当前位置:文档之家› 矩阵的左逆与右逆

矩阵的左逆与右逆

矩阵的左逆与右逆
矩阵的左逆与右逆

第二专题 广义逆矩阵

广义逆矩阵是E.H.Moore 于1920年首次提出来的,1955年R.Penrose 利用矩阵方程组给出它更为明确简便的定义。其后,广义逆矩阵在理论和应用方面都得到了迅速的发展。它在微分积分方程、数理统计、最优化、测量学等应用科学中发挥了重要作用,更是研究最小二乘等问题不可缺少的工具。为此,我们从线性方程组m n n m b x A =?的解开始讨论(n m >称为超定方程;n m <称为亚定方程)。

若存在向量x ,使b Ax =成立,则称线性方程组为相容方程组,否则称为不相容方程或矛盾方程。对于相容方程组,若A 是列满秩的,则有唯一解;否则有无穷多解

{}-=A A 1。我们要找到唯一的极小范数解{}-=m A A 4,1。对于

矛盾方程我们要找到它的近似解——最小二乘解{}-=l A A 3,1;如果最小二乘解不唯一,我们要找到唯一的

最小二乘解,称为最佳的最小二乘解(或极小范数最小二乘解,或最佳逼近解),{}+=A A 4,3,2,1。

§1 矩阵的左逆与右逆

设A 是n 阶矩阵,A 可逆当且仅当存在n 阶矩阵B ,使得

I BA AB ==

当A 可逆时,其逆唯一,记为1-A .

下面,我们把方阵的逆矩阵概念推广到n m ?矩阵上,定义一种单侧逆.

一、满秩矩阵与单侧逆

定义1 设n m R A ?∈,若存在矩阵m n R B ?∈,使得

n I BA =

则称A 是左可逆的,称B 为A 的一个左逆矩阵,记为1-L A .

若存在矩阵m n R C ?∈,使得

m I AC =

则称A 是右可逆的,称C 为A 的一个右逆矩阵,记为1-R A .

下面给出矩阵左逆与右逆的几个等价条件.

定理1 设n m R A ?∈,则下列条件是等价的:

(1)A 是左可逆的; (2)A 的零空间{}0)(=A N ;

(3)n A R n m =≥)(,,即A 是列满秩的;(4)A A T 是可逆的. 证明

)2()1(?,设A 是左可逆的,则存在m n R B ?∈,使得

n I BA =,),(A N x ∈? 0=Ax ,于是00====B BAx x I x n ,即证A 的解空间{}0)(=A N .

)3()2(?,由{}0)(=A N ,再根据线性方程组解的理论知,n A N n A R =-=)(dim )(,从而A 是列满秩的,当然有n m ≥.

)4()3(?,设n A R =)(,由n A R A A A T ===)()(dim )](dim[μμ,知A A T 是可逆的.

)1()4(?,由A A T 可逆,得n T T I A A A A =-1)(知T

T A A A 1)(-是A 的一个左逆矩阵,即T T L

A A A A 11)(--=。 注:左逆的一般表达式为:

U A UA A A T T L 11)(--=

其中U 是使关系式)()(A rank UA A rank T =成立的任意m 阶方阵。

定理2 设n m R A ?∈,则下列条件是等价的:

(1)A 是右可逆的; (2)A 的列空间m R A =)(μ;

(3)m A R n m =≤)(,,即A 是行满秩的;(4)T AA 是可逆的。 其证明留给读者.

)3()1(?,由m A rank AB rank I rank m m ≤≤==)()()(得n m ≤,m A R =)(,A 是行满秩的;由m T T I AA AA =-1)(,知

1)(-T T AA A 是A 的一个右逆矩阵,即11)(--=T T R AA A A 。

注:右逆的一般表达式为:

11)(--=T T R AVA VA A

其中V 满足)()(A rank AVA rank T =。

例1 矩阵???

? ??=050004A 是右可逆的,不是左可逆的。由于

???? ??=????? ?????? ??=10015/1004/10500043231

R R A 注意到右逆最后一行元素是完全任意的,故存在无穷多个右逆矩阵。

一般地,一个矩阵左可逆未必右可逆,而且右逆矩阵和左逆矩阵都不是唯一的。若同时左可逆和右可逆,则此矩阵存在正则逆。

二、单侧逆与解线性方程组

定理3 设n m R A ?∈是左可逆的,m n R B ?∈是A 的一个左逆矩阵,则线性方程组b AX =有形如Bb X =解的充要条件

0)(=-b AB I m

若上式成立,则方程组有唯一解

b A A A X T T 1)(-=

证明

设方程组b AX =有解0X ,则ABb X BA A AX b ===00)(,从而0)(=-b AB I m .反过来,若0)(=-b AB I m ,则b ABb =,从而Bb X =0是方程组的解.

当方程组有解时,因为A 左逆,所以n A R =)(,从而方程组b AX =有唯一解.由T A A A 1T )(-是A 的一个左逆矩阵,所以b A A A AX A A A X T T 1T 1T )()(--==,即b A A A X T 1T )(-=为b AX =的唯一解。

注:虽然左逆矩阵不唯一,但方程的解唯一。 定理4 设n m R A ?∈是右可逆的,则线性方程组b AX =对

任何m R b ∈都有解。 且对A 的任意一个右逆矩阵1-R A ,

b A X R 1-=是其解。 特别地,b AA A X T T 1)(-=是方程组b AX =的一个解。

证明

因A 右可逆,则m R I AA =-1,对任何m R b ∈,都有

b b I b AA m R ==-1,

即b A X R

1-=是方程组b AX =的解。 事实上,矩阵的左逆(或右逆)矩阵还是矩阵的减号逆,自反减号逆,最小范数广义逆,最小二乘广义逆和加号逆。

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快 捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩 阵中的位置。比如,或表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对 角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称 为单位矩阵,记为,即:。如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如, 是一个阶下三角矩阵,而则是一个阶上三角矩阵。今后我们用表示数域上的矩阵构成

逆矩阵的几种常见求法

逆矩阵的几种常见求法 潘风岭 摘 要 本文给出了在矩阵可逆的条件下求逆矩阵的几种常见方法,并对每种方法做了具体的分析和评价,最后对几种方法进行了综合分析和比较. 关键词 初等矩阵; 可逆矩阵 ; 矩阵的秩; 伴随矩阵; 初等变换. 1. 相关知识 1.1 定义1 设A 是数域P 上的一个n 级方阵,如果存在P 上的一个n 级方阵B ,使得AB=BA=E,则称A 是可逆的,又称A 是B 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 唯一确定,记为1-A . 定义2 设()ij n n A a ?=,由元素ij a 的代数余子式ij A 构成的矩阵 11 2111222212n n n n nn A A A A A A A A A ?? ? ? ? ??? 称为A 的伴随矩阵,记为A *. 伴随矩阵有以下重要性质 AA *= A *A=A E. 注:注意伴随矩阵中的元素ij A 的排列顺序. 1.2 哈密尔顿-凯莱定理

设A 是数域P 上的一个n n ?矩阵,f A λλ=E-()是A 的特征多项式, 则 11122()10n n n nn f A A a a a A A E -=-++ ++ +-=()() (证明参见[1]) . 1.3 矩阵A 可逆的充要条件 1.3.1 n 级矩阵A 可逆的充分必要条件是A 0≠(也即()rank A n =); 1.3.2 n 级矩阵A 可逆的充分必要条件是A 可写成一些初等矩阵的乘积(证明参见[1]); 1.3.3 n 级矩阵A 可逆的充分必要条件是A 可以通过初等变换(特别只通过初等行或列变换)化为n 级单位阵(证明参见[1]); 1.3.4 n 级矩阵A 可逆的充分必要条件是存在一个n 级方阵B ,使得AB=E (或BA=E ); 1.3.5 n 级矩阵A 可逆的充分必要条件是A 的n 个特征值全不为0;(证明参见[2]); 1.3.6 定理 对一个s n ?矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s s ?初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n n ?初等矩阵.(证明参见[1]) 2.矩阵的求逆 2.1 利用定义求逆矩阵 对于n 级方阵A ,若存在n 级方阵B ,使AB=BA=E ,则1B A -=.

行列式跟矩阵的关系

行列式跟矩阵的关系 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 矩阵由数组成,或更一般的,由某元素组成。就是m×n 矩阵就是mn个数排成m个横行n个竖列的阵式。n×n矩阵的行列式是通过一个定义,得到跟这个矩阵对应的一个数,具体定义可以去看书。注意,矩阵是一个阵式,方阵的行列式是跟一个方阵对应一个数。行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。 也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数 研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素 在矩阵中的位置。比如,或表示一个 矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称 为付对角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即:。如一个阶

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

矩阵及逆矩阵的求法

矩阵的可逆性与逆矩阵的求法 目录 摘要 (1) 第1章.矩阵 (2) 1.1矩阵的定义 (2) 1.2矩阵的运算 (2) 第2章.矩阵的可逆性及逆矩阵 (5) 2.1矩阵的基本概念 (5) 2.2矩阵可逆的判断方法 (6) 2.3矩阵可逆性的求法 (10) 第3章.逆矩阵的拓展 (17) 3.1广义逆矩阵的引入 (17) 3.2广义逆矩阵的定义及存在 (17) 第4章.总结 (21) 参考文献 (22) 致谢 (23) 附件:论文英文简介

矩阵的可逆性与逆矩阵的求法 [摘要]:矩阵理论是现代代数学的重要分支理论之一,它也为现代科技及现代经济理论研究提供不可或缺的数学支持。在线性代数研究中引入矩阵的目的之一就是为了研究线性方程组B AX 求解及更一般的矩阵方程求解提供数学工具,其中矩阵的可逆性及逆矩阵的求法是最主要的内容。本文从矩阵的基本概念及运算入手,主要探讨和归纳矩阵可逆性的四种判定方法和求逆矩阵的五种方法,并引进Matlab这一数学软件求逆矩阵的程序,同时关注广义逆矩阵意义及求法。 [关键词]:矩阵可逆性逆矩阵广义逆求法

矩阵可逆性的判断和可逆矩阵的求法是矩阵理论学习的重点与难点,也是研究矩阵性质及运算中必不可少的一部分。本文在分析和归纳判断矩阵的可逆性和逆矩阵的求法,给出了四种判断矩阵可逆的方法,其中有初等矩阵的应用,有行列式的应用,还有向量的线性无关和线性方程组的应用。逆矩阵的求法给出了五种方法:分别是行变换、列变换、伴随矩阵、分块矩阵法以及Matlab 软件的解法,同时也讨论了广义逆矩阵的求法。对矩阵可逆性的判断与逆矩阵的求法将会给矩阵的学习带来很大的帮助。 第1章 矩 阵 1.1矩阵的定义 定义1 由st 个数ij c 排成一个s 行t 列的表 ???? ?? ? ??st s s t t c c c c c c c c c 2 1 2222111211 叫作一个s 行t 列(或t s ?)矩阵,ij c 叫作这个矩阵的元素。 定义2 矩阵的行(列)初等变换指的是对一个矩阵施行的下列变换: )(i 交换矩阵的两行(列); )(ii 用一个不等于零的数乘矩阵的某一行(列),即用一个不等于零的数乘矩阵的某一行(列)的元素; )(iii 用某一数乘矩阵的某一行(列)后加到另一行(列),即用某一数乘矩阵的某一行(列)的每一元素后加到另一行(列)的对应元素上。 矩阵的初等变换在线性方程组求解,求矩阵的秩及求矩阵的逆矩阵方面都有重要的作用。 1.2矩阵运算 定义1 数域F 的数a 与F 上一个n m ?矩阵)(ij a A =的乘积aA 指的是n m ?矩阵 )(ij aa ,求数与矩阵的乘积的运算叫作数与矩阵的乘法。 定义2 两个n m ?矩阵)(),(ij ij b B a A ==的和B A +指的是n m ?矩阵)(ij ij b a +,求两

逆矩阵的几种求法与解析

逆矩阵的几种求法与解 析 -CAL-FENGHAI.-(YICAI)-Company One1

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A K = 0, 那么E-A 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例 苏红杏 广西民院计信学院00数本(二)班 [摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面 的读者参考。 [关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等 引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。为此,我介绍下面几种求逆矩阵的方法,供大家参考。 定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法 一. 初等变换法(加边法) 我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。即,必有一系列初等矩阵 m Q Q Q 21使 E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2) 把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成 11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。 例 1 . 设A= ???? ? ??-012411210 求1-A 。 解:由(3)式初等行变换逐步得到: ????? ??-100012010411001210→ ????? ??-100012001210010411 →???? ? ??----123200124010112001→

二、二阶行列式与逆矩阵

二阶行列式与逆矩阵 【学习目标】了解二阶行列式的定义,掌握二阶行列式的计算方法,运用行列式求逆矩阵; 【教材解读】 一、 行列式与矩阵 1. 行列式:我们把a b A c d ??=????两边的“??????”改为“”,于是,我们把a b c d 称为二阶行列式,并称它为矩阵a b A c d ??=???? 2. 3. 矩阵与行列式的区别:矩阵a b A c d ??= ???? 表示一个数表,而行列式a b A c d =是一个数值. 二、 利用行列式求逆矩阵 设a b A c d ??= ???? ,记||a b A ad bc c d ==-.则 1. 矩阵 A 2. 当0A ≠时,1||||||||d b d b A A ad bc ad bc A c a c a A A ad bc ad bc --??-??????--??==??--????????--?? ?? 【典例剖析】 例1. 设4112A -??= ????,判断A 是否是可逆矩阵,若可逆,求出1A -. 例2. 判断下列矩阵是否可逆?若可逆,求出逆矩阵 (1) 1111A -??= ???? (2)101b B ??=???? (3)1111A ??=???? 例3. 已知矩阵234b A ??= ???? 可逆,求实数b 的范围.

【自我评价】 1. 展开下列行列式,并化简 (1)10937-- (2)121m m m m +++ (3)5779 2. 矩阵00a d 可逆的条件为 . 3. 行列式(,,,{1,1,2})a b a b c d c d ∈-的所有可能值中,最大的是 . 4. 若点(2,2)A 在矩阵cos sin sin cos M αααα-??=????对应变换的作用下得到的点为(2,2)B -,求矩阵M 的逆矩阵.

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且 (E-A)1-= E + A + A2+…+A1-K 证明因为E 与A 可以交换, 所以 (E- A )(E+A + A2+…+ A1-K)= E-A K, 因A K= 0 ,于是得 (E-A)(E+A+A2+…+A1-K)=E, 同理可得(E + A + A2+…+A1-K)(E-A)=E, 因此E-A是可逆矩阵,且 (E-A)1-= E + A + A2+…+A1-K. 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A2+…+(-1)1-K A1-K. 由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.

例2 设 A =? ? ?? ? ???? ???000030000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证 A 2=???? ????? ???0000 000060000200, A 3=? ? ?? ? ? ? ?? ???0000 0000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3 =? ? ?? ? ???? ???1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.

第四讲矩阵的运算和逆矩阵

§2.2 矩阵的运算 1.矩阵的加法定义:设有两个n m ?矩阵)(),(ij ij b B a A ==,那么矩阵A 与B 的和记作A +B ,规定为 n m ij ij b a B A ?+=+)( 设矩阵)(),(ij ij a A a A -=-=记,A -称为矩阵A 的负矩阵.显然有 0)(=-+A A . 规定矩阵的减法为)(B A B A -+=-. 2.数与矩阵相乘定义:数λ与矩阵)(ij a A =的乘积记作A λ,规定为n m ij a A ?=)(λλ 由数λ与矩阵A 的每一个元素相乘。 数乘矩阵满足下列运算规律(设B A ,为同型矩阵,μλ,为数): )(i )()(A A μλλμ= )(ii A A A μλμλ+=+)( )(iii B A B A λλλ+=+)( 3.矩阵与矩阵相乘定义:设)(ij a A =是一个s m ?矩阵,)(ij b B =是一个n s ?矩 那么规定矩阵A 与矩阵B 的乘积是一个n m ?矩阵)(ij c C =,其中),,2,1;,,2,1(,12211n j m i b a b a b a b a c kj s k ik sj is j i j i ij ===+++=∑= 并把此乘积记作AB C =,两矩阵相乘,要求左边距阵的列等于右边矩阵的行,乘积的矩阵的行与左边的行相同,列与右边的列相同。 例3:求矩阵???? ? ??-=???? ??-=043211,012301B A 的乘积BA AB 及. 解 ???? ? ??--=???? ??--=1204638311,50113BA AB 从本例可以看出AB 不一定等于BA ,即矩阵乘法不满足交换律

逆矩阵的几种求法与解析(很全很经典)

E-A) 1= E + A + 2 K1 + … +A (E- A )(E+A + A 2+…+ A K 1)= E-A K (E-A) (E+A+A 2 + …+A K 1)=E, 逆矩阵的几种求法与解析 矩阵是线性代数的主要内容 ,很多实际问题用矩阵的思想去解既简单又快捷 .逆矩阵又是矩阵理论的很重要的内容 , 逆矩阵的求法自然也就成为线性代数研究的主要内容之一 .本文将给出几种求逆矩阵的方法 . 1. 利用定义求逆矩阵 定义:设A、B都是n阶方阵,如果存在n阶方阵B使得AB= BA = E,则称A 为可逆矩阵,而称B为A的逆矩阵.下面举例说明这种方法的应用. 例1 求证:如果方阵A满足A k= 0,那么EA是可逆矩阵,且 证明因为E与A可以交换,所以 因A K= 0 ,于是得 同理可得( E + A + A 2 + … +A K 1 )(E-A)=E , 因此E-A是可逆矩阵,且 (E-A) 1 = E + A + A 2 +…+A K 1 同理可以证明 (E+ A) 也可逆,且

E-A 的逆矩阵. (E+ A) 1 = E -A + A 2+…+ (-1 ) K1A K1 . 由此可知,只要满足A K =0,就可以利用此题求出一类矩阵E A 的逆矩阵. 例2 设 A = 00 20 00 03 ,求 0003 0000 分析 由于A 中有许多元素为零,考虑A K 是否为零矩阵,若为零矩阵,则可以 采用例2的方法求E-A 的逆矩阵. 解 容易验证 00 2 0 0 0 0 6 2 00 0 6 3 0 0 0 0 4 A 2 = ■ A 3= , A 4 =0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 而 (E-A)(E+A+ A 2 + A 3 )=E , 所以 1 1 2 6 1 2 3 0 1 2 6 (E-A) E+A+ A 2 + A . 0 0 1 3 0 0 0 1 2. 初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法 ?如果A 可逆,则A 可通过 初等变换,化为单位矩阵I ,即存在初等矩阵R,P 2 , P S 使 (1) p 1 p 2 p s A=I ,用 A 1 右乘上式两端,得: (2) p 1 p 2 p s I= A 1 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单 位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1. 用矩阵表示( A I ) 为( I A 1 ),就是求逆矩阵的初等行变换法, 它是实际应用中比较简单的一种方法 .需要注意的是,在作初等变换时只允许作行初 等

逆矩阵的几种求法与解析

逆矩阵的几种求法与解析

————————————————————————————————作者:————————————————————————————————日期:

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A K = 0, 那么E-A 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A1-K 证明 因为E 与A 可以交换, 所以 (E - A )(E+A + A 2+…+ A1-K )= E-A K , 因AK = 0 ,于是得 (E-A)(E+A+A 2+…+A1-K )=E, 同理可得(E + A + A2+…+A 1-K )(E -A)=E, 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E + A )也可逆,且 (E+ A )1-= E -A + A 2+…+(-1)1-K A1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010 ,求 E -A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

行列式与矩阵求逆练习综述

第二章行列式与矩阵求逆练习班级: 姓名: 学号 : 一、计算下列行列式: 1.600 300301395200199204 100103= 20000 315214 131000300152001410032 12 32=--=--=--c c c c 解:原式 2.1 2 4 99102201112-= 31 241211 121 241121

12100124121112124110021001200112-==-+=+-++=解:原式 二、确定下列排列的逆序数,并指出是偶排列还是奇排列? 1. 53214 解:逆序数t=7,为奇排列。 2. 18273645 解:逆序数t=12,为偶排列。 三、在6阶行列式中,256651144332651456423321a a a a a a a a a a a a , 这两项应带有什么符 号? 解: ,带正号。 ,逆序数为,带负号; 逆序数为85,665143322514256651144332655642332114651456423321a a a a a a a a a a a a a a a a a a a a a a a a == 四、利用行列式的定义证明: 5 66 000000000000002000230 023402345x x x x x x =-- . 1054321666116651423324155

66 51423324156543216 54321===-==-===-=-=∑t t a x a x a x a x a x a x a a a a a a a a a a a a t j j j j j j t 的逆序数,为排列,,,,,其中((解:由定义,左式 五、利用行列式的性质计算下列各行列式: 1. 216 4 72954 1732152 ----- 90 123 116 2110 01 23011602 12 1523

二阶行列式与逆矩阵

二阶行列式与逆矩阵 教学目标 1. 了解行列式的概念; 2.会用二阶行列式求逆矩阵。 教学重点及难点 用行列式求逆矩阵。 教学过程 一、复习引入 (1)逆矩阵的概念。 (2)逆矩阵的性质。 二、新课讲解. 例1 设A= ???43 ?? ?21, 问A 是否可逆?如果可逆,求其逆矩阵。 例2设A= ???43 ?? ?21,问A 是否可逆?如果可逆,求其逆矩阵。 思考:对于一般的二阶矩阵A=? ??b a ?? ?d c ,是否有:当0≠-bc ad 时,A 可逆;当0=-bc ad 时,A 不可逆?

结论:如果矩阵A=? ?? b a ?? ?d c 是可逆的,则0≠-bc ad 。 表达式 bc ad -称为二阶行列式,记作 c a d b ,即 c a d b =b c a d -。ad bc -也称为行列式a b c d 的展开式。符号记为:detA 或|A| ① 反之,当 ≠-bc ad 时,有 ??? ?? ?-A c det det A d ?? ?? ? ? det A a det A b -?? ?b a ?? ?d c = ?? ?b a ?? ?d c ?? ? ???-A c det det A d ? ??? ??det A a det A b -=1001?? ? ??? 。 【可逆矩阵的充要条件】 定理:二阶矩阵A=? ?? b a ?? ?d c 可逆,当且仅当0≠-bc ad 。 当矩阵A=? ?? b a ?? ?d c 可逆时,1-A =?? ? ???-A c det det A d ? ??? ??det A a det A b -。 1.计算二阶行列式: ① 31 42 ② 2 2 1 3 λλ-- 2.判断下列二阶矩阵是否可逆,若可逆,求出逆矩阵。 ①A =0110?? ?-?? ②B =1100?? ??? 三、课堂小结

证明行列式和矩阵等于零的几种经典方法

前言: 一、线代的特点: 1、内容抽象 2、概念多 3、符号多 4、计算原理简单但计算量大 5、证明简洁但技巧性强 6、应用广泛 二、学习中要注意的问题 1、不要急于求成,不要急于做难题。要分层次,扎扎实实的学习 2、熟练掌握基本内容。 基本概念(定义、符号) 基本结论(定理、公式) 基本计算(计算行列式、解线性方程组、求逆矩阵等) 基本证明和推理方法 3、自己动手推证书中的每个结果 尽量体会结论、证明的思想方法 用自己喜欢的方式写出简要总结 4、贯穿前后,注意发现线代课内容的重要规律。 提出问题的规律(存在、个数、结构、求法) 变换和标准形式(如行列式和上三角行列式) 问题相互转化 5、要多与同学讨论,虚心向别人请教问题。要经常提出问题,思考问题,乐于同别人交流 该方法引至李永乐老师的讲义,由KJ1234CN整理 一、行列式等于零的证明方法 例题1:A^2=A,A≠E,证明|A|=0(复习全书理工类P364例1.35) 由于书上已经有详尽的解题方法(四种),KJ不再复述,KJ在此只强调证法二 在这里有一种常见的错误解法 由A^2=A,有A(A-E)=0,∵A≠E∴(A-E)≠0,∴A=0 ∴|A|=0 其错误在于没有搞清楚矩阵的运算规则,AB=0,若B≠0不能推出A=0。 例如 [1 1][ 1 1] [1 1][-1 -1]=0,但是A、B都不等于0 (KJ废话:该种方法由错误的方法解出了正确的答案,很多人在做题过程中经常只对答案而不管过程,考试的时候也使用他用过的错误的方法,结果出来的分数与他估计的相去甚远,其原因我想也就在与此!他们没有细细体味书上的解题过程,也没有反省自己的解题方法与书上的不同之处。KJ奉劝大家,在看书时,对于例题一定要先做后看,并对和书上的不同的解题方法细细体会,辨别对错) 二、矩阵等于零的证明方法 例题2:A是m*n的矩阵,B是n*p的矩阵,R(B)=n。证明当AB=0时,A=0 证法一:<方法>矩阵的秩等于0,则矩阵等于0

矩阵与行列式

第一章 矩阵与行列式 释疑解惑 1. 关于矩阵的概念:最难理解的是:矩阵它是一个“数表”,应当整体地去看它,不要与行列式实际上仅是一个用特殊形式定义的数的概念相混淆;只有这样,才不会 把用中括号或小括号所表示的矩阵如a c b d ?? ??? 写成两边各划一竖线的行列式如a c b d ,或把 行列式写成矩阵等。还要注意,矩阵可有(1)m ≥行和(1)n ≥列,不一定m n =;但行列式只有n 行n 列。n 阶行列式是2 n 个数(元素)按特定法则对应的一个值,它可看成n 阶方 阵 111212122212n n n n nn a a a a a a A a a a ????? ?=???????? 的所有元素保持原位置而将两边的括号换成两竖线时由行列式定义确定的一个新的对象:特 定的一个数值, det A 、A 或n D ,即 111 det n ij k k k A A a a A ==== ∑ (如二阶方阵 a d A b c ??= ???所对应的行列式是这样一个新的对象: a d ac bd b c =-)。也正 因为于此,必须注意二者的本质区别,如当A 为n 阶方阵时,不可把A λ与A λ等同起来, 而是 n A A λλ =,等等。 2. 关于矩阵的运算:矩阵的加(减)法只对同形矩阵有意义;数λ乘矩阵 m n A ?是用数λ乘矩阵m n A ?中每一个元素得到的新的m n ?矩阵;二矩阵相乘与前述这两种 线性运算有着实质上的不同,它不仅要求左矩阵的列数等于右矩阵的行数,而且积的元素有其特定的算法(即所谓行乘列),乘法的性质与前者的性质更有质的不同(如交换律与消去律不成立),对此要特别加以注意,也不要与数的乘法的性质相混淆。 3. 关于逆阵:逆阵是由线性变换引入的,它可只由AB E =来定义(A 与B 互为逆阵),这是应用的基础。要记住方阵可逆的充要条件为 A ≠以及关系式 * A A A E =,二者有着重要与广泛的应用。要弄清A 的伴随方阵是矩阵()ij A a =的各元素 代数余子式为元素的矩阵的转置,否则会出错。要会用两种方法求逆阵,从而会用逆阵求解线性方程组及各种矩阵方程。 4. 关于矩阵的初等变换:首先要懂得矩阵的三种初等变换的算法,明白一个矩阵经过一次初等变换并非完全不变,变换前后的矩阵间只是一种特殊的所谓等价关系(如(,)~E i j A A ,而不是(,),E i j A A =等等)。还要能将行列式性质中提公因子、交换两 行(列)与用常数乘某行(列)加到另一行(列)上去后的结果弄清楚,并可与相应方阵的初等变换进行对比。重要的是知道初等变换不改变矩阵的秩。 5. 关于矩阵的秩:矩阵的秩是由解线性方程组引入的一个新概念,对它要逐步加深理解。为此,首先应弄清什么是矩阵的行阶梯形:其一个“台阶”(非零行)只有一行,即任一行的首非零元素下面(同列)的元素全为零,不能把两行的首非零元素位于同一列视为一个“台阶”,而全为零的一行也是一个台阶,且要位于非零行下方。这里,要求会用矩阵的行初等变换法和计算子式法两种方法求可逆方阵的逆阵。

行列式和矩阵从概念到运算的联系与区别 江兵兵

行列式与矩阵从概念到运算的联系与区别 江兵兵 (天水师范学院数学与统计学院甘肃天水74100) 摘要:行列式与矩阵是两个相对独立的基本理论结果,是两个完全不同的概念, 那么它们之间有着怎样的联系与区别,本文通过详细举例论证对行列式与矩阵从其概念的定义到有关运算方面的联系与区别做了详细说明,使读者对行列式与矩阵有了进一步的认识,达到灵活熟练的运用相关知识解决有关问题。 关键字:行列式;矩阵;概念;运算;转置 The determinant and the relationship and difference matrix from concept to operation Jiang Bingbing (School of Mathematics and Statistics tianshui Normal University, Tianshui 74100) Abstract:determinant and matrix is basic theory of two relatively independent as a result, are two entirely different concepts, so the relationship and difference between them have how, for example demonstrated in this article, through detailed determinant and matrix from the definition of the concept to the operation made detailed aspects of the relation and distinction between, make readers to have further understanding of the determinant and matrix, to achieve flexible use of related knowledge skilled to solve the problem. Key words: the determinant; Matrix; Concept; Calculations; transpose

相关主题
文本预览
相关文档 最新文档