MP2403互换的同步降压型DC-DC稳压器MXT2485
- 格式:pdf
- 大小:509.15 KB
- 文档页数:11
mp24830原理-回复脉冲调宽调频(MP24830)是一种宽应用范围的多功能电源管理芯片,被广泛应用在电动汽车、太阳能充电系统和低功耗应用等领域。
本文将一步一步回答相关问题,详细介绍MP24830的工作原理。
首先,我们来了解MP24830的基本结构。
MP24830由一个开关电源控制器、一个高功率开关MOSFET、一个同步整流MOSFET、一个电流检测放大器和一个反馈环路组件等多个功能模块组成。
其中,开关电源控制器是核心模块,负责控制输出电压和电流,并通过反馈环路与输入电压进行调节。
高功率开关MOSFET起到开关电源的关键作用,负责控制输出开关状态。
同步整流MOSFET用于提高系统的效率,减小能量损耗。
电流检测放大器可以测量输出电流,并与反馈环路进行比较,实现输出电流的准确控制。
接下来,我们将详细介绍MP24830的工作原理。
在正常工作状态下,MP24830通过开关电源控制器产生一个周期性的PWM(脉宽调制)信号。
这个PWM信号经过高功率开关MOSFET的控制,使得输出电压稳定并保持在设定值。
通过调整PWM信号的占空比,可以控制输出电压的大小。
在每个PWM周期的过程中,当PWM信号为高电平时,高功率开关MOSFET导通,输出电压为正数;当PWM信号为低电平时,高功率开关MOSFET关闭,输出电压为零。
通过不断调整PWM信号的开关状态,控制输出电压的波形。
在反馈环路中,通过采样输出电压和设定值的差值,将其放大后送回开关电源控制器,与参考电压进行比较。
开关电源控制器根据这个差值来调整PWM信号的占空比,实现输出电压的稳定控制。
此外,MP24830还具备脉冲调频(Pulse Frequency Modulation,PFM)特性。
在轻负载条件下,MP24830可以动态调整PWM信号的频率,以提高系统的整体效率。
当输出电流较小时,系统会自动进入PFM模式,降低开关频率以减少能量损耗。
最后,我们需要了解MP24830的应用领域。
MAXIM/DALLAS 中文数据资料DS12CR887, DS12R885, DS12R887 RTC,带有恒压涓流充电器DS1870 LDMOS RF功放偏置控制器DS1921L-F5X Thermochron iButtonDS1923 温度/湿度记录仪iButton,具有8kB数据记录存储器DS1982, DS1982-F3, DS1982-F5 1k位只添加iButton?DS1990A 序列号iButtonDS1990R, DS1990R-F3, DS1990R-F5 序列号iButtonDS1991 多密钥iButtonDS2129 LVD SCSI 27线调节器DS2401 硅序列号DS2406 双通道、可编址开关与1k位存储器DS2408 1-Wire、8通道、可编址开关DS2411 硅序列号,带有VCC输入DS2413 1-Wire双通道、可编址开关DS2430A 256位1-Wire EEPROMDS2431 1024位、1-Wire EEPROMDS2480B 串行、1-Wire线驱动器,带有负荷检测DS2482-100 单通道1-Wire主控制器DS2482-100 勘误表PDF: 2482-100A2DS2482-800, DS2482S-800 八通道1-Wire主控制器DS2482-800 勘误表PDF: 2482-800A2DS2502 1k位只添加存储器DS2505 16k位只添加存储器DS28E04-100 4096位、可寻址、1-Wire EEPROM,带有PIODS3170DK DS3/E3单芯片收发器开发板DS3231, DS3231S 高精度、I2C集成RTC/TCXO/晶振DS33Z44 四路以太网映射器DS3902 双路、非易失、可变电阻器,带有用户EEPROMDS3906 三路、非易失、小步长调节可变电阻与存储器DS3984 4路冷阴极荧光灯控制器DS4302 2线、5位DAC,提供三路数字输出DS80C400-KIT DS80C400评估套件DS80C410, DS80C411 具有以太网和CAN接口的网络微控制器DS80C410 勘误表PDF: 80C410A1DS89C430, DS89C440, DS89C450 超高速闪存微控制器DS89C430 勘误表PDF: 89C430A2DS89C440 勘误表PDF: 89C440A2DS89C450 勘误表PDF: 89C450A2DS89C430 勘误表PDF: 89C430A3DS89C440 勘误表PDF: 89C440A3DS89C450 勘误表PDF: 89C450A3DS89C430 勘误表PDF: 89C430A5DS89C440 勘误表PDF: 89C440A5DS89C450 勘误表PDF: 89C450A5DS9090K 1-Wire器件评估板, B版DS9097U-009, DS9097U-E25, DS9097U-S09 通用1-Wire COM端口适配器DS9490, DS9490B, DS9490R USB至1-Wire/iButton适配器MAX1034, MAX1035 8/4通道、±VREF多量程输入、串行14位ADCMAX1072, MAX1075 1.8Msps、单电源、低功耗、真差分、10位ADCMAX1076, MAX1078 1.8Msps、单电源供电、低功耗、真差分、10位ADC,内置电压基准MAX1146, MAX1147, MAX1148, MAX1149 多通道、真差分、串行、14位ADCMAX1149EVKIT MAX1149评估板/评估系统MAX1220, MAX1257, MAX1258 12位、多通道ADC/DAC,带有FIFO、温度传感器和GPIO端口MAX1224, MAX1225 1.5Msps、单电源、低功耗、真差分、12位ADCMAX1258EVKIT MAX1057, MAX1058, MAX1257, MAX1258评估板/评估系统MAX1274, MAX1275 1.8Msps、单电源、低功耗、真差分、12位ADCMAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器MAX1302, MAX1303 8/4通道、±VREF多量程输入、串行16位ADCMAX1304, MAX1305, MAX1306, MAX1308, MAX1309, MAX1310, MAX1312, MAX1313,MAX1314 8/4/2通道、12位、同时采样ADC,提供±10V、±5V或0至+5V模拟输入范围MAX13050, MAX13052, MAX13053, MAX13054 工业标准高速CAN收发器,具有±80V故障保护MAX13080E, MAX13081E, MAX13082E, MAX13083E, MAX13084E, MAX13085E, MAX13086E, MAX13087E, MAX13088E, MAX13089E +5.0V、±15kV ESD保护、失效保护、热插拔、RS-485/RS-422收发器MAX13101E, MAX13102E, MAX13103E, MAX13108E 16通道、带有缓冲的CMOS逻辑电平转换器MAX1334, MAX1335 4.5Msps/4Msps、5V/3V、双通道、真差分10位ADCMAX1336, MAX1337 6.5Msps/5.5Msps、5V/3V、双通道、真差分8位ADCMAX13481E, MAX13482E, MAX13483E ±15kV ESD保护USB收发器, 外部/内部上拉电阻MAX1350, MAX1351, MAX1352, MAX1353, MAX1354, MAX1355, MAX1356, MAX1357 双路、高端、电流检测放大器和驱动放大器MAX1450 低成本、1%精确度信号调理器,用于压阻式传感器MAX1452 低成本、精密的传感器信号调理器MAX1487, MAX481, MAX483, MAX485, MAX487, MAX488, MAX489, MAX490, MAX491 低功耗、限摆率、RS-485/RS-422收发器MAX1492, MAX1494 3位半和4位半、单片ADC,带有LCD驱动器MAX1494EVKIT MAX1493, MAX1494, MAX1495评估板/评估系统MAX1497, MAX1499 3位半和4位半、单片ADC,带有LED驱动器和μC接口MAX1499EVKIT MAX1499评估板/评估系统MAX15000, MAX15001 电流模式PWM控制器, 可调节开关频率MAX1515 低电压、内置开关、降压/DDR调节器MAX1518B TFT-LCD DC-DC转换器, 带有运算放大器MAX1533, MAX1537 高效率、5路输出、主电源控制器,用于笔记本电脑MAX1533EVKIT MAX1533评估板MAX1540A, MAX1541 双路降压型控制器,带有电感饱和保护、动态输出和线性稳压器MAX1540EVKIT MAX1540评估板MAX1551, MAX1555 SOT23、双输入、USB/AC适配器、单节Li+电池充电器MAX1553, MAX1554 高效率、40V、升压变换器,用于2至10个白光LED驱动MAX1556, MAX1557 16μA IQ、1.2A PWM降压型DC-DC转换器MAX1556EVKIT MAX1556EVKIT评估板MAX1558, MAX1558H 双路、3mm x 3mm、1.2A/可编程电流USB开关,带有自动复位功能MAX1586A, MAX1586B, MAX1586C, MAX1587A, MAX1587C 高效率、低IQ、带有动态内核的PMIC,用于PDA和智能电话MAX16801A/B, MAX16802A/B 离线式、DC-DC PWM控制器, 用于高亮度LED驱动器MAX1858A, MAX1875A, MAX1876A 双路180°异相工作的降压控制器,具有排序/预偏置启动和POR MAX1870A 升/降压Li+电池充电器MAX1870AEVKIT MAX1870A评估板MAX1874 双路输入、USB/AC适配器、1节Li+充电器,带OVP与温度调节MAX1954A 低成本、电流模式PWM降压控制器,带有折返式限流MAX1954AEVKIT MAX1954A评估板MAX19700 7.5Msps、超低功耗模拟前端MAX19700EVKIT MAX19700评估板/评估系统MAX19705 10位、7.5Msps、超低功耗模拟前端MAX19706 10位、22Msps、超低功耗模拟前端MAX19707 10位、45Msps、超低功耗模拟前端MAX19708 10位、11Msps、超低功耗模拟前端MAX2041 高线性度、1700MHz至3000MHz上变频/下变频混频器,带有LO缓冲器/开关MAX2043 1700MHz至3000MHz高线性度、低LO泄漏、基站Rx/Tx混频器MAX220, MAX222, MAX223, MAX225, MAX230, MAX231, MAX232, MAX232A, MAX233,MAX233A, MAX234, MAX235, MAX236, MAX237, MAX238, MAX239, MAX240, MAX241,MAX242, MAX243, MAX244, MAX245, MAX246, MAX247, MAX248, MAX249 +5V供电、多通道RS-232驱动器/接收器MAX2335 450MHz CDMA/OFDM LNA/混频器MAX2370 完备的、450MHz正交发送器MAX2370EVKIT MAX2370评估板MAX2980 电力线通信模拟前端收发器MAX2986 集成电力线数字收发器MAX3013 +1.2V至+3.6V、0.1μA、100Mbps、8路电平转换器MAX3205E, MAX3207E, MAX3208E 双路、四路、六路高速差分ESD保护ICMAX3301E, MAX3302E USB On-the-Go收发器与电荷泵MAX3344E, MAX3345E ±15kV ESD保护、USB收发器,UCSP封装,带有USB检测MAX3394E, MAX3395E, MAX3396E ±15kV ESD保护、大电流驱动、双/四/八通道电平转换器, 带有加速电路MAX3535E, MXL1535E +3V至+5V、提供2500VRMS隔离的RS-485/RS-422收发器,带有±15kV ESD保护MAX3570, MAX3571, MAX3573 HI-IF单芯片宽带调谐器MAX3643EVKIT MAX3643评估板MAX3645 +2.97V至+5.5V、125Mbps至200Mbps限幅放大器,带有信号丢失检测器MAX3645EVKIT MAX3645评估板MAX3654 47MHz至870MHz模拟CATV互阻放大器MAX3654EVKIT MAX3654评估板MAX3657 155Mbps低噪声互阻放大器MAX3658 622Mbps、低噪声、高增益互阻前置放大器MAX3735, MAX3735A 2.7Gbps、低功耗、SFP激光驱动器MAX3737 多速率激光驱动器,带有消光比控制MAX3737EVKIT MAX3737评估板MAX3738 155Mbps至2.7Gbps SFF/SFP激光驱动器,带有消光比控制MAX3744, MAX3745 2.7Gbps SFP互阻放大器,带有RSSIMAX3744EVKIT, MAX3745EVKIT MAX3744, MAX3745评估板MAX3748, MAX3748A, MAX3748B 紧凑的、155Mbps至4.25Gbps限幅放大器MAX3785 6.25Gbps、1.8V PC板均衡器MAX3787EVKIT MAX3787评估板MAX3793 1Gbps至4.25Gbps多速率互阻放大器,具有光电流监视器MAX3793EVKIT MAX3793评估板MAX3805 10.7Gbps自适应接收均衡器MAX3805EVKIT MAX3805评估板MAX3840 +3.3V、2.7Gbps双路2 x 2交叉点开关MAX3841 12.5Gbps CML 2 x 2交叉点开关MAX3967 270Mbps SFP LED驱动器MAX3969 200Mbps SFP限幅放大器MAX3969EVKIT MAX3969评估板MAX3982 SFP铜缆预加重驱动器MAX3983 四路铜缆信号调理器MAX3983EVKIT MAX3983评估板MAX3983SMAEVKIT MAX3983 SMA连接器评估板MAX4079 完备的音频/视频后端方案MAX4079EVKIT MAX4079评估板MAX4210, MAX4211 高端功率、电流监视器MAX4210EEVKIT MAX4210E、MAX4210A/B/C/D/F评估板MAX4211EEVKIT MAX4211A/B/C/D/E/F评估板MAX4397 用于双SCART连接器的音频/视频开关MAX4397EVKIT MAX4397评估系统/评估板MAX4411EVKIT MAX4411评估板MAX4729, MAX4730 低电压、3.5、SPDT、CMOS模拟开关MAX4754, MAX4755, MAX4756 0.5、四路SPDT开关,UCSP/QFN封装MAX4758, MAX4759 四路DPDT音频/数据开关,UCSP/QFN封装MAX4760, MAX4761 宽带、四路DPDT开关MAX4766 0.075A至1.5A、可编程限流开关MAX4772, MAX4773 200mA/500mA可选的限流开关MAX4795, MAX4796, MAX4797, MAX4798 450mA/500mA限流开关MAX4826, MAX4827, MAX4828, MAX4829, MAX4830, MAX4831 50mA/100mA限流开关, 带有空载标记, μDFN封装MAX4832, MAX4833 100mA LDO,带有限流开关MAX4834, MAX4835 250mA LDO,带有限流开关MAX4836, MAX4837 500mA LDO,带有限流开关MAX4838A, MAX4840A, MAX4842A 过压保护控制器,带有状态指示FLAGMAX4850, MAX4850H, MAX4852, MAX4852H 双路SPDT模拟开关,可处理超摆幅信号MAX4851, MAX4851H, MAX4853, MAX4853H 3.5/7四路SPST模拟开关,可处理超摆幅信号MAX4854 7四路SPST模拟开关,可处理超摆幅信号MAX4854H, MAX4854HL 四路SPST、宽带、信号线保护开关MAX4855 0.75、双路SPDT音频开关,具有集成比较器MAX4864L, MAX4865L, MAX4866L, MAX4867, MAX4865, MAX4866 过压保护控制器,具有反向保护功能MAX4880 过压保护控制器, 内置断路开关MAX4881, MAX4882, MAX4883, MAX4884 过压保护控制器, 内部限流, TDFN封装MAX4901, MAX4902, MAX4903, MAX4904, MAX4905 低RON、双路SPST/单路SPDT、无杂音切换开关, 可处理负电压MAX4906, MAX4906F, MAX4907, MAX4907F 高速/全速USB 2.0开关MAX5033 500mA、76V、高效率、MAXPower降压型DC-DC变换器MAX5042, MAX5043 双路开关电源IC,集成了功率MOSFET和热插拔控制器MAX5058, MAX5059 可并联的副边同步整流驱动器和反馈发生器控制ICMAX5058EVKIT MAX5051, MAX5058评估板MAX5062, MAX5062A, MAX5063, MAX5063A, MAX5064, MAX5064A, MAX5064B 125V/2A、高速、半桥MOSFET驱动器MAX5065, MAX5067 双相、+0.6V至+3.3V输出可并联、平均电流模式控制器MAX5070, MAX5071 高性能、单端、电流模式PWM控制器MAX5072 2.2MHz、双输出、降压或升压型转换器,带有POR和电源失效输出MAX5072EVKIT MAX5072评估板MAX5074 内置MOSFET的电源IC,用于隔离型IEEE 802.3af PD和电信电源MAX5078 4A、20ns、MOSFET驱动器MAX5084, MAX5085 65V、200mA、低静态电流线性稳压器, TDFN封装MAX5088, MAX5089 2.2MHz、2A降压型转换器, 内置高边开关MAX5094A, MAX5094B, MAX5094C, MAX5094D, MAX5095A, MAX5095B, MAX5095C 高性能、单端、电流模式PWM控制器MAX5128 128抽头、非易失、线性变化数字电位器, 采用2mm x 2mm μDFN封装MAX5417, MAX5417L, MAX5417M, MAX5417N, MAX5417P, MAX5418, MAX5419 256抽头、非易失、I2C接口、数字电位器MAX5417LEVKIT MAX5417_, MAX5418_, MAX5419_评估板/评估系统MAX5477, MAX5478, MAX5479 双路、256抽头、非易失、I2C接口、数字电位器MAX5478EVKIT MAX5477/MAX5478/MAX5479评估板/评估系统MAX5490 100k精密匹配的电阻分压器,SOT23封装MAX5527, MAX5528, MAX5529 64抽头、一次性编程、线性调节数字电位器MAX5820 双路、8位、低功耗、2线、串行电压输出DACMAX5865 超低功耗、高动态性能、40Msps模拟前端MAX5920 -48V热插拔控制器,外置RsenseMAX5921, MAX5939 -48V热插拔控制器,外置Rsense、提供较高的栅极下拉电流MAX5932 正电源、高压、热插拔控制器MAX5932EVKIT MAX5932评估板MAX5936, MAX5937 -48V热插拔控制器,可避免VIN阶跃故障,无需RSENSEMAX5940A, MAX5940B IEEE 802.3af PD接口控制器,用于以太网供电MAX5940BEVKIT MAX5940B, MAX5940D评估板MAX5941A, MAX5941B 符合IEEE 802.3af标准的以太网供电接口/PWM控制器,适用于用电设备MAX5945 四路网络电源控制器,用于网络供电MAX5945EVKIT, MAX5945EVSYS MAX5945评估板/评估系统MAX5953A, MAX5953B, MAX5953C, MAX5953D IEEE 802.3af PD接口和PWM控制器,集成功率MOSFETMAX6640 2通道温度监视器,提供双路、自动PWM风扇速度控制器MAX6640EVKIT MAX6640评估系统/评估板MAX6641 兼容于SMBus的温度监视器,带有自动PWM风扇速度控制器MAX6643, MAX6644, MAX6645 自动PWM风扇速度控制器,带有过温报警输出MAX6678 2通道温度监视器,提供双路、自动PWM风扇速度控制器和5个GPIOMAX6695, MAX6696 双路远端/本地温度传感器,带有SMBus串行接口MAX6877EVKIT MAX6877评估板MAX6950, MAX6951 串行接口、+2.7V至+5.5V、5位或8位LED显示驱动器MAX6966, MAX6967 10端口、恒流LED驱动器和输入/输出扩展器,带有PWM亮度控制MAX6968 8端口、5.5V恒流LED驱动器MAX6969 16端口、5.5V恒流LED驱动器MAX6970 8端口、36V恒流LED驱动器MAX6977 8端口、5.5V恒流LED驱动器,带有LED故障检测MAX6978 8端口、5.5V恒流LED驱动器,带有LED故障检测和看门狗MAX6980 8端口、36V恒流LED驱动器, 带有LED故障检测和看门狗MAX6981 8端口、36V恒流LED驱动器, 带有LED故障检测MAX7030 低成本、315MHz、345MHz和433.92MHz ASK收发器, 带有N分频PLLMAX7032 低成本、基于晶振的可编程ASK/FSK收发器, 带有N分频PLLMAX7317 10端口、SPI接口输入/输出扩展器,带有过压和热插入保护MAX7319 I2C端口扩展器,具有8路输入,可屏蔽瞬态检测MAX7320 I2C端口扩展器, 带有八个推挽式输出MAX7321 I2C端口扩展器,具有8个漏极开路I/O口MAX7328, MAX7329 I2C端口扩展器, 带有八个I/O口MAX7347, MAX7348, MAX7349 2线接口、低EMI键盘开关和发声控制器MAX7349EVKIT MAX7349评估板/仿真: MAX7347/MAX7348MAX7375 3引脚硅振荡器MAX7381 3引脚硅振荡器MAX7389, MAX7390 微控制器时钟发生器, 带有看门狗MAX7391 快速切换时钟发生器, 带有电源失效检测MAX7445 4通道视频重建滤波器MAX7450, MAX7451, MAX7452 视频信号调理器,带有AGC和后肩钳位MAX7452EVKIT MAX7452评估板MAX7462, MAX7463 单通道视频重建滤波器和缓冲器MAX8505 3A、1MHz、1%精确度、内置开关的降压型调节器,带有电源就绪指示MAX8524, MAX8525 2至8相VRM 10/9.1 PWM控制器,提供精密的电流分配和快速电压定位MAX8525EVKIT MAX8523, MAX8525评估板MAX8533 更小、更可靠的12V、Infiniband兼容热插拔控制器MAX8533EVKIT MAX8533评估板MAX8545, MAX8546, MAX8548 低成本、宽输入范围、降压控制器,带有折返式限流MAX8550, MAX8551 集成DDR电源方案,适用于台式机、笔记本电脑及图形卡MAX8550EVKIT MAX8550, MAX8550A, MAX8551评估板MAX8552 高速、宽输入范围、单相MOSFET驱动器MAX8553, MAX8554 4.5V至28V输入、同步PWM降压控制器,适合DDR端接和负载点应用MAX8563, MAX8564 ±1%、超低输出电压、双路或三路线性n-FET控制器MAX8564EVKIT MAX8563, MAX8564评估板MAX8566 高效、10A、PWM降压调节器, 内置开关MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575 高效LCD升压电路,可True ShutdownMAX8571EVKIT MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575评估板MAX8576, MAX8577, MAX8578, MAX8579 3V至28V输入、低成本、迟滞同步降压控制器MAX8594, MAX8594A 5路输出PMIC,提供DC-DC核电源,用于低成本PDAMAX8594EVKIT MAX8594评估板MAX8632 集成DDR电源方案,适用于台式机、笔记本电脑和图形卡MAX8632EVKIT MAX8632评估板MAX8702, MAX8703 双相MOSFET驱动器,带有温度传感器MAX8707 多相、固定频率控制器,用于AMD Hammer CPU核电源MAX8716, MAX8717, MAX8757 交叉工作、高效、双电源控制器,用于笔记本电脑MAX8716EVKIT MAX8716评估板MAX8717EVKIT MAX8717评估板MAX8718, MAX8719 高压、低功耗线性稳压器,用于笔记本电脑MAX8725EVKIT MAX8725评估板MAX8727 TFT-LCD升压型、DC-DC变换器MAX8727EVKIT MAX8727评估板MAX8729 固定频率、半桥CCFL逆变控制器MAX8729EVKIT MAX8729评估板MAX8732A, MAX8733A, MAX8734A 高效率、四路输出、主电源控制器,用于笔记本电脑MAX8737 双路、低电压线性稳压器, 外置MOSFETMAX8737EVKIT MAX8737评估板MAX8738 EEPROM可编程TFT VCOM校准器, 带有I2C接口MAX8740 TFT-LCD升压型、DC-DC变换器MAX8743 双路、高效率、降压型控制器,关断状态下提供高阻MAX8751 固定频率、全桥、CCFL逆变控制器MAX8751EVKIT MAX8751评估板MAX8752 TFT-LCD升压型、DC-DC变换器MAX8758 具有开关控制和运算放大器的升压调节器, 用于TFT LCDMAX8758EVKIT MAX8758评估板MAX8759 低成本SMBus CCFL背光控制器MAX8760 双相、Quick-PWM控制器,用于AMD Mobile Turion 64 CPU核电源MAX8764 高速、降压型控制器,带有精确的限流控制,用于笔记本电脑MAX9223, MAX9224 22位、低功耗、5MHz至10MHz串行器与解串器芯片组MAX9225, MAX9226 10位、低功耗、10MHz至20MHz串行器与解串器芯片组MAX9483, MAX9484 双输出、多模CD-RW/DVD激光二极管驱动器MAX9485 可编程音频时钟发生器MAX9485EVKIT MAX9485评估板MAX9486 8kHz参考时钟合成器,提供35.328MHz倍频输出MAX9486EVKIT MAX9486评估板MAX9489 多路输出网络时钟发生器MAX9500, MAX9501 三通道HDTV滤波器MAX9500EVKIT MAX9500评估板MAX9501EVKIT MAX9501评估板MAX9502 2.5V视频放大器, 带有重建滤波器MAX9504A, MAX9504B 3V/5V、6dB视频放大器, 可提供大电流输出MAX9701 1.3W、无需滤波、立体声D类音频功率放大器MAX9701EVKIT MAX9701评估板MAX9702 1.8W、无需滤波、立体声D类音频功率放大器和DirectDrive立体声耳机放大器MAX9702EVSYS/EVKIT MAX9702/MAX9702B评估系统/评估板MAX9703, MAX9704 10W立体声/15W单声道、无需滤波的扩展频谱D类放大器MAX9705 2.3W、超低EMI、无需滤波、D类音频放大器MAX9705BEVKIT MAX9705B评估板MAX9710EVKIT MAX9710评估板MAX9712 500mW、低EMI、无需滤波、D类音频放大器MAX9713, MAX9714 6W、无需滤波、扩频单声道/立体声D类放大器MAX9714EVKIT MAX9704, MAX9714评估板MAX9715 2.8W、低EMI、立体声、无需滤波、D类音频放大器MAX9715EVKIT MAX9715评估板MAX9716, MAX9717 低成本、单声道、1.4W BTL音频功率放大器MAX9716EVKIT MAX9716评估板MAX9718, MAX9719 低成本、单声道/立体声、1.4W差分音频功率放大器MAX9718AEVKIT MAX9718A评估板MAX9719AEVKIT MAX9719A/B/C/D评估板MAX9721 1V、固定增益、DirectDrive、立体声耳机放大器,带有关断MAX9721EVKIT MAX9721评估板MAX9722A, MAX9722B 5V、差分输入、DirectDrive、130mW立体声耳机放大器,带有关断MAX9722AEVKIT MAX9722A, MAX9722B评估板MAX9723 立体声DirectDrive耳机放大器, 具有BassMax、音量控制和I2C接口MAX9725 1V、低功率、DirectDrive、立体声耳机放大器,带有关断MAX9728AEVKIT MAX9728A/MAX9728B评估板MAX9750, MAX9751, MAX9755 2.6W立体声音频功放和DirectDrive耳机放大器MAX9759 3.2W、高效、低EMI、无需滤波、D类音频放大器MAX9759EVKIT MAX9759评估板MAX9770, MAX9772 1.2W、低EMI、无需虑波、单声道D类放大器,带有立体声DirectDrive耳机放大器MAX9787 2.2W立体声音频功率放大器, 提供模拟音量控制MAX9850 立体声音频DAC,带有DirectDrive耳机放大器MAX9890 音频咔嗒声-怦然声抑制器MAX9951, MAX9952 双路引脚参数测量单元MAX9960 双闪存引脚电子测量/高压开关矩阵MAX9961, MAX9962 双通道、低功耗、500Mbps ATE驱动器/比较器,带有2mA负载MAX9967 双通道、低功耗、500Mbps ATE驱动器/比较器,带有35mA负载MAX9986A SiGe高线性度、815MHz至1000MHz下变频混频器, 带有LO缓冲器/开关MAXQ2000 低功耗LCD微控制器MAXQ2000 勘误表PDF: MAXQ2000A2MAXQ2000-KIT MAXQ2000评估板MAXQ3120-KIT MAXQ3120评估板MXL1543B +5V、多协议、3Tx/3Rx、软件可选的时钟/数据收发器。
mp24830原理-回复MP24830是一种开关模式电源管理芯片,主要用于电源转换和电源管理应用。
它具有高效能和快速动态响应的特点,可以满足电子设备对电源稳定性和效率的要求。
第一步:介绍MP24830的基本原理MP24830采用了开关模式电源控制器的基本工作原理。
开关模式电源控制器通过周期性开关和关闭电源,以提供稳定的电压输出。
MP24830使用降压型开关模式电源控制器,也就是将输入电压转换为较低的输出电压。
它包含一个高效能的功率开关和控制电路,通过调整开关的周期和占空比来实现电压转换和稳定输出。
第二步:详细解析MP24830的主要组成部分MP24830由几个关键的组件组成,这些组件合作工作,实现电源管理功能。
1. PWM控制器:它负责控制电源开关的周期和占空比,以达到所需的输出电压稳定性和效率。
PWM控制器通过反馈回路来监测输出电压,根据反馈信号来调整开关周期和占空比,以使输出保持在设定的电压水平。
2. 电源开关:MP24830中的电源开关是由一个MOSFET(金属氧化物半导体场效应晶体管)实现的。
MOSFET可以在高频率下进行快速开关,具有低导通电阻和小尺寸。
这使得MP24830可以实现更高的转换效率和更小的尺寸。
3. 频率设定电路:频率设定电路是用来设定PWM控制器的开关频率的。
用户可以根据需要选择适合应用的工作频率。
4. 过流保护电路:MP24830具有过流保护功能,可以防止在负载端发生过电流现象。
当负载电流超过设定值时,过流保护电路会关闭电源开关,以保护电源和负载不受损害。
第三步:MP24830的工作流程MP24830的工作流程可以分为以下几个主要步骤:1. 从输入电源获得直流电压。
2. 运行频率设定电路,设定PWM控制器的工作频率。
3. 反馈回路测量输出电压,并将其与设定电压进行比较。
4. 根据反馈信号,PWM控制器调整电源开关的周期和占空比,使输出电压稳定在设定值。
5. 如果负载电流超过设定值,过流保护电路会关闭电源开关,以防止损坏。
max24033emy+t的规格书规格书:max24033emy+t一、产品介绍:max24033emy+t是一款高度集成的4通道电源管理IC,它主要用于工业控制系统、通信设备和数据中心等领域的电源管理。
该产品采用优质的半导体材料和先进的封装工艺,具有稳定可靠的性能和高效省电的特点。
二、产品特点:1.高度集成:max24033emy+t集成了4个高性能电源管理通道,包括电池充电管理、DC-DC转换器和电源监控等功能,可满足多种应用的需求。
2.宽输入电压范围:max24033emy+t支持广泛的输入电压范围,从3.5V到28V,能适应不同电源供应的要求。
3.高效节能:max24033emy+t采用了先进的能量管理技术,具有高效节能的特点,可以最大程度地减少能源浪费。
4.低功耗待机模式:max24033emy+t在待机模式下,功耗极低,能有效延长电池使用寿命。
5.温度保护:max24033emy+t具有自动温度保护功能,可在过热时自动停止工作,保护电路不受损坏。
6.电池管理:max24033emy+t支持电池充电和放电管理,能确保电池使用的安全和稳定性。
三、应用领域:max24033emy+t广泛应用于各种工业控制系统、通信设备和数据中心等领域,如智能家居、自动化控制、无线通信设备、数据存储等。
四、主要性能参数:1.输入电压范围:3.5V-28V2.输出电压范围:1.5V-16V3.输出电流范围:0A-3A4.工作温度范围:-40℃~85℃5.封装形式:QFN封装五、产品优势:1.优质材料:max24033emy+t采用优质的半导体材料和先进的封装工艺,保证了产品的稳定性和可靠性。
2.高效节能:max24033emy+t采用了先进的能量管理技术,具有高效节能的特点,能最大程度地减少能源浪费。
3.宽电压范围:max24033emy+t支持广泛的输入电压范围,能适应不同电源供应的要求。
4.多通道设计:max24033emy+t具有4个独立的电源管理通道,可满足多种应用的需求。
LM2403Monolithic Triple 4.5nS CRT DriverGeneral DescriptionThe LM2403is an integrated high voltage CRT driver circuit designed for use in high resolution color monitor applica-tions.The IC contains three high input impedance,wide band amplifiers which directly drive the RGB cathodes of a CRT.Each channel has its gain internally set to −14and can drive CRT capacitive loads as well as resistive loads pre-sented by other applications,limited only by the package’s power dissipation.The IC is packaged in an industry standard 11lead TO-220molded plastic power package.See thermal considerations on page 5.Featuresn Rise/fall times typically 4.5nS with 8pF load at 40V pp n Well matched with LM1283video preampn Output swing capability:60V pp for V CC =80V n 1V to 5V input rangenStable with 0pF–20pF capacitive loads and inductive peaking networksn Convenient TO-220staggered lead package stylen Standard LM240X Family Pinout which is designed for easy PCB layoutApplicationsn CRT driver for color monitors with display resolutions up to 1600x 1200n Pixel clock frequency up to 160MHzSchematic and Connection DiagramsDS100082-1DS100082-2Top ViewOrder Number LM2403TFIGURE 1.Simplified Schematic Diagram (One Channel)August 1999LM2403Monolithic Triple 4.5nS CRT Driver©1999National Semiconductor Corporation Absolute Maximum Ratings (Notes 1,2)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Supply Voltage (V CC )+90V Bias Voltage (V BB )+16VInput Voltage (V IN )−0.5V to V BIAS +0.5VStorage Temperature Range (T STG )−65˚C to +150˚CLead Temperature(Soldering,<10sec.)300˚C ESD Tolerance,Human Body Model 2kV Machine Model250VOperating Range (Note 3)V CC +60V to +85VV BB+8V to +15V V IN+1V to +5V V OUT+10V to +70V Case Temperature −20˚C to +100˚C Do not operate the part without a heat sink.Note 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Note 2:All voltages are measured with respect to GND,unless otherwise specified.Note 3:Operating ratings indicate conditions for which the device is func-tional,but do not guarantee specific performance limits.For guaranteed specifications and test conditions,see the Electrical Characteristics.The guaranteed specifications apply only for the test conditions listed.Some per-formance characteristics may change when the device is not operated under the listed test conditions.Electrical Characteristics(See Figure 2for Test Circuit)Unless otherwise noted:V CC =+80V,V BB =+12V,V IN =+3.3V DC ,C L =8pF,L P =0.22µH,Output =40V PP at 1MHz,T A =25˚C.Symbol Parameter ConditionLM2403Units MinTypical MaxI CC Supply Current Per Channel,No Output Load 26mA I BB Bias Current All Three Channels11.5mA V OUT DC Output Voltage No AC Input Signal,V IN =2.8V 485256V DCA V DC Voltage Gain No AC Input Signal−12−14−16∆A V Gain Matching (Note 4),No AC Input Signal 1.0dB LE Linearity Error (Notes 4,5),No AC Input Signal 3.5%t R Rise Time 10%to 90% 4.5nS t F Fall Time 90%to 10%4.5nS OSOvershoot3%Note 4:Calculated value from Voltage Gain test on each channel.Note 5:Linearity Error is the variation in dc gain from V IN =1.5V to V IN =5V.Note 6:Input from signal generator:t r ,t f <1nS.AC Test CircuitFigure 2shows a typical test circuit for evaluation of the LM2403.This circuit is designed to allow testing of the LM2403in a 50Ωenvironment without the use of an expensive FET probe.The 4950Ωresistor at the output forms a 100:1voltage divider when connected to a 50Ωload.DS100082-3FIGURE 2.Test Circuit (One Channel) 2AC Test Circuit(Continued)DS100082-4 FIGURE3.V OUT vs V INDS100082-5 FIGURE4.Speed vs Temp.DS100082-6 FIGURE5.Pulse ResponseDS100082-7FIGURE6.Power Dissipation vs FrequencyDS100082-8FIGURE7.Speed vs OffsetDS100082-9FIGURE8.Pulse Response with V CC=70V DC 3Theory of OperationThe LM2403is a high voltage monolithic three channel CRT driver suitable for high resolution display applications.The LM2403operates using80V and12V power supplies.The part is housed in the industry standard11-lead TO-220 molded plastic power package.The simplified circuit diagram of the LM2403is shown in Fig-ure1.A PNP emitter follower,Q1,provides input buffering. The14kΩfeedback resistor and the1kΩinput resistor sets the gain of the inverting op-amp to-14.Emitter followers Q2 and Q3isolate the output of the feedback amplifier from the capacitance of the CRT cathode,and make the circuit rela-tively insensitive to load capacitance.Figure2shows a typical test circuit for evaluation of the LM2403.This circuit is designed to allow testing of the LM2403in a50Ωenvironment without the use of an expen-sive FET probe.In this test circuit,two low inductance resis-tors in series totaling4.95kΩform a100:1wideband low ca-pacitance probe when connected to a50Ωcable and load. The input signal from the generator is ac coupled to the base of Q1.Figure9shows the large signal sine wave frequency re-sponse of the LM2403.The frequency response rolls off very rapidly above the bandwidth limit of the amplifier.There are two reasons for this fast response roll-off:1.The LM2403contains an input low pass filter to help re-move unwanted high frequency harmonics that can cause EMI problems.This filter does not significantly af-fect the rise and fall times of the signal as it operates above the−3dB bandwidth of the device.2.The internal feedback network of the closed loop ampli-fier holds the gain at−14until the loop gain drops below unity.Above this frequency,the amplifier response falls with the open loop gain of the amplifier,as the feedback ceases to have any significant effect.There is also a change in the impedance match between the op-amp and the emitter follower output stage with large signals at higher frequencies.This creates a gain boost that ex-tends the bandwidth,then gives a sudden roll off as shown in Figure9.The exact response of this roll off may vary slightly depending upon operating conditions, signal amplitude etc.In both cases,the fast roll of the high frequency harmonics will help to limit the creation of high frequency EMI harmon-ics,without limiting video rise and fall time characteristics. However,due to the very fast switching speeds of the de-vice,good layout design for EMI is CRITICAL.Path lengths and loop areas of the video signals must be kept to a mini-mum.Application HintsINTRODUCTIONNational Semiconductor(NSC)is committed to providing ap-plication information that assists our customers in obtaining the best performance possible from our products.The follow-ing information is provided in order to support this commit-ment.The reader should be aware that the optimization of performance was done using a specific printed circuit board designed at NSC.Variations in performance can be realized due to physical changes in the printed circuit board and the application.Therefore,the designer should know that com-ponent value changes may be required in order to optimize performance in a given application.The values shown in this document can be used as a starting point for evaluation pur-poses.When working with high bandwidth circuits,good lay-out practices are also critical to achieving maximum perfor-mance.POWER SUPPLY BYPASSSince the LM2403is a high bandwidth amplifier,proper power supply bypassing is critical for optimum performance. Improper power supply bypassing can result in large over-shoot,ringing and oscillation.A0.1µF capacitor should be connected from the supply pin,Vcc,to ground,as close to the supply and ground pins as is practical.Additionally,a 10µF to100µF electrolytic capacitor should be connected from the supply pin to ground.The electrolytic capacitor should also be placed reasonably close to the LM2403’s supply and ground pins.A0.1µF capacitor should be con-nected from the bias pin,Vbb,to ground,as close as is prac-tical to the part.ARC PROTECTIONDuring normal CRT operation,internal arcing may occasion-ally occur.Spark gaps,in the range of200V,connected from the CRT cathodes to CRT ground will limit the maximum volt-age,but to a value that is much higher than allowable on the LM2403.This fast,high voltage,high energy pulse can dam-age the LM2403output stage.The application circuit shown in Figure10is designed to help clamp the voltage at the out-put of the LM2403to a safe level.The clamp diodes should have a fast transient response,high peak current rating,low series impedance and low shunt capacitance.FDH400or equivalent diodes are recommended.D1and D2should have short,low impedance connections to V CC and ground respectively.The cathode of D1should be located very close to a separately decoupled bypass capacitor.The ground connection of the diode and the decoupling capacitor should be very close to the LM2403ground.This will significantly re-duce the high frequency voltage transients that the LM2403 would be subjected to during an arcover condition.Resistor R2limits the arcover current that is seen by the diodes while R1limits the current into the LM2403as well as the voltage stress at the outputs of the device.R2should be a1/2W solid carbon type resistor.R1can be a1/4W metal or carbon film type resistor.Inductor L1is critical to reduce the initial high frequency voltage levels that the LM2403would be sub-jected to.Having large value resistors for R1and R2would be desirable,but this has the effect of increasing rise and fall times.The inductor will not only help protect the device but itDS100082-16FIGURE9.4Application Hints(Continued)will also help optimize rise and fall times as well as minimize EMI.For proper arc protection,it is important to not omit any of the arc protection components shown in Figure10.OPTIMIZING TRANSIENT RESPONSEReferring to Figure10,there are three components(R1,R2 and L1)that can be adjusted to optimize the transient re-sponse of the application circuit.Increasing the values of R1 and R2will slow the circuit down while decreasing over-shoot.Increasing the value of L1will speed up the circuit as well as increase overshoot.It is very important to use induc-tors with very high self-resonant frequencies,preferably above300MHz.Ferrite core inductors from ler Mag-netics(part#78FR12M)were used for optimizing the perfor-mance of the device in the NSC application board.The val-ues shown in Figure10can be used as a good starting point for the evaluation of the LM2403.The NSC demo board also has a position open to add a resistor in parallel with L1.This resistor can be used to help control ing vari-able resistors for R1and the parallel resistor is a great way to help dial in the values needed for optimum performance in a given application.Pull-up ResistorsOptimizing the performance of the LM2403does require the use of pull-up resistors at the outputs of the CRT driver. These resistors are shown as R100,R101,and R102in the schematic.If you have a demo board form National please note that these resistors have been added on the back of the board since there is no PCB location for the pull-up resistors. Because of the improved performance with these resistors, all demo boards have been shipped with the added pull-up resistors.The LM2403does have some crossover distortion, normal for any AB amplifier such as the LM2403.Adding the pull-up resistors does add more bias to Q3(Figure1)thus minimizing the crossover distortion.The LM2403is normally used in high end monitors,so it is highly recommended that the12k pull-up resistors be used in any design using the LM2403.Selecting a12k resistor provides the needed pull-up current and limits the worst case power dissipation to 1/4W(white level at25V).In some applications pull-down resistors may be preferred. Using12k resistors gives acceptable performance,but this will require the use of1/2W resistors.Normally the power save mode establishes whether pull-up or pull-down resis-tors are preferred.If the setup of the power save mode in the monitor gives a low output at the LM2403,then the pull-down resistors would be preferred,if the80V supply is still turned on.Effect of Load CapacitanceThe output rise and fall times as well as overshoot will vary as the load capacitance varies.The values of the output cir-cuit(R1,R2and L1in Figure10)should be chosen based on the nominal load capacitance.Once this is done the perfor-mance of the design can be checked by varying the load based on what the expected variation will be.For example,suppose you needed to drive a10pF(±20%) load with a40V p-p waveform.First,you would pick the values of R1,R2and L1that give the desired response with a10pF load.Then you would test the design when driving an8pF load and a12pF load.The table below summarizes the re-sults from doing this exercise in a test board in the NSC lab. The output signal swing was40V p-p from65V to25V. Parameter8pF10pF12pF Rise Time 4.1 4.2 4.3 Overshoot1%5%10%Fall Time 4.4 4.6 4.7 Overshoot1%2%5%The example above clearly demonstrates the importance of having a good estimate of the range of the load capacitance. Effect of OffsetFigure7shows the variation in rise and fall times when the output offset of the device is varied from30V DC to50V DC. The rise time shows about twice as much variation as the fall time,however the maximum variation relative to the center data point(40V DC)is less than10%.Operation with V CC=70VThe closed loop topography of the LM2403allows operation down to10V above ground.If the user can limit the white level between10V and20V,then operation with V CC=70V is possible.Operating the LM2403with V CC=70V will re-quire the same current even though the supply voltage has dropped by12.5%.This results in a power savings of12.5% (as high a1.5W),allowing a reduction in the size of the heat-sink.Figure8shows the output waveform of the LM2403op-erating at a white level of15V,and a peak-to-peak output swing of40V.Below is a summary of the LM2403rise and fall times with various output offset levels with V CC=70V.DS100082-10FIGURE10.One Channel of the LM2403with the Recommended Arc Protection Circuit5Application Hints(Continued)OutputSwingRise Time Fall Time 10V–50V 4.0ns 5.0ns15V–55V 4.2ns 4.8ns20V–60V 4.4ns 5.0nsTHERMAL CONSIDERATIONSFigure4shows the performance of the LM2403in the test circuit shown in Figure2as a function of case temperature. The figure shows that the speed of the LM2403decreases by less than10%as the case temperature increases from 50˚C to100˚C.This corresponds to a speed degradation of 2%for every10˚C rise in case temperature.Figure6shows the total power dissipation of the LM2403vs. Frequency when all three channels of the device are driving an8pF load with a40V p-p signal.The graph assumes a72% active time(device operating at the specified frequency) which is typical in a monitor application.The other28%of the time the device is assumed to be sitting at the black level (65V in this case).This graph gives the designer the informa-tion needed to determine the heat sink requirement for his application.The designer should note that if the load capaci-tance is increased the AC component of the total power dis-sipation will also increase.The LM2403case temperature must be maintained below 100˚C.If the maximum expected ambient temperature is 50˚C and the maximum power dissipation is12W,then a maximum heat sink thermal resistance can be calculated:This example assumes a capacitive load of8pF and no re-sistive load.TYPICAL APPLICATIONA typical application of the LM2403is shown in Figure11. Used in conjunction with an LM1283,a complete video chan-nel from monitor input to CRT cathode can be achieved.Per-formance is satisfactory for resolutions up to1600x1200 and pixel clock frequencies up to160MHz.Figure11is the schematic for the NSC demonstration board that can be used to evaluate the LM1283/2403combination in a monitor. PC Board Layout ConsiderationsFor optimum performance,an adequate ground plane,isola-tion between channels,good supply bypassing and minimiz-ing unwanted feedback are necessary.Also,the length of the signal traces from the preamplifier to the LM2403and from the LM2403to the CRT cathode should be as short as pos-sible.The following references are recommended:Ott,Henry W.,“Noise Reduction Techniques in Electronic Systems”,John Wiley&Sons,New York,1976.“Guide to CRT Video Design”,National Semiconductor Appli-cation Note861.“Video Amplifier Design for Computer Monitors”,National Semiconductor Application Note1013.Pease,Robert A.,“Troubleshooting Analog Circuits”, Butterworth-Heinemann,1991.Because of its high small signal bandwidth,the part may os-cillate in a monitor if feedback occurs around the video chan-nel through the chassis wiring.To prevent this,leads to the video amplifier input circuit should be shielded,and input cir-cuit wiring should be spaced as far as possible from output circuit wiring.NSC Demonstration BoardFigures12,13show routing and component placement on the NSC LM1283/2403demonstration board.The schematic of the board is shown in Figure11.This board provides a good example of a layout that can be used as a guide for fu-ture layouts.Note the location of the following components:•C79—V CC bypass capacitor,located very close to pin6 and ground pins•C55—V BB bypass capacitor,located close to pin10and ground•C75–C77—V CC bypass capacitors,near LM2403and V CC clamp diodes.Very important for arc protection The routing of the LM2403outputs to the CRT is very critical to achieving optimum performance.Figure14shows the routing and component placement from pin1to the blue cathode.Note that the components are placed so that they almost line up from the output pin of the LM2403to the blue cathode pin of the CRT connector.This is done to minimize the length of the video path between these two components. Note also that D7,D8,R32and D3are placed to minimize the size of the video nodes that they are attached to.This minimizes parasitic capacitance in the video path and also enhances the effectiveness of the protection diodes.The an-ode of protection diode D8is connected directly to a section of the the ground plane that has a short and direct path to the LM2403ground pins.The cathode of D7is connected to V CC very close to decoupling capacitor C77(see Figure14) which is connected to the same section of the ground plane as D8.The diode placement and routing is very important for minimizing the voltage stress on the LM2403during an arc over stly,notice that S1is placed very close to the blue cathode and is tied directly to CRT ground.6Application Hints(Continued)D S 100082-12D i o d e s F D H 400P N P t r a n s i s t o r s M P S A 92N P N t r a n s i s t o r s 2N 2369A U n m a r k e d c a p a c i t o r s 0.1µFF IG U R E 11.L M 1283/2403D e m o n s t r a t i o n B o a r d S c h e m a t i c7Application Hints(Continued)DS100082-13FIGURE12.Trace Side of NSC LM1283/2403Demonstration Board8Application Hints(Continued)DS100082-14 FIGURE13.Silk Screen and Trace of the LM1283/2403Demonstration Board9Application Hints(Continued)DS100082-15FIGURE14.Blue Channel Component Placement and Trace Routing 10Physical Dimensions inches(millimeters)unless otherwise notedLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERALCOUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices orsystems which,(a)are intended for surgical implantinto the body,or(b)support or sustain life,andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling,can be reasonably expected to result in asignificant injury to the user.2.A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system,or to affect itssafety or effectiveness.National SemiconductorCorporationAmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National SemiconductorEuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National SemiconductorAsia Pacific CustomerResponse GroupTel:65-2544466Fax:65-2504466Email:sea.support@National SemiconductorJapan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507 NS Package Number TA11BOrder Number LM2403TLM2403MonolithicTriple4.5nSCRTDriver National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.元器件交易网。
描述MP24833 是 55V,3A白光 LED 驱动器适用于降压,反相升/降压和升压应用。
它具有 3A输出电流在较宽的输入电压范围内具有优异的负载和线性调整。
电流模式能提供快速的瞬态响应和环路稳定性设计。
故障保护包括热关断,逐周期峰值电流限制,开弦保护和输出短路保护。
MP24833 采用模拟和PWM调光复用一个控制引脚。
单独的输入参考接地引脚可以直接使能芯片或者调光控制为正的负功率转换。
MP24833需要最少的标准外部元件和采用SOIC8E 封装。
特点•3A 最大输出电流•独特的升降压操作 (降压-升压模式)•宽输入电压范围:4.5V~55V(降压模式)•0.19Ω 内部功率MOSFET开关•开关频率:200KHz•模拟和PWM调光•0.198V 参考电压•6μA 关断模式•无LED最小数量•稳定低ESR陶瓷输出电容器•逐周期过流保护•热关断保护•开弦保护•输出短路保护•封装: SOIC8E应用•常规 LED 照明•LCD背光板•笔记本电脑•汽车内部照明•便携式多媒体播放器•便携式 GPS 设备For MPS green status, please visit MPS website under Quality Assurance.“MPS” and “The Future of Analog IC Technology” are Registered Trademarks of Monolithic Power Systems, Inc.MP24833A, 55V3白光LED驱动器The Future of Analog IC Technology绝对最大额定值 (1)供应电压 V DD - V SS .............................................. 60V V SW - V SS ......................................-0.3V to V IN + 0.3V V BST .............................................................V SW + 6V V EN/Dim - V INGND ..........................................-0.3Vto+6V V INGND - V SS ............................................-0.3V to 60V 其他引脚 - V SS ….....................................-0.3V to +6V 连续功率耗散(T A= +25°C) (2)SOIC8E..............................................................2.5W 结温……………………....................................150°C 铅温度………………….....................................260°C 贮存温度……………..................-65°C to +150°C推荐的操作条件 (3)供应电压 V DD - V SS ..................................4.5V to 55VJ C热阻 (4) θJA θJCSOIC-8 EP ..............................50 ......10...°C/W备注:1) 超过绝对最大额定值可能会损坏芯片.2) 最大允许功率耗散是一个函数的最大结温T J (MAX), 结到环境热阻 θJA , 和 环境温度 T A . 在任何环境温度的最大允许连续功率耗散计算由P D (MAX) = (T J (MAX)-T A )/θJA . 超过最大允许功耗 会导致过高的模具温度, 同时芯片将进入热关断.对内部热关断电路造成永久性的损坏.3) 芯片不能保证在推荐的工作条件以外的情况下正常工作. 4) 测试是在 JESD51-7, 4-layer PCB.定购信息引脚配置4.5V V IN 55V5) 保证所设计的.典型性能特征性能波形测试在评估板的设计示例部分. V IN = 36V, I LED = 1A, 7个WLEDs 串联, L = 68µH, T A = 25°C, 降压应用,除非另有说明.典型的性能特征(续)性能波形测试在评估板的设计示例部分. V IN = 24V, I LED = 1A, 7个WLEDs 串联, L = 68µH, T A = 25°C, 降压升压应用, 考阅 INGND, 除非另有说明.引脚功能功能方框图图1: 功能框图操作MP24833是一个电流型调节器,误差放大器 (EA) 的输出电压与峰值电感电流成正比。
第1章DC-DC电源转换器/基准电压源DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A降压式开关稳压器L4971高效率单片开关稳压器L4978高效率升压/降压式DC-DC电源转换器L5970降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM2577降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT1956升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT3464升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC1754单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC3426两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC3442同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX1643降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX1800同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX629升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445 100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB1600线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8 非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610负输出低压差线性稳压器MAX1735低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A 144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC6401基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗基准电压源MAX6120精密基准电压源MC1403基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA5311开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN7601型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS01电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx型开关电源功率转换器KA5H0165R型开关电源功率转换器KA5Qxx型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L6590SWITCH TN系列电源功率转换器LNK304/LNK305/LNK306 SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP1230系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB3759SwitchⅠ系列功率转换器TNY253、TNY254、TNY255SwitchⅡ系列功率转换器TNY264P~TNY268GSwitch(Ⅱ)系列离线式功率转换器TOP209~TOP227Switch-FX系列功率转换器TOP232/TOP233/TOP234Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV826场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP1653场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401x接口单节锂电池充电控制器BQ2402x同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN7564线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V通用充电控制器LT1571恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC4002锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC4008锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。
MP23591.2安咅,24伏耐压直流到直流降压转换器TSOT23-装概要MP2359是基于CMO工艺开关内置DC/DC专换器。
内置上端开关的导通电阻为0.35? 供最大为1.2A的电流。
这款芯片由振荡电路、PWM g制电路、内部电压调节器、开关等件用到电感、电阻、二极管、电容,所有这些构成完整的降压DC/DC专换器。
由于MP2359的电流限流模式工作时并不需要检测电阻,所以能高速高效的实现其功能陶瓷电容。
开关频率有内部固定为1.4MH z作为保护功能,备有限制每个周期的尖峰电流功能、输出短路时开关频率限制在原来的能、热关断功能、欠压锁定功能。
(典型值),能提组成,外部器输出电容选择1/4的折回功特点工作电压范围 4.5V~24V内置N型驱动典型值Ron=0.35?输出电压范围外部电阻可调反馈电压................ 尖峰电流限制............ 欠压锁定功能0.8V~15V可设定0.8V± 1.5%误差典型值2.0A开关频率 1.4MHz待机电流典型值0卩A 陶瓷电容可作为输入输出电容芯片引脚排列及功能MO管参数解释适用产品监控摄像机,楼宇对讲等安防产品数字电视,DVD播放器等数字家电打印机,FA)等办公自动化机器便携式通信机器、照相机的恒定电压源使用蓄电池机器的恒定电压源典型应用V IN O—rClIO JL F T25VV OFFfONOinBSTswMP2359EllFB GND6丄CBTIOmFLI47>1HZYW\.R1R2C2V6.3VV OUT3.3V ©1.2A降压型DC/DC专换器的工作原理和输出电流一般的降压DC/DC专换器工作原理。
降压DC/DC专换器在开关管导通时对电感进行充电,在其关断时电感则进行放电,其间的能量损失非常小。
由此我们能得到一个低于输入电压的输出电压。
第一步上端开关导通,电流l L=i i流过,电感L被充入能量,电容G UT同时被充电并提供输出电流l ou。