应用多元统计分析课后答案 (2)
- 格式:doc
- 大小:3.79 MB
- 文档页数:25
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
第二章2.1 试述多元联合分布和边缘分布之间的关系。
设X =(X 1,X 2,⋯X p )′是p 维随机向量,称由它的q (<p )个分量组成的子向量X(i)=(X i1,X i2,⋯X iq )′的分布为X 的边缘分布,相对地把X 的分布称为联合分布。
当X 的分布函数为F (x 1,x 2,⋯x p )时,X (1)的分布函数即边缘分布函数为F (x 1,x 2,⋯x p )=P(X 1≤x 1,⋯X q ≤x q ,X q+1≤∞,⋯X p ≤∞) = F (x 1,x 2,⋯x q ,∞,⋯∞)当X 有分布密度f (x 1,x 2,⋯x p )则X (1)也有分布密度,即边缘密度函数为:f (x 1,x 2,⋯x q )=∫⋯+∞−∞∫f (x 1,x 2,⋯x p )dx q+1⋯d +∞−∞x p 2.2 设随机向量X =(X 1,X 2)′服从二元正态分布,写出其联合分布密度函数和X 1,X 2各自的边缘密度函数。
联合分布密度函数12πσ1σ2(1−ρ2)1/2exp{−12(1−ρ2)[(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+f (x 1,x 2)=(x 2−μ2)2σ22]} , x 1>0,x 2>00 , 其他(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22=(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22+ρ2(x 1−μ1)2σ12−ρ2(x 1−μ1)2σ12=[ρ(x 1−μ1)σ1−(x 2−μ2)σ2]2+(1−ρ2)(x 1−μ1)2σ12所以指数部分变为−12{[11√1−ρ2σ1−22√1−ρ2σ2]2+(x 1−μ1)2σ12}令t=22√1−ρ2σ2−11√1−ρ2σ1 ∴dt =√1−ρ2σ22∴f (x 1)=∫f (x 1,x 2)+∞−∞dx 2=12πσ1σ2(1−ρ2)1/2exp{−(x 1−μ1)22σ12∫exp(+∞−∞−12t 2√1−ρ22dt =√2πσexp[−(x 1−μ1)22σ12] √2πσexp[−(x 1−μ1)22σ12] , x 1>0f (x 1)=0 ,其他 同理, √2πσ2exp[−(x 2−μ2)22σ22] , x 2>0f (x 2)=0 ,其他2.3 已知随机向量X =(X 1,X 2)′的联合分布密度函数为f (x 1,x 2)=2[(d−c )(x 1−a )+(b−a )(x 2−c )−2(x 1−a)(x 2−c)(b−a)2(d−c)2,其中,a ≤x 1≤b,c ≤x 2≤d 。
第二章2.1 试述多元联合分布和边缘分布之间的关系。
设X =(X 1,X 2,⋯X p )′是p 维随机向量,称由它的q 〔<p 〕个分量组成的子向量X(i)=(X i1,X i2,⋯X iq )′的分布为X 的边缘分布,相对地把X 的分布称为联合分布。
当X 的分布函数为F (x 1,x 2,⋯x p )时,X (1)的分布函数即边缘分布函数为F (x 1,x 2,⋯x p )=P(X 1≤x 1,⋯X q ≤x q ,X q+1≤∞,⋯X p ≤∞) = F (x 1,x 2,⋯x q ,∞,⋯∞)当X 有分布密度f 〔x 1,x 2,⋯x p 〕那么X (1)也有分布密度,即边缘密度函数为:f 〔x 1,x 2,⋯x q 〕=∫⋯+∞−∞∫f (x 1,x 2,⋯x p )dx q+1⋯d +∞−∞x p2.2 设随机向量X =(X 1,X 2)′服从二元正态分布,写出其联合分布密度函数和X 1,X 2各自的边缘密度函数。
联合分布密度函数12πσ1σ2(1−ρ2)1/2exp{−12(1−ρ2)[(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+f (x 1,x 2)=(x 2−μ2)2σ22]} , x 1>0,x 2>00 , 其他(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22=(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22+ρ2(x 1−μ1)2σ12−ρ2(x 1−μ1)2σ12=[ρ(x 1−μ1)σ1−(x 2−μ2)σ2]2+(1−ρ2)(x 1−μ1)2σ12所以指数局部变为−12{[11√1−ρ2σ1−22√1−ρ2σ2]2+(x 1−μ1)2σ12}令t=22√1−ρ2σ2−11√1−ρ2σ1 ∴dt =√1−ρ2σ22∴f (x 1)=∫f (x 1,x 2)+∞−∞dx 2=12πσ1σ2(1−ρ2)1/2exp{−(x 1−μ1)22σ12∫exp(+∞−∞−12t 2√1−ρ22dt =√2πσexp[−(x 1−μ1)22σ12] √2πσexp[−(x 1−μ1)22σ12] , x 1>0f (x 1)=0 ,其他 同理, √2πσ2exp[−(x 2−μ2)22σ22] , x 2>0f (x 2)=0 ,其他2.3 随机向量X =(X 1,X 2)′的联合分布密度函数为f (x 1,x 2)=2[(d−c )(x 1−a )+(b−a )(x 2−c )−2(x 1−a)(x 2−c)(b−a)2(d−c)2,其中,a ≤x 1≤b,c ≤x 2≤d 。
第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd cc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
同理,由于2X 服从均匀分布[]2121,()0x x c d f x d c⎧∈⎪=-⎨⎪⎩其它,则均值为2d c+,方差为()212d c -。
(2)解:随机变量1X 和2X 的协方差和相关系数;12cov(,)x x12121212222[()()()()2()()]22()()dbca d c x ab a xc x a x c a bd c x x dx dx b a d c --+-----++⎛⎫⎛⎫=-- ⎪⎪--⎝⎭⎝⎭⎰⎰()()36c d b a --=1212cov(,)13x xx x ρσσ==(3)解:判断1X 和2X 是否相互独立。
1X 和2X 由于121212(,)()()x x f x x f x f x ≠,所以不独立。
2.4设12(,,)p X X X X '=L 服从正态分布,已知其协方差矩阵∑为对角阵,证明其分量是相互独立的随机变量。
解: 因为12(,,)p X X X X '=L 的密度函数为1/2111(,...,)exp ()()2pp f x x --⎧⎫'=---⎨⎬⎩⎭Σx μΣx μ 又由于21222p σσσ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ΣO 22212pσσσ=ΣL212122111p σσσ-⎛⎫ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ΣO则1(,...,)p f x x211/2222212122111exp ()()21pp p σσσσσσ--⎧⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪'==--=-⎨⎬ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎩⎭Σx μΣx μL O()222123111222212()()()111exp ...222p p p p p x x x μμμσσσσσσ-⎧⎫---⎪⎪=----⎨⎬⎪⎪⎩⎭L2121()()...()2pi i p i i x f x f x μσ=⎧⎫-=-=⎨⎬⎩⎭ 则其分量是相互独立。
2.6 渐近无偏性、有效性和一致性; 2.7 设总体服从正态分布,~(,)p N XμΣ,有样本12,,...,n X X X 。
由于X 是相互独立的正态分布随机向量之和,所以X 也服从正态分布。
又()111()n nni i i i i E E n E n n ===⎛⎫==== ⎪⎝⎭∑∑∑X X X μμ()2211111()n nn i i i i i D D n D n n n ===⎛⎫==== ⎪⎝⎭∑∑∑ΣX X X Σ 所以~(,)p N X μΣ。
2.8 方法1:11ˆ()()1n i i i n ='=---∑ΣX X X X 111ni i i n n =''=--∑X X XX11ˆ()()1ni i i E E n n =''=--∑ΣX X XX ()()111n i i i E nE n =⎡⎤''=-⎢⎥-⎣⎦∑X X XX 111(1)11n i n n n n n =⎡⎤=-=-=⎢⎥--⎣⎦∑ΣΣΣΣ。
方法2:1()n i i i ='=∑SX -X)(X -X 1((ni i i ='⎡⎤⎡⎤=----⎣⎦⎣⎦∑X -μX μ)X -μX μ)11()()2()()()nni i i i i n =='''=-+--∑∑X -μX -μX -μX -μX μ)(X μX μ1()()2()()ni i i n n ='''=---+--∑X -μX -μX μ)(X μX μ)(X μ1()()()ni i i n =''=---∑X -μX -μX μ)(X μ11()()()()11n i i i E E n n n =⎛⎫''=--- ⎪--⎝⎭∑S X -μX -μX μ)(X μ 11()()()1n i i i E nE n =⎛⎫''=---= ⎪-⎝⎭∑X -μX -μX μ)(X μΣ。
故1n -S 为Σ的无偏估计。
2.9.设(1)(2)()n X ,X ,...,X 是从多元正态分布~(,)p N XμΣ抽出的一个简单随机样本,试求S 的分布。
证明:设******()***ij γ⎛⎫ ⎪⎪==⎪ ⎪ΓL LL L 为一正交矩阵,即'=ΓΓI 。
令()'12n 12n Ζ=(ΖΖΖ)=X X X ΓLL ,(1,2,3,4,),i n =i X ΓL 由于独立同正态分布且为正交矩阵所以12()n 'Z =Z Z Z L 独立同正态分布。
且有1()()(1,2,3,,1)naaj j j E E r an ===-∑ΖΧL1najj ==r 10najnj i r r ='==∑ 1()()na aj j j Var Var r ==∑ΖΧ()2211n naj j aj j j r Var r =====∑∑ΧΣΣ所以121n -ΖΖΖL独立同(0,)N Σ分布。
又因为1()()nj j ='=--∑i S X X X X1nj j j n =''=-∑X X XX因为11n n i i n n i i n n =='⎫''==⎪⎭XX X X Z Z 又因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'''='∑=n n nj jjX X X X X XX X M Λ21211()'⎛⎫ ⎪' ⎪'= ⎪ ⎪ ⎪'⎝⎭1212n n X X X X X ΓΓX LM ()'⎛⎫ ⎪' ⎪= ⎪ ⎪ ⎪'⎝⎭1212n n Z Z Z Z Z Z LM 所以原式nnnj jjnnnj jjZ Z Z Z Z Z X X '-'='-'∑∑==111122...n n ''''=+++n n Z Z Z Z Z Z -ΖΖ故11n j jj -='=Z Z ∑S,由于121,,,n Z Z Z -L 独立同正态分布(0,)p N Σ,所以11~(1,)n j j p j W n -='=Z Z -∑∑S2.10.设()i i X n p ⨯是来自(,)p i i N μΣ的简单随机样本,1,2,3,,i k =L ,(1)已知2...k ====1μμμμ且2...k ====1ΣΣΣΣ,求μ和Σ的估计。
(2)已知2...k ====1ΣΣΣΣ求2,,...,,k 1μμμ和Σ的估计。
解:(1)11121ˆ...an k a ia i kn n n ====+++∑∑μx x,()()1112ˆ...an k aa ii a i kn n n =='--=+++∑∑xx x x Σ(2)1ln (,,,)k L μμΣL 2111ln ()exp[]2a n k n paa i a i a a i 2π-=='⎡⎤=-⎣⎦∑∑-1Σ(x -μ)Σ(x -μ)1111ln ()ln()ln 222a n k aa i a i a a i n L pn 2π=='=---∑∑-1μ,ΣΣ(x -μ)Σ(x -μ)()21111ln (,)1()()022an k a a i a i a a i L n --==∂'=-+--=∂∑∑μΣΣX μX μΣΣ11ln (,)()0(1,2,...,)jn j ij j i jL j k -=∂=-==∂∑μΣΣX μμ 解之,得11ˆjn j j iji jn ===∑μx x,()()1112ˆ...jn kj j j i kn n n =='--=+++∑∑ijij xx x x Σ第三章3.1 试述多元统计分析中的各种均值向量和协差阵检验的基本思想和步骤。
其基本思想和步骤均可归纳为:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界 值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。