin C(正弦定理用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。
集合的基本运算知识点总结
嘿,朋友们!今天咱要来聊聊集合的基本运算知识点,这可太重要啦!
先说并集,这就好比把两堆东西全放到一起。
比如说,你有一堆红色气球,我有一堆蓝色气球,那把咱两堆气球合起来就是并集啦!比如集合 A
里有1、2、3,集合B 里有3、4、5,那它们的并集就是1、2、3、4、5。
交集呢,就像是找到两堆东西里共同的部分。
还是气球的例子,要是我们都有一个绿色气球,那这个绿色气球就是我们的交集呀!就像集合 A 是 1、2、3,集合 B 是 2、3、4,那它们的交集就是 2、3 喽。
补集呢,哎呀,这就像是从整体里去掉一部分。
好比有一堆各种各样的糖果,你不喜欢巧克力味的,那除了巧克力味的其他糖果就是巧克力味糖果的补集啦!比如说全集是 1、2、3、4、5,集合 A 是 2、3,那 A 的补集
就是 1、4、5 呀!
咱举个更有意思的例子,班级里同学们喜欢的运动,有的喜欢篮球,有的喜欢足球,喜欢篮球的组成集合 A,喜欢足球的组成集合 B,那喜欢篮球或者足球的就是并集,既喜欢篮球又喜欢足球的就是交集,那全班同学里除了喜欢篮球和足球的其他同学喜欢的运动就是补集啦!
哇塞,集合的基本运算是不是很有意思呢?真的就像玩游戏一样!通过这些运算,我们能更好地理解和处理各种集合关系呢。
所以啊,一定要好好掌握这些知识点呀,这对我们以后学习数学简直太重要啦!别小瞧它们哟,说不定哪天就派上大用场啦!我的观点就是:集合的基本运算知识点是数学中不可或缺的一部分,得认真学!。
高一集合的基本运算知识点集合是数学中一个重要的概念,广泛应用于不同的数学分支和实际问题中。
在高中数学中,我们会学习集合的基本运算,包括交集、并集和补集。
本文将详细介绍这些基本运算知识点及其相关性质。
一、集合的表示方法在讨论集合的基本运算之前,我们首先需要了解集合的表示方法。
一种常用的表示方法是列举法,即直接列出集合中的元素。
例如,集合A可以表示为A = {1, 2, 3, 4}。
另一种表示方法是描述法,即用文字描述集合中的元素的特征。
例如,集合B可以表示为B = {x | x 是整数,0 < x < 5},表示集合B由大于0且小于5的整数组成。
二、交集运算交集是指两个集合中共有的元素组成的集合。
我们用符号∩来表示交集运算。
例如,设集合A = {1, 2, 3, 4},集合B = {3, 4, 5, 6},则A与B的交集为A ∩ B = {3, 4}。
交集运算有以下几个性质:1. 交换律:A ∩ B = B ∩ A;2. 结合律:(A ∩ B) ∩ C = A ∩ (B ∩ C);3. 恒等律:A ∩ U = A;4. 零元律:A ∩ ∅ = ∅,其中∅表示空集。
三、并集运算并集是指两个集合中所有元素组成的集合。
我们用符号∪来表示并集运算。
例如,设集合A = {1, 2, 3, 4},集合B = {3, 4, 5, 6},则A与B的并集为A ∪ B = {1, 2, 3, 4, 5, 6}。
并集运算有以下几个性质:1. 交换律:A ∪ B = B ∪ A;2. 结合律:(A ∪ B) ∪ C = A ∪ (B ∪ C);3. 恒等律:A ∪∅ = A;4. 零元律:A ∪ U = U,其中U表示全集。
四、补集运算补集是指在全集中去掉一个集合后剩下的元素组成的集合。
我们用符号'表示补集运算。
例如,设全集为U = {1, 2, 3, 4},集合A = {1, 2},则A的补集为A' = {3, 4}。
高考真题(2019•天津卷(文))设集合, , ,则 A .{2}B .{2,3}C .{-1,2,3}D .{1,2,3,4}【解析】因为,所以.故选D 。
【答案】D(2019•全国III 卷(文))已知集合,则()A .B .C .D .【解析】,∴,则,故选A .【答案】A(2019•全国II 卷(文))已知集合,,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2) {}1,1,2,3,5A =-{}2,3,4B ={|13}C x R x =∈<()A C B ={1,2}A C =(){1,2,3,4}A C B ={}{}21,0,1,21A B x x ,=-=≤A B ⋂={}1,0,1-{}0,1{}1,1-{}0,1,221,x ≤∴11x -≤≤{}11B x x =-≤≤{}1,0,1A B ⋂=-={|1}A x x >-{|2}B x x =<D .【解析】由题知,,故选C . 【答案】C(2019•全国I 卷(文))已知集合,则A .B .C .D .【解析】由已知得,所以,故选C .【答案】C(2019•北京卷(文))已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =A .(–1,1)B .(1,2)C .(–1,+∞)D .(1,+∞)【解析】∵,∴,故选C . 【答案】C∅(1,2)AB =-{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,C U B A {}1,6{}1,7{}6,7{}1,6,7{}1,6,7U C A =U B C A ⋂={6,7}{|12},{|1}A x x B x =-<<=>(1,)A B ⋃=+∞高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。
高考数学集合知识点集合是高中数学中的一个重要概念,也是高考中必考内容之一。
掌握集合的相关知识点对于提高数学成绩至关重要。
本文将介绍高考数学中与集合相关的知识点,帮助考生系统地理解和掌握。
一、集合的基本概念集合是指由各种对象组成的整体,这些对象称为集合的元素。
通常用大写字母A、B、C等表示集合,用小写字母a、b、c等表示集合的元素。
集合内的元素可以是数、图形、对象等各种各样的事物。
二、集合的表示方法1. 列举法:直接列举出集合中的元素,用花括号{}括起来。
例如,集合A={1, 2, 3}表示A是包含1、2和3三个元素的集合。
2. 描述法:通过一定的条件来描述集合中的元素。
例如,集合B={x|x是正整数,且x<10}表示B是由小于10的正整数组成的集合。
三、集合的运算1. 交集:给定两个集合A和B,它们的交集记作A∩B,表示同时属于A和B的元素组成的集合。
2. 并集:给定两个集合A和B,它们的并集记作A∪B,表示属于A或B中的元素组成的集合。
3. 差集:给定两个集合A和B,A减去B的差集记作A-B,表示属于A但不属于B的元素组成的集合。
4. 补集:给定一个全集U以及一个集合A,称全集U中属于A'而不属于A的元素组成的集合为集合A的补集,记作A'。
四、集合的性质1. 互斥:两个集合A和B没有相同的元素,即A∩B=∅。
2. 包含与被包含:集合A包含于集合B,即A⊆B,表示A中的任意元素也属于B;集合A被集合B包含,即B⊇A。
3. 子集与真子集:若集合A包含于集合B,且A≠B,则称A 为B的子集,记作A⊂B;若A⊂B且存在x∈B,但x∉A,则称A 为B的真子集,记作A⊊B。
4. 幂集:给定一个集合A,A的所有子集所构成的集合称为A 的幂集,记作P(A)。
例如,若A={1, 2},则P(A)={{},{1},{2},{1,2}}。
五、常用定理与应用1. 德摩根定律:对于任意的集合A和B,有以下关系成立:(1)(A∪B)'=A'∩B'(2)(A∩B)'=A'∪B'2. 分配律:对于任意的集合A、B和C,有以下关系成立:(1)A∩(B∪C)=(A∩B)∪(A∩C)(2)A∪(B∩C)=(A∪B)∩(A∪C)六、集合在高考中的应用1. 题型一:集合的基本运算高考中常会出现对两个或三个集合进行并、交、差等运算的求解题目。
安徽高考数学集合知识点数学是一门深奥而有趣的学科,其中的集合论更是让人爱不释手。
在安徽高考数学中,集合知识点占据着重要的地位。
接下来,我们将深入探讨安徽高考中的数学集合知识点,帮助你更好地备战高考。
一、集合的基本概念集合是数学中最基本的概念之一。
在集合中,元素是组成集合的个体,可以是数字、字母或其他对象。
集合用大写字母表示,元素用小写字母表示。
例如,集合A={1, 2, 3},其中包含了元素1,2和3。
二、集合的运算在集合中,有交集、并集、差集和补集等基本的运算。
1. 交集:两个集合中共有的元素组成的集合。
记作A ∩ B。
2. 并集:两个集合中所有的元素组成的集合。
记作A ∪ B。
3. 差集:从一个集合中剔除另一个集合中的元素所得到的集合。
记作A-B。
4. 补集:一个集合相对于全集的差集。
记作A'。
三、集合的性质1. 子集与真子集:如果一个集合A中的所有元素都属于集合B,则称集合A是B的子集,记作A⊆B。
当且仅当A是B的子集,同时A不等于B时,称A是B的真子集,记作A⊂B。
2. 相等集合:如果一个集合A是集合B的子集,同时集合B也是A的子集,则称集合A与集合B相等,记作A=B。
3. 空集与全集:不包含任何元素的集合称为空集,记作∅。
包含所有可能元素的集合称为全集,通常用符号U表示。
四、集合的证明方法在数学证明中,经常需要运用到集合的证明方法,其中常见的有直接证明法、对证法和数学归纳法。
1. 直接证明法:在集合的证明中,通过直接列举出包含集合中所有元素的方法,来证明一个集合的性质。
2. 对证法:常用于证明集合的相等关系。
假设两个集合A和B 相等,然后通过对不等性的证明,得出结论。
3. 数学归纳法:常用于证明有关集合中,某一性质对于任意元素都成立的情况。
通过证明基础步骤和数学归纳法的假设步骤,得出结论。
五、集合与应用集合在现实生活中有着广泛的应用。
例如,在调查问卷中,我们可以将每个问题的所有选项构成一个集合,通过对集合的运算和性质的研究,分析问卷调查结果。
新高考集合知识点归纳新高考制度下,集合作为数学中的一个基本概念,其知识点归纳主要包括以下几个方面:1. 集合的基本概念:集合是由一些确定的、互不相同的元素所组成的整体。
在数学中,我们用大写字母表示集合,如A、B等。
2. 元素与集合的关系:如果一个元素a属于集合A,我们用a∈A表示;如果a不属于集合A,我们用a∉A表示。
3. 集合的表示法:集合可以用列举法和描述法来表示。
列举法是直接列出集合中的所有元素,如A={1, 2, 3};描述法是用一个性质来描述集合中的元素,如A={x | x是偶数}。
4. 特殊集合:空集是不含任何元素的集合,记作∅。
全集是包含所有元素的集合,记作U。
5. 子集与真子集:如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。
如果A是B的子集,并且A不等于B,则称A是B 的真子集,记作A⊊B。
6. 集合的运算:包括并集、交集、差集和补集。
并集是两个集合所有元素的集合,记作A∪B;交集是两个集合共有元素的集合,记作A∩B;差集是A有而B没有的元素的集合,记作A-B;补集是全集中不属于A的元素的集合,记作∁_UA。
7. 幂集:一个集合的所有子集的集合称为该集合的幂集。
8. 集合的包含关系:如果集合A的所有元素都是集合B的元素,那么A是B的子集。
如果A是B的子集,并且A不等于B,则A是B的真子集。
9. 集合的相等:如果两个集合的元素完全相同,那么这两个集合是相等的。
10. 集合的笛卡尔积:两个集合A和B的笛卡尔积是所有可能的有序对(a, b)的集合,其中a属于A,b属于B,记作A×B。
11. 集合的等价关系:如果集合中的元素可以按照某种标准分成若干个互不相交的子集,那么这种关系称为等价关系。
12. 集合的划分:将一个集合分成若干个互不相交的非空子集,这些子集的并集等于原集合,称为集合的划分。
结束语:集合作为数学中的基础概念,其知识点广泛且重要。
掌握这些知识点对于理解更高层次的数学概念和解决实际问题具有重要意义。
集合运算知识点总结一、集合的基本概念集合是数学中的一个基本概念,它是由一些确定的、互不相同的对象组成的。
这些对象称为集合的元素。
如果一个集合里有限个元素,称这个集合为有限集合;如果集合的元素可以用无穷个数来表达,称这个集合为无限集合。
集合用字母表示,大写字母A、B、C表示集合,小写字母a、b、c表示集合的元素。
当元素x属于集合A时,就记作x∈A,读作x属于A。
二、集合的表示方式1. 列举法:将集合中的元素用大括号{}括起来,用逗号隔开,写出来。
例如:集合A={1,2,3,4,5},表示A是由元素1,2,3,4,5组成的集合。
2. 描述法:用一个符合逻辑条件的语句来描述该集合。
例如:集合A={x|x是自然数,0<x<6},表示A是由大于0且小于6的自然数组成的集合。
三、集合之间的关系1. 相等关系:当两个集合具有完全相同的元素时,它们就是相等的。
例如:A={1,2,3,4,5},B={5,4,3,2,1},A和B是相等的集合。
2. 包含关系:当一个集合的所有元素都是另一个集合的元素时,称前一个集合包含于后一个集合。
例如:A={1,2,3,4},B={1,2,3,4,5},则A⊆B,表示A包含于B。
3. 交集:两个集合A和B的交集,是由所有既属于A又属于B的元素组成的集合。
例如:A={1,2,3,4},B={3,4,5,6},则A∩B={3,4}。
4. 并集:两个集合A和B的并集,是由所有属于A或属于B的元素组成的集合。
例如:A={1,2,3,4},B={3,4,5,6},则A∪B={1,2,3,4,5,6}。
5. 补集:若全集为U,集合A是U的一个子集,那么A对于U的补集是由A不在U中的元素组成的集合。
一般记作A'。
例如:U={1,2,3,4,5,6},A={1,2,3,4},则A'={5,6}。
四、集合的运算1. 交集运算:设A和B是两个集合,A∩B={x|x∈A且x∈B},即A与B的交集是由既属于A又属于B的元素组成的集合。