钢加热时的转变
- 格式:ppt
- 大小:802.50 KB
- 文档页数:36
钢在加热时的组织转变
1. 钢在加热过程中的组织变化
钢是一种具有高强度和韧性的金属材料,广泛用于机械制造、建筑、船舶、桥梁等领域。
在钢材加工过程中,热处理是一项重要的工艺步骤,可以改善钢的力学性能、提高其使用寿命。
而钢在加热过程中的组织变化,是影响其热处理效果和性能表现的关键因素之一。
2. 软化和晶粒长大
钢材经过冷加工和热加工后,其组织结构会发生变化。
加热可以使钢材发生软化,原因是钢的晶界杂质和碳化物颗粒会被空气中的氧化物气体消耗掉,在高温下形成低能量状态的组织结构,从而改变了材料的硬度和韧度,有利于加工和使用。
同时,钢材在加热时晶粒也会长大,因为温度升高会使晶界能量降低,晶界的迁移和改变也会导致晶粒的长大。
3. 相变和组织重构
除了软化和晶粒长大,加热还可以使钢材发生相变和组织重构。
钢材中的相是指金属组织的多种形态和状态,在不同的温度下会发生相变。
例如,铁素体(ferrite)和奥氏体(austenite)是钢中常见的相,钢的性能也与其相的形态和含量密切相关。
因此,在加热过程中应该控制温度和时间,以使钢材中的相变完成,并尽量避免相的不均匀分布。
4. 总结
总之,钢材在加热时会产生多种组织变化,包括软化、晶粒长大、相变和组织重构等。
这些变化会影响钢材的力学性能、延展性和可加
工性,同时也决定了热处理工艺的制定和实施。
因此,在进行热处理
之前,应该准确了解材料的组织结构和特性,并选择合适的工艺参数
和方式,以使钢材发挥最佳性能。
加热时奥氏体的形成过程钢的热处理多数需要先加热得到奥氏体,然后以不同速度冷却使奥氏体转变为不同的组织,得到钢的不同性能。
因此掌握热处理规律,首先要研究钢在加热时的变化。
一、加热时奥氏体的形成过程1.共析钢的加热转变从铁碳相图中看到,钢加热到 727℃(状态图的PSK线,又称A1温度)以上的温度珠光体转变为奥氏体。
这个加热速度十分缓慢,实际热处理的加热速度均高于这个缓慢加热速度,实际珠光体转变为奥氏体的温度高于A1,定义实际转变温度为Ac1。
Ac1 高于A1,表明出现热滞后,加热速度愈快,Ac1愈高,同时完成珠光体向奥氏体转变的时间亦愈短。
共析碳钢(含0.77%C)加热前为珠光体组织,一般为铁素体相与渗碳体相相间排列层片状组织,加热过程中奥氏体转变过程可分为四步进行,如图6-2示。
第一阶段:奥氏体晶核的形成。
由Fe-Fe3C状态图知:在A1温度铁素体含约0.0218%C,渗碳体含6.69%C,奥氏体含0.77%C。
在珠光体转变为奥氏体过程中,原铁素体由体心立方晶格改组为奥氏体的面心立方晶格,原渗碳体由复杂斜方晶格转变为面心立方晶格。
所以,钢的加热转变既有碳原子的扩散,也有晶体结构的变化。
基于能量与成分条件,奥氏体晶核在珠光体的铁素体与渗碳体两相交界处产生(见图6-2(a)),这两相交界面越多,奥氏体晶核越多。
第二阶段:奥氏体的长大。
奥氏体晶核形成后,它的一侧与渗碳体相接,另一侧与铁素体相接。
随着铁素体的转变(铁素体区域的缩小),以及渗碳体的溶解(渗碳体区域缩小),奥氏体不断向其两侧的原铁素体区域及渗碳体区域扩展长大,直至铁素体完全消失,奥氏体彼此相遇,形成一个个的奥氏体晶粒。
2.奥氏体的形成
钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。
物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体晶界上,阻碍奥氏体晶粒的长大。
因此,大多数合金钢、本质细晶粒钢加热时奥氏体的晶粒一般较细。
原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。
二、钢在冷却时的组织转变
冷却方式是决定热处理组织和性能的主要因素。
热处理冷却方式分为等温冷却和连续冷却。
等温转变产物及性能:用等温转变图可分析钢在A
线以下不同温度进行等温转变
1
所获的产物。
根据等温温度不同,其转变产物有珠光体型和贝氏体型两种。
~550℃ ,获片状珠光体型(F+P)组织。
[ 高温转变]:转变温度范围为A
1
依转变温度由高到低,转变产物分别为珠光体、索氏体、托氏体,片层间距由粗到细。
其力学性能与片层间距大小有关,片层间距越小,则塑性变形抗力越大,强度
炉冷V
:比较缓慢,相当于随炉冷却(退火的冷却方式),它分别与C曲线的
1
转变开始和转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估计它的转变产物为珠光体,硬度170~220HBS。
空冷V
:相当于在空气中冷却(正火的冷却方式),它分别与C曲线的转变开
2
始线和转变终了线相交于3、4点,位于C曲线珠光体转变区域中下部分,故可判断。
第一章钢的热处理组织与性能1 概述热处理之所以能使钢的性能发生巨大的变化,主要是由于钢制工件在适当的介质中,经不同的加热与冷却过程,使刚的内部组织发生了变化,化学热处理还改变钢件表层的化学成分,使其表面和基体具有不同的组织,获得所需表里不一的性能。
1.1 钢加热时的组织转变在进行退火、正火和淬火等热处理时,一般将钢加热到临界温度以上,以获得奥氏体。
加热时形成的奥氏体对冷却转变过程,以及冷却时转变产物的组织、性能有显著影响。
奥氏体的形成过程以共析钢为例,加热至AC1以上,钢中珠光体向奥氏体转变,包括以下四个阶段:(如图1—1)1)形核:在温度AC1以上珠光体不稳定。
在铁素体和渗碳体界面上碳浓度不均匀,原子排列不规则从浓度和机构上为奥氏体晶核的形成提供了有利条件,因此优先在界面上形成奥氏体晶核。
2)长大:奥氏体形核后的长大依靠铁素体继续转变为奥氏体和渗碳体的不断溶解。
前者比后者快,所以转变基本完成后仍有部分剩余奥氏体未溶解。
3)剩余渗碳体的溶解:随着时间延长,剩余渗碳体不断溶入奥氏体中。
4)奥氏体的均匀化:渗碳体溶解后,奥氏体中碳浓度不均匀,需要通过碳原子扩散获得均匀的奥氏体。
对亚共析钢和过共析钢而言,温度刚超过AC1只能使珠光体转变为奥氏体,只有在AC1或Acm以上保温足够时间,才能使先共析铁素体或先共析渗碳体完全溶入奥氏体中,获得单项奥氏体组织。
1.2 过冷奥氏体的转变冷至临界温度以下的奥氏体称为过冷奥氏体。
它的分解是一个点阵重构和碳原子扩散再分配的过程。
过冷奥氏体转变分为三种基本类型:珠光体转变(扩散型),贝氏体转变(过渡型),马氏体转变(无扩散型)。
过冷奥氏体等温转变曲线(C—曲线或TTT图)过冷奥氏体等温转变曲线形如拉丁字母中的“C”,故称为C-曲线,亦称TTT(Time Temperature Transformation)图,如图1-2所示。
共析钢C-曲线如图1-2所示,图中最上面的一根水平虚线为钢的临界点A1,下方的一根水平线Ms为马氏体转变开始温度,另一根水平线M f为马氏体转变终了温度。
45钢加热时组织的变化
45钢在加热时,其组织会发生变化。
具体来说,45钢基体常温下由铁素体和珠光体组成,组织均匀。
当在钎焊环境下加热,当温度为840℃左右时,基体组织全部转化为奥氏体。
然而,由于隧道炉中钎焊金刚石工具加热最高温度为1080℃,这已经超过了奥氏体化的组织在继续加热过程中晶粒不断长大。
当冷却时,开始从奥氏体中析出先共析相铁素体,随着温度的降低,先共析相铁素体量不断减少,而由过冷奥氏体直接转变为极细珠光体型组织。
由于隧道炉的冷却方式是工件处于冷却水套之中缓慢前行,其冷却速度处于空冷和油冷之间,冷速较快,大部分奥氏体来不及转变铁素体,故析出的铁素体较少,珠光体型组织较多。
综上,45钢在加热时,其组织会先转化为奥氏体,然后在冷却过程中,奥氏体会转变成铁素体和珠光体。
如果冷却速度较快,则析出的铁素体会较少,珠光体型组织较多。
钢在加热时会经历奥氏体转变的几个阶段。
首先是非晶态阶段,这是加热钢时的第一个阶段。
在这一阶段,钢中的晶格结构还没有完全消失,而是处于一种极其不稳定的状态。
随着温度的升高,这种不稳定的状态会导致晶格结构逐渐消失,最终形成一种称为热动力学平衡态的晶体结构。
接下来是奥氏体相变的第二个阶段,即奥氏体形成阶段。
在这一阶段,钢中的晶格结构完全消失,形成了一种称为奥氏体的晶体结构。
奥氏体是一种非常稳定的晶体结构,具有良好的力学性能。
第三个阶段是奥氏体稳定阶段。
在这一阶段,钢中的奥氏体晶体结构已经形成,且温度已经达到稳定状态。
此时,钢的力学性能也会达到最佳状态。
最后是奥氏体退火阶段。
在这一阶段,钢中的奥氏体晶体结构将会退回到非晶态,从而使钢的力学性能得到提升。
退火的目的是使钢中的晶格结构更加稳定,提高钢的力学性能。
在钢加热过程中,温度升高会导致钢中的晶格结构发生变化。
当温度升至一定程度时,晶格结构会完全消失,形成一种叫做奥氏体的晶体结构。
这种晶体结构是非常稳定的,具有良好的力学性能。
在钢的加热过程中,奥氏体形成的过程可以分为几个阶段。
首先是非晶态阶段,在这一阶段,钢中的晶格结构还没有完全消失,而是处于一种极其不稳定的状态。
随着温度的升高,这种不稳定的状态会导致晶格结构逐渐消失,最终形成一种称为热动力学平衡态的晶体结构。
接下来是奥氏体相变的第二个阶段,即奥氏体形成阶段。
在这一阶段,钢中的晶格结构完全消失,形成了一种称为奥氏体的晶体结构。
奥氏体是一种非常稳定的晶体结构,具有良好的力学性能。
第三个阶段是奥氏体稳定阶段。
在这一阶段,钢中的奥氏体晶体结构已经形成,且温度已经达到稳定状态。
此时,钢的力学性能也会达到最佳状态。
最后是奥氏体退火阶段。
在这一阶段,钢中的奥氏体晶体结构将会退回到非晶态,从而使钢的力学性能得到提升。
退火的目的是使钢中的晶格结构更加稳定,提高钢的力学性能。
在退火过程中,钢的温度会先升高,然后再降低。
当温度升至一定程度时,钢中的晶格结构会发生变化,使得钢的力学性能得到提升。