05刚体地定轴转动习题解答
- 格式:doc
- 大小:302.00 KB
- 文档页数:10
刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。
B 角速度从小到大,角加速度从小到大。
C 角速度从大到小,角加速度从大到小。
D 角速度从大到小,角加速度从小到大。
3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。
(B )n a 、t a 的大小均保持不变。
(C )n a 的大小变化, t a 的大小恒定不变。
(D )n a 的大小恒定不变, t a 的大小变化。
5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
A 只有(1)是正确的。
B (1),(2)正确,(3),(4)错误。
第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。
若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。
简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。
4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
第2章 刚体定轴转动一、选择题1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). v ≈15.2 m /s ,n 2=500 rev /min (2). 62.5 1.67s (3). g / l g / (2l ) (4). 5.0 N ·m (5). 4.0 rad/s (6). 0.25 kg ·m 2(7). Ma 21(8). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(9).()212mRJ mr J ++ω(10). l g /sin 3θω=三、计算题1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 ? =M /J设停止前转数为n ,则转角 ? = 2?n由 J /Mn π==422θβω可得 g R MJ n μωωπ16/342020=π=2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系. 解:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 对滑轮: TR = J ? ②运动学关系: a =R ? ③ 将①、②、③式联立得a =mg / (m +21M )∵ v 0=0,∴ v =at =mgt / (m +21M )3. 为求一半径R =50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m 1=8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间t 1=16 s .再用另一质量m 2=4 kg 的重锤做同样测量,测得下落时间t 2=25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量.解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得 TR -M f =Ja / R ① mg -T =ma ②h =221at ③则将m 1、t 1代入上述方程组,得a 1=2h /21t =0.0156 m / s 2 T 1=m 1 (g -a 1)=78.3 N J =(T 1R -M f )R / a 1 ④ 将m 2、t 2代入①、②、③方程组,得a 2=2h /22t =6.4×10-3 m / s ? T 2=m 2(g -a 2)=39.2 NJ = (T 2R -M f )R / a 2 ⑤由④、⑤两式,得 J =R 2(T 1-T 2) / (a 1-a 2)=1.06×103 kg ·m 24. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为?0.设它所受阻力矩与转动角速度成正比,即M =-k ? (k 为正的常数),求圆盘的角速度从?0变为021ω时所需的时间.解:根据转动定律: ?????????????? ???? J d ? / d t = -k ??????????????????????????????????????????????????∴ t J kd d -=ωω两边积分: ⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J ∴ t =(J ln2) / k5. 某人站在水平转台的中央,与转台一起以恒定的转速n 1转动,他的两手各拿一个质量为m 的砝码,砝码彼此相距l 1 (每一砝码离转轴21l 1),当此人将砝码拉近到距离为l 2时(每一砝码离转轴为21l 2),整个系统转速变为n 2.求在此过程中人所作的功.(假定人在收臂过程中自身对轴的转动惯量的变化可以忽略)解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量:W =?E k =212210222204)21(214)21(21n ml J n ml J π+-π+2这里的J 0是没有砝码时系统的转动惯量. (2) 过程中无外力矩作用,系统的动量矩守恒:2?(J 0+2121ml ) n 1 = 2? (J 0+2221ml ) n 2∴ ()()1222212102n n n l n l m J --=(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 6. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为?),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求 (1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.m v 0R =(21MR 2+mR 2)?(2) 设?表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小 为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)??σgR 3=(2 / 3)?MgR设经过?t 时间圆盘停止转动,则按角动量定理有-M f ??t =0-J ?=-(21MR 2+mR 2)?=- m v 0R∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆ 7.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度?.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为式中?为杆的线密度.碰撞后瞬时,杆对O 点的角动量为 因碰撞前后角动量守恒,所以∴ ? = 6v 0 / (7L)8. 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度?.解:(1) 设摆球与细杆碰撞时速度为v 0,碰后细杆角速度为?,系统角动量守恒 得:J ? = m v 0l由于是弹性碰撞,所以单摆的动能变为细杆的转动动能2202121ωJm=v代入J=231Ml,由上述两式可得M=3m(2) 由机械能守恒式mglm=221v及()θωcos121212-=MglJ并利用(1) 中所求得的关系可得31arccos=θ四研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
运⽤刚体定轴转动定律解题(2)运⽤刚体定轴转动定律解题转动定律描述刚体定轴转动中的瞬时关系,常常⽤来求解⾓加速度,⼀般步骤为:1) 隔离物体:即明确研究对象。
2) 具体分析:分析所选定的定轴刚体的受⼒情况和运动情况,画出受⼒图。
3) 选定坐标:在惯性系中建⽴⼀维坐标,即在转轴上选择正⽅向。
4) 建⽴⽅程:⽤转动定律列出定轴刚体的运动微分⽅程。
5) 要特别注意⽅程中的⼒矩、转动惯量必须对同⼀轴⽽⾔。
还要注意此⽅程是标量式,式中各量均为代数量,与所选正⽅向同向的⼒矩和⾓速度为正,反之为负。
6) 求解讨论:求解⽅程,理解和讨论结果的物理意义。
请注意常常与转动定律相联系的综合性问题:与刚体定轴转动或质点圆周运动的运动学问题相联系。
刚体定轴转动与质点平动相联系(例如滑轮两边悬挂物体)。
处理⽅法仍然是隔离法,对定轴刚体⽤转动定律列⽅程,对平动质点⽤⽜顿第⼆定律列⽅程,⼆者之间⽤⾓量与线量的关系联系起来,求解⽅程组。
运⽤⾓动量定理或⾓动量守恒定律解题因为对定轴转动的刚体,其总动量往往并⽆实际意义(例如定轴转动滑轮的总动量为零),所以只能⽤⾓动量对其整体机械运动量进⾏量度。
在⼒矩持续作⽤⼀段时间的问题中,则⽤⾓动量定理取代平动问题中的动量定理。
对于平动质点和定轴刚体组成的系统,既可以对于系统整体运⽤⾓动量定理,也可以分别对平动质点运⽤动量定理,对定轴刚体运⽤⾓动量定理,再⽤⼒矩表达式将⼆者联系起来。
运⽤⾓动量定理或⾓动量守恒定律解题的⼀般步骤与运⽤动量定理或动量守恒定律求解平动问题类似,只不过⽤⾓量取代相应的线量:1. 选系统:即确定研究对象。
2. 建坐标:选取惯性系,确定参考点或转轴。
3. 选过程:即选取⼀定的时间间隔,确定系统的初、末态。
对于综合性问题,可以划分为⼏个互相衔接的阶段处理。
4. 算⼒矩:画出对所选定的参考点或转轴⼒矩不为零的外⼒,⽆须分析系统内⼒和对参考点或转轴⼒矩为零的外⼒。
5. 列⽅程:如果不满⾜⾓动量守恒条件,运⽤⾓动量定理列⽅程:对固定点:对定轴:如果满⾜⾓动量守恒条件,运⽤⾓动量守恒定律列⽅程:对固定点:对定轴:6. 求解并讨论:求解⽅程,理解和讨论结果的物理意义。
刚体定轴转动习题刚体定轴转动一、选择题(每题3分)1、个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的( )(A)机械能守恒,角动量守恒; (B)机械能守恒,角动量不守恒,(C)机械能不守恒,角动量守恒; (D)机械能不守恒,角动量不守恒.2、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为()(A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定3、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作用在定轴转动刚体上的力越大,刚体转动的角加速度越大。
(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大。
(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大。
(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零。
5、一质量为m的均质杆长为l,绕铅直轴o o'成θ角转动,其转动惯量为()6、一物体正在绕固定光滑轴自由转动( )(A) 它受热膨胀或遇冷收缩时,角速度不变. (B) 它受热时角速度变小,它遇冷时角速度变大. (C)它受热或遇冷时,角速度均变大.(D) 它受热时角速度变大,它遇冷时角速度变小.7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关. (C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为J A 和J B ,则( )(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个大,不能确定9、某转轮直径d =40cm ,以角量表示的运动方程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均角加速度为( )(A)212-⋅s rad (B)26-⋅s rad(C)218-⋅s rad (C)212-⋅s m10、 轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m的均质辐条固定在轮心和轮缘间,辐条共有2N 根。
第四章 刚体的转动 问题与习题解答问题:4-2、4-5、4-94-2如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?答:一个刚体所受合外力为零,其合力矩不一定为零,如图a 所示。
刚体所受合外力矩为零,其合外力不一定为零,例如图b 所示情形。
4-5为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能的改变只与外力矩有关,而与内力矩无关?答:因为合外力对质点所作的功,等于质点动能的增量;而质点系中内力一般也做功,故内力对质点系的动能的增量有贡献。
而在刚体作定轴转动时,任何一对内力对转轴的力矩皆为一对大小相等、方向相反的力矩,且因定轴转动时刚体转过的角度d θ都一样,故其一对内力矩所作的功()0inij ij ji ij ji W M d M d M M d θθθ=+=+=,其内力功总和也为零,因而根据刚体定轴转动的动能定理可知:内力矩对其转动动能的增量无贡献。
4-9一人坐在角速度为0ω的转台上,手持一个旋转的飞轮,其转轴垂直地面,角速度为ω'。
如果突然使飞轮的转轴倒转,将会发生什么情况?设转台和人的转动惯量为J ,飞轮的转动惯量为J '。
答:(假设人坐在转台中央,且飞轮的转轴与转台的转轴重合)视转台、人和飞轮为同一系统。
(1)如开始时飞轮的转向与转台相同,则系统相对于中心轴的角动量为:10L J J ωω''=+飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的角动量为:21L J J ωω''=-在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''-=+即 102J Jωωω''=+,转台的转速变大了。
(2)如开始时飞轮的转向与转台相反,则系统相对于中心轴的角动量为:10L J J ωω''=-飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的F 1F 3ab角动量为:21L J J ωω''=+在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''+=-即 102J Jωωω''=-,转台的转速变慢了。
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。
若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。
简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。
4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
五、刚体绕定轴的转动(一)一,学时安排6学时(习题课1学时)二,教学要求:(重点难点)1,理解角位移角速度等概念2,理解力矩和转动惯量概念以及刚体定轴转动时的动力学规律-转动定律并熟练地应用3,理解角动量和冲量距概念以及角动量原理和角动量守恒定律,并会具体应用。
4,掌握刚体定轴转动的动能原理,并会具体应用。
三,教学参考书1杨中耆著《大学物理》力学部分2Berkeley Physics couse V ol 13University Physics part 1说明:授课中将第四节质点的角动量与角动量守恒放在第五节刚体绕定轴的转动中,以便与刚体的角动量相比较,突出它们的共性。
前言本章前四个问题讨论的是物体平动的情况,力学中,在一般情况下,一个物体的运动包含平动、转动、振动等是很复杂的,一物体在平动时,若把物体看成是一刚体(无形变)物体上每一点的运动情况都是一样的,无需考虑物体的形状,大小如何。
故物体可抽象为一质点,其运动情况如前面所述。
但在转动中,例飞轮高速旋转时,其上的各点运动情况各不相同,因而不能简化为质点。
与前面内容相比,发生了几点变化:一是主要研究对象变了,由质点变为刚体。
二是主要研究的问题也变了,由平动变为转动。
从物体来说,必须考虑它的形状,大小。
但忽略形状大小的改变;从运动来说突出了转动,暂时忽略振动或其他运动。
若将刚体分成许多细微部分,并把每一细微部分看成一个质点,那么刚体可以看成是有无数质点构成的质点组,这个质点组与前面我们所讨论的质点组是有区别的,刚体视为质点组其特征是:构成刚体的任意二质点间的距离,在运动中恒定不变,这种看法使我们有可能在质点动力学的基础上来研究刚体情况。
1、刚体绕定轴转动的运动特征:刚体中某一直线上的点保持不动(对固定参考系而言),其它各点都以该点直线上的相应点为圆心,在垂直于该点的平面内作大小不同的圆周运动。
该直线为转轴,这种运动称刚体绕定轴的转动。
刚体绕定轴的转动有三个特点:① 刚体上各质点都在各自的平面内作半径不同的圆周运动。
2 刚体定轴转动转动惯量1. 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. 答案:(C ) 参考解答:首先明确转动惯量的物理意义,从转动定律与牛顿第二定律的对称关系可以看出,与质量m 是平动惯性大小的量度相对应,转动惯量I 则是刚体转动惯性大小的量度。
从转动惯量的的公式∑=∆=ni i i r m I 12可以看出,其大小除了与刚体的形状、大小和质量分布有关外,还与转轴的位置有关。
凡选择回答错误的,均给出下面的进一步讨论:1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
参考解答:不能.因为刚体的转动惯量∑∆i i m r 2与各质量元和它们对转轴的距离有关.如一匀质圆盘对过其中心且垂直盘面轴的转动惯量为221mR ,若按质量全部集中于质心计算,则对同一轴的转动惯量为零.2. 一刚体由匀质细杆和匀质球体两部分构成,杆在球体直径的延长线上,如图所示.球体的半径为R ,杆长为2R ,杆和球体的质量均为m .若杆对通过其中点O 1,与杆垂直的轴的转动惯量为J 1,球体对通过球心O 2的转动惯量为J 2,则整个刚体对通过杆与球体的固结点O 且与杆垂直的轴的转动惯量为 (A) J =J 1+J 2. (B) J =mR 2+mR 2.(C) J =(J 1+mR 2)+(J 2+mR 2).(D) J =[J 1+m (2R )2]+[J 2+m (2R )2]. 答案:(C) 参考解答:根据转动惯量具有叠加性,则整个刚体对通过杆与球体的固结点0且与杆垂直的轴的转动惯量为细杆和球体分别对该轴转动惯量之合。
欢迎阅读页脚内容刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是 [ C ] (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B )取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C(D 2、(本题静止开的? [ A ](A (B (C (D 3. (A ) (B ) (C )页脚内容(D ) 它受热时角速度变小,遇冷时角速度变大. 4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题设A (A )βA (C )βA 6、(本题(A (B (C (D 7、(本题现有一个小球自左方水平打击细杆,设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统[ C ](A)只有机械能守恒。
(B)只有动量守恒。
(C)只有对转轴O的角动量守恒。
(D)机械能、动量和角动量均守量。
8、(本题3分)0677一块方板,可以绕通过其一个水平边的光滑固定转轴自由转动,最初板自由下垂,今有一小团粘土,(A9、(本题(A)ω(C)ω10、ω[ C ](A(C)减少(D)不能确定11、(本题3分)0133如图所示,一静止的均匀细棒,长为 ,质量为M,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为1/2 ML2,一质量为m,速率为v的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为 V,则此时棒的角速度应为 [B ](A(312、中心(A(C13、(A(B(C14、页脚内容有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心。