冶金工程概论-3高炉炼铁
- 格式:ppt
- 大小:4.05 MB
- 文档页数:64
1、简述高炉冶炼过程的特点及三大主要过程。
特点:1)在逆流(炉料下降及煤气上升)过程中,完成复杂的物理化学反应;2)在投入(装料)及产出(铁、渣、煤气)之外,无法直接观察炉内反应过程;3)维持高炉顺行(保证煤气流合理分布及炉料均匀下降)是冶炼过程的关键。
三大主要过程:1)还原过程实现矿石中金属元素(主要是Fe)和氧元素的化学分离;2)造渣过程实现已还原的金属与脉石的熔融态机械分离;3)传热及渣铁反应过程实现成分及温度均合格的液态铁水。
2、试述焦炭在高炉炼铁中的三大作用及其质量要求。
焦炭的三大作用:1)热源→在风口前燃烧,提供冶炼所需热量;2)还原剂→本身及其氧化产物CO均为铁氧化物的还原剂;3)骨架和通道→矿石高温熔化后,焦炭是唯一以固态存在的物料。
有支撑数十米料柱的骨架作用有保障煤气自下而上畅流的通道作用作用3)是任何固体燃料所无法替代的。
4)生铁渗碳的碳源。
对焦炭的质量要求:1)强度高;2)固定C高;3)灰分低;4)S含量低;5)挥发份合适;6)反应性弱(C+CO2→2CO);7)粒度合适为矿石平均粒度的3~5倍为宜,d小/d大≈0.73、熟练掌握高炉冶炼主要技术经济指标的表达方式。
1)、有效容积利用系数ημ定义:每M3高炉有效容积每昼夜生产的合格铁量(t/ m3.d)。
我国ημ=1.6~2.4 t/ m3.d ;日本ημ=1.8~2.8 t/ m3.d2)、焦比定义:冶炼每吨生铁所消耗的焦炭的千克数(Kg/t)。
我国焦比为250~650Kg/t3)、焦炭冶炼强度定义:每m3高炉有效容积每昼夜燃烧的焦炭吨数(t/ m3.d)。
一般为0.8~1.0t/ m3.4)Co利用率3.烧结矿和球团矿有什么区别?1).富矿短缺,必须不断扩大贫矿资源的利用,而选矿技术的进步可经济地选出高品位细磨铁精矿。
这种过细精矿不益于烧结,透气性不好,影响烧结矿产量和质量的提高,而用球团方法处理却很适宜,因为过细精矿易于成球,粒度愈细,成球性愈好,球团强度愈高。
高炉炼铁的所有知识点总结一、高炉炼铁的工艺过程高炉炼铁的主要工艺过程包括铁矿石的预处理、还原反应、炼铁反应和产物的分离和收集等步骤。
1. 预处理铁矿石通常是氧化铁矿石,例如赤铁矿、磁铁矿、褐铁矿等。
在高炉炼铁之前,需要对铁矿石进行预处理,主要包括破碎、煅烧和粉碎等步骤。
首先,铁矿石需要经过破碎设备进行破碎,将其破碎成较小的颗粒。
然后,将破碎后的铁矿石进行煅烧,通常是在煤气或焦炉中进行,将氧化铁矿石还原成较高的还原度。
最后,将煅烧后的铁矿石进行粉碎,使其达到适当的颗粒度,以便于高炉内的还原反应。
2. 还原反应高炉炼铁的核心工艺是还原反应。
在高炉内,煅烧后的铁矿石与焦炭共同投入高炉,并通过热炭气、空气和热风等途径,使焦炭在高炉内发生燃烧,产生大量的一氧化碳和二氧化碳等气体。
这些气体与煅烧后的铁矿石发生还原反应,使氧化铁矿石还原成金属铁。
还原反应的主要化学反应式为Fe2O3 + 3CO = 2Fe + 3CO2。
在此过程中,还将生成一些硅、锰等元素的还原物金属。
3. 炼铁反应在还原反应之后,得到的金属铁流向高炉底部,与炉渣和热铁水的反应产生炼铁反应。
炼铁反应的目的是提高生铁的品质,并去除炉渣中的杂质。
在炼铁反应中,金属铁与炉渣中的碱金属、碳酸盐等发生反应,使炉渣脱碱和夺碳,并将少量的氧、碳等被夹杂在金属铁中的杂质除去。
4. 产物的分离和收集最后,通过高炉的底部出口,生铁和炉渣被分离出来。
生铁被收集起来,经过冷却、成型和质量检验等步骤,最终被用于钢铁冶炼。
炉渣则被收集起来,并用于建筑材料、道路铺设等领域。
以上就是高炉炼铁的工艺过程,我们可以看到,高炉炼铁的工艺过程是一个复杂的化学反应过程,需要严格控制反应条件和工艺参数,以确保生铁的品质和产量。
二、高炉炼铁的原料高炉炼铁的主要原料包括铁矿石、焦炭和石灰石等。
1. 铁矿石铁矿石是高炉炼铁的主要原料,通常是氧化铁矿石。
常见的铁矿石有赤铁矿、磁铁矿、褐铁矿等。