七年级上册数学第一章有理数提高测试题
- 格式:doc
- 大小:164.00 KB
- 文档页数:5
人教版数学七年级上学期第一章有理数测试一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1. 如果向东行驶3km,记作+3km,那么向西行驶2km,记作A. +2kmB. -2kmC. +3kmD. -3km2. 下列各对数中,数值相等的是()A. -27与(-2)7B. -32与(-3)2C. -3×23与-32×2D. ―(―3)2与―(―2)33. 《战狼2》在2017年暑假档上映取得历史性票房突破,共收获5 490 000 000元,数据5 490 000 000用科学记数法表示为A. 5.49×1010B. 5.49×109C. 5.49×108D. 549×1074. 如果一个数的平方与这个数的差等于0,那么这个数只能是()A. 0B. -1C. 1D. . 0或15. 绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 56. 计算:(-2)100+(-2)101的是()A. 2100B. -1C. -2D. -21007. 比-7.1大,而比1小的整数的个数是()A. 6B. 7C. 8D. 98. 2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A. 1.205×107B. 1.20×108C. 1.21×107D. 1.205×1049. 下列代数式中,值一定是正数的是( )A. x2B. |-x+1|C. (-x)2+2D. -x2+110. 已知8.622=73.96,若x2=0.7396,则x的值等于()A. 86. 2B. 862C. ±0.862D. ±862二、填空题(本题共有9个小题,每小题2分,共18分)11. 一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记;数-2的实际意义为,数+9的实际意义为 .12. 如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为___________.13. 某数的绝对值是5,那么这个数是 .134756≈(保留四个有效数字)14. ( )2=16,(-)3= .15. 数轴上和原点的距离等于3.5点表示的有理数是 .16. 计算:(-1)6+(-1)7=____________.17. 如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=_______.18. +5.7的相反数与-7.1的绝对值的和是 .19. 已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.三、解答题20. 计算:(1)8+(― )―5―(―0.25) (2)―82+72÷36(3)7 ×1 ÷(-9+19) (4)25×(―18)+(―25)×12+25×(-10 )(5)(-79)÷2 + ×(-29) (6)(-1)3-(1-7)÷3×[3―(―3)2](7)2(x-3)-3(-x+1) (8) –a+2(a-1)-(3a+5)21. 一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?22. 有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1) ,(2) ,(3) .另有四个有理数3,-5,7,-13,可通过运算式(4) 使其结果等于24.23. 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8∶00(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?24. 画一条数轴,并在数轴上表示:3.5和它的相反数,-4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.25. 体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中"+"表示成绩大于15秒.-0.8 +1 -1.2 0-0.7 +0.6 -0.4 -0.1问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?26. 有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.试计算:a2=______,a3=____,a4=_____,a5=______.这排数有什么规律吗?由你发现的规律,请计算a2004是多少?四、提高题(本题有2个小题,共16分)27. 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是___________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由.28. 若a、b、c均为整数,且∣a-b∣3+∣c-a∣2=1,求∣a-c∣+∣c-b∣+∣b-a∣的值(8分)答案与解析一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1. 如果向东行驶3km,记作+3km,那么向西行驶2km,记作A. +2kmB. -2kmC. +3kmD. -3km【答案】B【解析】试题分析:∵向东行驶3km,记作+3km,∴向西行驶2km记作-2km.故选B.考点:正数和负数.2. 下列各对数中,数值相等的是()A. -27与(-2)7B. -32与(-3)2C. -3×23与-32×2D. ―(―3)2与―(―2)3【答案】A考点:有理数的乘方.3. 《战狼2》在2017年暑假档上映取得历史性票房突破,共收获5 490 000 000元,数据5 490 000 000用科学记数法表示为A. 5.49×1010B. 5.49×109C. 5.49×108D. 549×107【答案】B【解析】由科学记数法的定义知:5 490 000 000=5.49×109故选:B.4. 如果一个数的平方与这个数的差等于0,那么这个数只能是()A. 0B. -1C. 1D. . 0或1【答案】D【解析】试题分析:一个数的平方与这个数的差等于0,则这个数的平方等于其本身,而平方等于本身的数是0和1,则这个数只能是0或1.故选D.考点:有理数的乘方.5. 绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 5【答案】C【解析】试题分析:根据绝对值的性质,由题意得,符合题意的正整数为1,2,3,它们的和是故选C.考点:绝对值.6. 计算:(-2)100+(-2)101的是()A. 2100B. -1C. -2D. -2100【答案】D【解析】试题分析:故选D.考点:有理数的乘方.7. 比-7.1大,而比1小的整数的个数是()A. 6B. 7C. 8D. 9【答案】C【解析】试题分析:比-7.1大而比1小的整数有:-7、-6、-5、-4、-3、-2、-1和0共8个.考点:数的大小比较8. 2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A. 1.205×107B. 1.20×108C. 1.21×107D. 1.205×104【答案】A【解析】根据科学记数法的表示方法(形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数)可得:12050000枚=1.205×107枚.故答案是:A.9. 下列代数式中,值一定是正数的是( )A. x2B. |-x+1|C. (-x)2+2D. -x2+1【答案】C【解析】试题分析:根据平方的性质可得:≥0,≥0;-≤0,则-+1≤1,+2≥2;根据绝对值的性质可得:≥0.考点:(1)平方的性质;(2)绝对值的性质10. 已知8.622=73.96,若x2=0.7396,则x的值等于()A. 86. 2B. 862C. ±0.862D. ±862【答案】C【解析】试题分析:算术平方根的小数点向左移动两位,则被开方数的小数点向左移动一位,则根据题意可得:x=±0.862.考点:平方根的性质二、填空题(本题共有9个小题,每小题2分,共18分)11. 一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记;数-2的实际意义为,数+9的实际意义为 .【答案】+2;-1;地下第2层;地面上第9层.【解析】规定向上为正,则向下为负,所以2楼表示的是以地面为基准向上2层,所以记为+1,地下第一层记作−1,−2表示的实际意义是地下2层,+9的实际意义为地上10层;故答案为:+1,−1,地下2层,地上10层.12. 如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为___________.【答案】-5,+1.【解析】试题分析:在数轴上与表示-2的点距离3个单位长度的点可能在右边,也可能在左边,所以表示的数是或1.考点:数轴13. 某数的绝对值是5,那么这个数是 .134756≈(保留四个有效数字)【答案】±5;1.348×105 .【解析】试题分析:考点:1、绝对值;2、有效数字.14. ( )2=16,(-)3= .【答案】±4;.【解析】由平方根的定义知:42=16,(-4)2=16,所以(±4)2=16;(-)3=(-) × (-) ×(-)=-,故答案为:±4;.15. 数轴上和原点的距离等于3.5点表示的有理数是 .【答案】± 3.5【解析】如图所示:数轴上和原点的距离等于3.5的点表示的有理数是±3.5.16. 计算:(-1)6+(-1)7=____________.【答案】0.【解析】试题分析:考点:有理数的运算.17. 如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=_______.【答案】3【解析】试题分析:互为倒数,,互为相反数,且,考点:1、倒数;2、相反数.18. +5.7的相反数与-7.1的绝对值的和是 .【答案】1.4【解析】试题分析:根据题意可得:-5.7+=1.4考点:有理数的计算19. 已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.【答案】12【解析】试题分析:根据题意可得:51÷4=12(辆)……3(个),则至多能装配12辆汽车.考点:有理数的除法三、解答题20. 计算:(1)8+(― )―5―(―0.25) (2)―82+72÷36(3)7 ×1 ÷(-9+19) (4)25×(―18)+(―25)×12+25×(-10 )(5)(-79)÷2 + ×(-29) (6)(-1)3-(1-7)÷3×[3―(―3)2](7)2(x-3)-3(-x+1) (8) –a+2(a-1)-(3a+5)【答案】① 3 ;②-80 ;③;④ 0;⑤ -48 ;⑥ 0;⑦5x-9 ;⑧ -2a-7. 【解析】试题分析:(1)先化简再按有理数的运算顺序计算即可;(2)先算除法,后算加法;(3)先算括号里面的,再计算乘除;(4)先提出公因数25,再计算即可;(5)先算除法,再算加法;(6)先乘方,后乘除最后算加减,有括号要先算括号里面的;(7)先去括号再合并同类项即可;(8)先去括号再合并同类项即可.试题解析:(1)原式=8-5+0.25=3.25;(2)原式=-82+2=-80;(3)原式=7 ×1 ÷10=;(4)原式=25×(―18)- 25×12+25×(-10 )= 25×(-18-12-10)=-1000;(5)原式=-39.5-29=-68.5;(6)原式=-1-(-6)÷3×(3-9)=-1-2×6=-13;(7)原式=2x-6+3x-3=5x-9;(8)原式=–a+2a-2-3a-5=-2a-7.21. 一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?【答案】250.【解析】试题分析:先计算出山脚与山顶的温度差,再计算出下降了几个0.8°C,然后乘以100即可;试题解析:(4-2)÷0.8×100=250(米)考点:有理数的混合运算.22. 有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1) ,(2) ,(3) .另有四个有理数3,-5,7,-13,可通过运算式(4) 使其结果等于24.【答案】本题答案不唯一,符合条件即可.【解析】试题分析:看懂规则,加上运算符合使结果等于24即可;试题解析:(1)4-10×(-6)÷3=24;(2)3×[10+4+(-6)]=24;(3)10-4-3×(-6)=24;(4)[7+(-13)×(-5)]÷3=24;考点:有理数的混合运算.23. 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8∶00(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?城市时差/ 时纽约-13巴黎-7东京+1芝加哥-14【答案】①21;②不可以打电话.【解析】试题分析:(1)用北京时间减去所求地的时差即可;(2)合适,通过与(1)相同的计算即可得出巴黎的时间,从而可确定;试题解析:(1)8-(-13)=21时;(2)巴黎现在的时间是8-(-7)=15时,可以打电话.考点:有理数加减法的应用.【答案】数轴详见解析;-3.5<-3<-2<-1<-0.5<1<3<3.5.【解析】试题分析:先按要求求出各数,再在数轴上表示出这些数,最后用“<”把它们连接起来即可.解:3.5的相反数是﹣3.5,﹣4的倒数是﹣,绝对值等于3的数是±3,最大的负整数是﹣1,(﹣1)2=1,在数轴上表示为:故﹣4<﹣3.5<﹣3<﹣1<﹣<1<3<3.5.25. 体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中"+"表示成绩大于15秒.-0.8 +1 -1.2 0-0.7 +0.6 -0.4 -0.1问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?【答案】①75%;②14.8.【解析】试题分析:(1)从表格中得出,达标的人数为6人,求出达标率;(2)根据平均数的公式求出平均成绩.试题解析:(1)成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%;(2)-0.8+1-1.2+0-0.7+0.6-0.4-0.1=-1.615-1.6÷8=14.8秒答:(1)这个小组男生的达标率为75%.(2)这个小组男生的平均成绩是14.8秒.26. 有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.试计算:a2=______,a3=____,a4=_____,a5=______.这排数有什么规律吗?由你发现的规律,请计算a2004是多少?【答案】-1.【解析】分析:根据规定进行计算,发现:=,=2, ,=-1, ,=.从而发现3个一循环.按照这个规律计算即可.本题解析:由题意得:,,,,…可以发现,2,-1这三个数反复出现.∵2004÷3=668,其余数为0,∴a2004=a3=-1.点睛:此类题型首先要计算几个特殊数值,然后发现循环的规律,从而计算出最后的结果.四、提高题(本题有2个小题,共16分)27. 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是___________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由.【答案】①7;(2)-5,-4,-3,-2,-1,0,1,2;(3)有最小值为3.【解析】试题分析:(1)、根据绝对值的计算法则得出答案;(2)、结合两点之间的距离得出整数的值;(3)、根据数轴上两点之间的距离公式得出最小值.试题解析:(1)、原式=7(2)、表示x到-5和2的距离和为7,-5≤x≤2,则整数为—5,—4,—3,—2,—1,0,1,2;(3)、表示x到3和6的距离最小值,则根据数轴可得:当3≤x≤6时距离有最小值,最小值为3.考点:数轴上点的距离28. 若a、b、c均为整数,且∣a-b∣3+∣c-a∣2=1,求∣a-c∣+∣c-b∣+∣b-a∣的值(8分)【答案】2.【解析】试题分析先判断出a、b、c有两个数相等,不妨设为a=b,然后表示出c,再求出|a-c|,即可得解.试题解析:∵∣a-b∣3+∣c-a∣2=1,并且a、b、c均为整数,∵∣a-b∣和∣c-a∣=0或1,∴当∣a-b∣=1时∣c-a∣=0,则c=a, ∣c-b∣=1∴∣a-c∣+∣c-b∣+∣b-a∣=0+1+1=2当∣a-b∣=0时∣c-a∣=1,则b=a, ∣c-b∣=1,∣a-c∣+∣c-b∣+∣b-a∣=1+1+0=2.点睛:本题考查了绝对值的性质和有理数的乘方,判断出a、b、c有两个数相等是解题的关键.。
《有理数》单元测试提高卷一、选择题1.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A .a >c >bB .a >b >cC .a <c <bD .a <b <c 2.下列说法中,正确的是 ( )A .有理数分为正数、0和负数B .有理数分为正整数、0和负数C .有理数分为分数、小数和整数D .有理数分为正整数、0和负整数 3.下列说法中,正确的是( )A .因为相反数是成对出现的,所以0没有相反数B .数轴上原点两旁的两点表示的数是互为相反数C .符号不同的两个数是互为相反数D .正数的相反数是负数,负数的相反数是正数4.已知两个有理数a ,b ,如果ab<0,且a+b<0,那么( ). A .a>0.b>0 B .a<0.b>0C .a ,b 异号D .a ,b 异号,且负数的绝对值较大 5.若()0122=-+-b a ,则()2015a b -的值是( ).A .-lB .OC .1D .2015 6.有一列数n a a a a a ,,,,,4321Λ,从第二个数开始,每一个数都等于l 与它前面那个数的倒数的差,若21=a ,则2014a 值为( ).A .2B .-l B .21D .20087.若0<m <1,则m,m 2, 1m的大小关系是( ) A.m <m 2<1m B.m 2<m <1mC.1m <m <m 2 D. 1m<m 2<m 8.任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m 3分裂后,其中有一个奇数是2015,则m 的值是( ) A.46 B.45 C.44 D.439.下列说法中,错误的是 ( )A .若n 个有理数的积是0,则其中至少有一个数为0B .倒数等于它本身的有理数是±1C .任何有理数的平方都大于0D .-l 的奇数次幂等于-110.下列说法中,正确的是 ( ) A .两数相除,商一定小于被除数 B .两数相乘,积一定大于每个因数C .一个数除以它的倒数,其商就等于这个数的平方D .一个数乘它的相反数,其积一定是一个负数 二、填空题11.若01<<-m ,则m 、2m 、1m 的大小关系_____________________ .12.若(1﹣m )2+|n+2|=0,则m+n 的值为________.13. 数轴上点A 、B 的位置如图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为______14.绝对值小于3的所有整数的和是________.15.现有四个有理数2、6、7、8,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.请你写出一个符合条件的算式:______________________. 16.320a b ++-=,则a+6=_________. 17.规定图形表示运算a –b + c,图形表示运算w y z x --+.则+=_______(直接写出答案).18.计算:()()()200021111-+-+-Λ=_________。
《好题》初中七年级数学上册第一章《有理数》经典测试题(培优提高)一、选择题1.(0分)下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 2.(0分)下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.(0分)已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2C 解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 4.(0分)下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数, 故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 5.(0分)绝对值大于1小于4的整数的和是( )A .0B .5C .﹣5D .10A 解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.6.(0分)下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.7.(0分)一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 3 C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.8.(0分)如果向右走5步记为+5,那么向左走3步记为( )A.+3 B.-3 C.+13D.-13B解析:B【解析】试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3.故选B.9.(0分)把实数36.1210-⨯用小数表示为()A.0.0612 B.6120 C.0.00612 D.612000C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(0分)已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.二、填空题11.(0分)若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积++++的最小值为__.【分析】先把2000abcde=,则它们的和a b c d eabcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键. 12.(0分)23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.13.(0分)已知a 是7的相反数,b 比a 的相反数大3,则b 比a 大____.17【分析】先根据相反数的定义求出a 和b 再根据有理数的减法法则即可求得结果【详解】由题意得a =-7b =7+3=10∴b -a =10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a 和b ,再根据有理数的减法法则即可求得结果.【详解】由题意,得a =-7,b =7+3=10.∴b -a =10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.14.(0分)把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.15.(0分)在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.16.(0分)A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【 解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.17.(0分)化简﹣|+(﹣12)|=_____.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】--=-﹣|+(﹣12)|=|12|12故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.18.(0分)在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.19.(0分)如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm ,即 1cm 表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm 表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.20.(0分)已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.三、解答题21.(0分)计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.22.(0分)计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(0分)计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键. 24.(0分)计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法; (2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+=142-=132-.【点睛】此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键. 25.(0分)321032(2)(3)5-÷---⨯解析:﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.26.(0分)计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.27.(0分)计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 28.(0分)把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--.解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】 先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.。
2020-2021学年人教版七年级上册期末真题单元冲关测卷(提高卷)第一章有理数试卷满分:100分考试时间:120分钟姓名:班级:学号:题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共8小题,满分24分,每小题3分)1.(2019秋•无为县期末)数轴上点C是A、B两点间的中点,A、C分别表示数﹣1和2,则点B表示的数( )A.2B.3C.4D.52.(2019秋•温州期末)如图,数轴的单位长度为1,点A,B表示的数互为相反数,若数轴上有一点C到点B的距离为2个单位,则点C表示的数是( )A.﹣1或2B.﹣1或5C.1或2D.1或53.(2019秋•普宁市期末)下列运算错误的是( )A.﹣3﹣(﹣3+19)=﹣3+3―19B.5×[(﹣7)+(―45)]=5×(﹣7)+5×(―45)C.[14×(―73)]×(﹣4)=(―73)×[14×(﹣4)]D.﹣7÷2×(―12)=﹣7÷[2×(―12)]4.(2019秋•石家庄期末)已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是( )A.B.C.D.5.(2019秋•南京期末)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有( )A.3个B.4个C.5个D.6个6.(2019秋•松滋市期末)如图,O,A,B,C四点在数轴上,其中O为原点,且AC=2,OA=2OB,若C 点所表示的数为m,则B点所表示的数正确的是( )A.﹣2(m+2)B.m―22C.m+22D.2―m27.一台机器有大、小齿轮用同一传送带连接,若大小齿轮的齿数分别为36和12个,大齿轮每分钟2.5×103转,则小齿轮10小时转( )A.1.5×106转B.5×105转C.4.5×106转D.15×106转8.对正整数n,记1×2×…×n=n!若M=1!×2!×…×10!,则M的正因数中共有完全立方数( )个.A.468B.684C.846D.648第Ⅱ卷(非选择题)评卷人得分二.填空题(共10小题,满分20分,每小题2分)9.(2分)(2019秋•桂林期末)1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的“考拉兹猜想”,又称“奇偶归一猜想”.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:5×3+1→16÷2→8÷2→4÷2→2÷2→1如果正整数m最少经过6步运算可得到1,则m的值为 .10.(2分)(2019秋•西宁期末)点A表示数轴上的数﹣2,将点A移动10个单位长度后得到点B,则点B 表示的数是 .11.(2分)(2019秋•台州期末)定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为n2k (其中k是使n2k为奇数的正整数)并且运算重复进行,例如,n=66时,其“C运算”如下:若n=26,则第2019次“C运算”的结果是 .12.(2分)(2016秋•龙泉驿区期末)如果x、y都是不为0的有理数,则代数式x|x|+|y|y―xy|xy|的最大值是 .13.(2分)(2016秋•大邑县期末)有理数a、b在数轴上的位置如图所示化简:|a+2|﹣|a|+|b﹣1|+|a+b|可得到 .14.(2分)(2013秋•成都期末)观察下列等式:112+2×1=12×(1―13),122+2×2=12×(12―14),132+2×3=1 2×(13―15),142+2×4=12×(14―16),…根据你得出的规律写出第n个等式为 ,并根据该规律计算:112+2×1+122+2×2+132+2×3+⋯+182+2×8= .15.(2分)(2020秋•陆川县期中)某种细胞开始有两个,1小时后分裂成4个并死去一个,2个小时后分裂成6个并死去一个,3小时后分裂成10个并死去1个,按此规律,请你计算经过n个小时后,细胞存活的个数为 个(结果用含n的代数式表示)16.(2分)(2020秋•海淀区校级期中)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是 .17.(2分)(2019秋•渝中区校级期中)已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是 .18.(2分)(2014春•青羊区期末)大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一个奇数是211,则m的值是 .评卷人得分三.解答题(共10小题,满分56分)19.(4分)(2019秋•厦门期末)借助有理数的运算,对任意有理数a,b,定义一种新运算“⊕”规则如下:a⊕b=|a+b|例如,2⊕(﹣1)=|2+(﹣1)|=1.(1)求[5⊕(﹣2)]⊕4的值;(2)我们知道有理数加法运算具有交换律和结合律,请你探究这种新运算“⊕”是否也具有交换律和结合律?若具有,请说明理由;若不具有,请举一个反例说明.20.(4分)(2019秋•曹县期末)出租车司机小明某天下午的营运全是在东西走向的长江路上进行的,如果规定向东为正,向西为负,他这天下午行车路程(单位:千米)如下:﹣13,﹣2,+6,+8,﹣3,﹣5,+4,﹣6,+7,若小明家位于距离出车地点的西边15千米处,送完最后一名乘客,小明还要行驶多少千米才能到家?21.(5分)(2019秋•济源期末)如图,数轴上点A、B分别对应数a、b,其中a<0,b>0.(1)当a=﹣3,b=7时,线段AB的中点对应的数是 .(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=3,b>3,且AM=2BM时,求代数式a+2b+2010的值;②a=﹣3.且AM=3BM时学生小朋通过演算发现代数式3b﹣4m是一个定值,老师点评;小朋同学的演算发现还不完整!请你通过演算解释为什么“小朋的演算发现”是不完整的?22.(5分)(2019秋•海安市期末)定义:对于一个两位数x,如果x满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S(x).例如,a=13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S(13)=4.(1)下列两位数:20,29,77中,“相异数”为 ,计算:S(43)= ;(2)若一个“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10,求相异数y;(3)小慧同学发现若S(x)=5,则“相异数”x的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例.23.(5分)(2019秋•丰台区期末)小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M,N所表示的数分别为0,12.将一枚棋子放置在点M处,让这枚棋子沿数轴在线段MN上往复运动(即棋子从点M出发沿数轴向右运动,当运动到点N处,随即沿数轴向左运动,当运动到点M处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M开始运动t个单位长度至点Q1处;第2步,从点Q1继续运动2t个单位长度至点Q2处;第3步,从点Q2继续运动3t 个单位长度至点Q3处….例如:当t=3时,点Q1,Q2,Q3,的位置如图2所示.解决如下问题:(1)如果t=4,那么线段Q1Q3= ;(2)如果t<4,且点Q3表示的数为3,那么t= ;(3)如果t≤2,且线段Q2Q4=2,那么请你求出t的值.24.(5分)(2019秋•鸡泽县期末)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;☆3)=8,求a的值.(2)若(a+1225.(6分)(2019秋•荔湾区期末)数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM﹣BM=OM,求ABOM的值.26.(6分)(2020秋•西工区期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c﹣b 0,a﹣b 0,c﹣a 0.(2)化简:|c﹣b|+|a﹣b|﹣|c﹣a|.27.(8分)(2020秋•岳麓区校级月考)计算题(1)(﹣6)+(+11)(2)﹣28+(﹣4)+29+(﹣24)(3)(﹣0.6)﹣(314)﹣(+725)+234―2(4)12.32﹣14.17﹣|﹣2.32|+(﹣5.83)28.(8分)(2020秋•兰州期中)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?。
第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。
A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。
A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。
①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。
人教版七年级上册第一章综合提升卷有理数(270) 1.股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?2.如图,数轴上的点P,O,Q,R,S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在()A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间3.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16B.1CC.1AD.224.倒数为3的数是.5.已知a−3与b+4互为相反数,则a+b=.6.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足标准的千克数记为负数,则图中自左向右数第3袋大米的实际重量是kg.7.若|x+2|+|y−3|=0,则x−y的值为.8.2016年春节期间,在网络上搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 .9.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).10.把下列各数分别填在相应的括号里:−7,3.01,2017,−0.142,0.1,0,99,−75. 整数集合:{…};分数集合:{…};负有理数集合:{ …}.11.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?12.规定“∗”是一种新的运算法则:a ∗b =a 2−b 2,其中a,b 为有理数.(1)求2∗6的值;(2)求3∗[(−2)∗3]的值.13.计算:(1)−14−(1−0.5)÷3×[2−(−3)2];(2)0.7×1949+234×(−14)+0.7×59+14×(−14).14.小宇在做分数的乘除法练习时,把一个数乘−213错写成除以−213,得到的结果是1835,这道题的正确结果应该是多少?15.小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24.(写出一种即可)16.某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶路程记录如下(单位:千米):(1)在第 次记录时距A 地最远;(2)求收工时距A 地多远;(3)若每千米耗油0.1升,每升汽油需7.2元,则检修小组工作一天需汽油费多少元?17.6.0009精确到千分位是()A.6.0B.6.00C.6.000D.6.00118.某商场购进某品牌上衣30件,下列与购进某品牌上衣30件具有相反意义的量是()A.发给员工这种上衣10件B.售出这种上衣10件C.这种上衣剩余10件D.穿着这种上衣10件19.在−0.4217中用数字3替换其中的一个非零数字后,使所得的数最小,则被替换的数字是()A.4B.2C.1D.720.对下列各式计算结果的符号判断正确的是()A.(−2)×(−213)×(−3)<0B.(−5)−5+1>0C.(−1)+(−13)+12>0D.(−1)×(−2)<021.两数相减,如果差等于减数的相反数,那么下列结论中正确的是()A.减数一定是零B.被减数一定是零C.原来两数互为相反数D.原来两数的和等于122.下面是小卢做的数学作业,其中正确的是()①0−(+47)=47;②0−(−714)=714;③(+15)−0=−15;④(−15)+0=−15.A.①②B.①③C.①④D.②④ 23.某工厂为了完成一项任务,第一天工作15分钟,以后的五天中,后一天的工作时间都是前一天的2倍,则第6天的工作时间是()A.1.5小时B.3小时C.4.8小时D.8小时 24.计算12÷(−3)−2×(−3)的结果是()A.−18B.−10C.2D.18参考答案1(1)【答案】解:星期三收盘时,每股是27+4+4.5−1=34.5(元).(2)【答案】本周内每股最高价为27+4+4.5=35.5(元),最低价为27+4+4.5−1−2.5−6=26(元).(3)【答案】买入成本:1000×27×(1+1.5‰)=27040.5(元),卖出所得:1000×26×(1−1.5‰−0.1‰)=25958.4(元).收益:25958.4−27040.5=−1082.1(元).答:如果吉姆在星期五收盘前将股票全部卖出,他将亏损1082.1元.2.【答案】:D3.【答案】:A【解析】:A+C=10+12=22=16+6,则用16进制表示是16.4.【答案】:135.【答案】:−1【解析】:由题意,得(a−3)+(b+4)=0,所以a+b+1=0,所以a+b=−1.6.【答案】:49.3【解析】:由于自左向右数第3袋大米不足标准重量0.7kg,所以其实际重量为50−0.7=49.3(kg).7.【答案】:−5【解析】:由|x+2|+|y−3|=0,得x+2=0,y−3=0,所以x=−2,y=3,所以x−y=−2−3=−58.【答案】:4.51×107【解析】:45100000用科学记数法表示为4.51×1079.【答案】:二类【解析】:如果停车所在地区的类别是一类,应该收费:2.5×4+3.75×8=40(元);如果停车所在地区的类别是二类,应该收费:1.5×4+2.25×8=24(元);如果停车所在地区的类别是三类,应该收费:0.5×4+0.75×8=8(元)10.【答案】:解:整数集合:{−7,2017,0,99,…};分数集合:{3.01,−0.142,0.1,−7,…};5负有理数集合:{−7,−0.142,−7,…}.511(1)【答案】如图:(2)【答案】根据(1)可得小明家与小刚家相距4−(−5)=9(千米) 12(1)【答案】解:根据题意,得2∗6=22−62=4−36=−32(2)【答案】根据题意,得(−2)∗3=4−9=−5,则3∗[(−2)∗3]=3∗(−5)=9−25=−1613(1)【答案】解:原式=−1−0.5×13×(2−9)=−1−16×(−7)=−1+76=1 6(2)【答案】原式=0.7×(1949+59)+(−14)×(234+14)=0.7×20−14×3=14−14×3=14×(1−3)\(= 14\times (-2)\)=−28.14.【答案】:解:根据题意,得18 35×(−73)×(−73)=14515(1)【答案】解:(−3)×(−5)=15(2)【答案】−5÷(+3)=−53(3)【答案】(−5)4=625(4)【答案】答案不唯一,如[(−3)−(−5)]×(+3)×(+4)=2×12=24 16(1)【答案】五【解析】:由题意,得第一次距A地|−3|=3(千米);第二次距A地|−3+8|=5(千米);第三次距A地|−3+8−9|=4(千米);第四次距A地|−3+8−9+10|=6(千米);第五次距A地|−3+8−9+10+4|=10(千米);而第六次、第七次是向相反的方向又行驶了8千米,所以在第五次记录时距A 地最远.故答案为五(2)【答案】根据题意,得−3+8−9+10+4−6−2=2(千米).答:收工时距A 地2千米.(3)【答案】根据题意,得检修小组工作一天行驶的路程为|−3|+|+8|+|−9|+|10|+|+4|+|−6|+|−2|=42(千米),42×0.1×7.2=30.24(元).答:检修小组工作一天需汽油费30.24元17.【答案】:D【解析】:6.0009≈6.001(精确到千分位)18.【答案】:B【解析】:与购进某品牌上衣30件具有相反意义的量是售出这种上衣10件19.【答案】:B【解析】:替换后的数可能是−0.3217,−0.4317,−0.4237,−0.4213,∵|−0.4317|>|−0.4237|>|−0.4213|>|−0.3217|,∴−0.4317最小,即被替换的数字是220.【答案】:A【解析】:由三个负数相乘,积为负,可知选项A 正确21.【答案】:B【解析】:由减法法则,知减去一个数等于加上这个数的相反数.因为差等于减数的相反数,所以被减数一定为022.【答案】:D【解析】:由于0−(+47)=−47,所以①不正确;(+15)−0=15, 所以③不正确;只有②④正确.23.【答案】:D【解析】:由题意1×25=8(时)424.【答案】:C。
七年级数学第一章有理数测试题(一)一、 选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 2、大于–3.5,小于2.5的整数共有( )个。
(A )6 (B )5 (C )4 (D )33、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为( ) A 、正数 B 、负数 C 、整数 D 、不等于零的有理数7、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个 9、下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=1 10、如果a <0,那么a 和它的相反数的差的绝对值等于( ) A.a B.0 C.-a D.-2a 二、填空题:(每题2分,共42分) 1、()642=。
浙教版七年级上册数学第一章《有理数》单元提升测试卷考试时间:120分钟满分:120分班级姓名一、选择题(本大题有12小题,每小题3分,共36分)1.超市出售的某种品牌的大米袋上,标有质量为(50±0.4)kg的字样,从超市中任意拿出两袋大米,它们的质量最多相差()A. 0.5kgB. 0.6kgC. 0.8kgD. 0.95kg2.在-4,2.-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 33.下列说法:①-2.5既是负数、分数,也是有理数;②-7既是负数也是整数,但不是自然数;③0既不是正数也不是负数;④0是非负数.其中正确的个数是()A. 1B. 2C. 3D. 44.下列四个结论正确的是()A. 任何有理数都有倒数B. 符号相反的数互为相反数C. 绝对值都是正数D. 整数和分数统称有理数5.有理数的相反数为()A. ﹣3B.C.D. 36.下面各对数中互为相反数的是()A. 2与–(–2)B. –2与–|2|C. |–2|与|2|D. 2与–|–2|7.通常高于海平面的地方,用正数表示它的高度,低于海平面的地方,用负数表示它的高度.已知甲、乙、丙三地的海拔高度分别为+100米、-10米和-80米,下列说法中不正确的是()A. 乙地比丙地高70米B. 乙地比甲地低90米C. 丙地最低D. 甲地高出海平面100米8.若| | =-,则一定是()A. 非正数B. 正数C. 非负数D. 负数9.下列比较大小正确的是()A. B. C. D.10.如图,若数轴上A、B两点之间的距离是5,且点B在原点左侧,则点B表示的数是()A. 5B. -5C. 2D. -211.已知A,B,C三点在数轴上从左向右排列,且AC=3AB=6,若B为原点,则点C所表示的数是()A. -6B. 2C. 4D. 612.将1,2,3,4,5,6六个数随机分成2组,每组各3个,分别用,,和,,表示,且,,设,则的可能值为().A. B. 3或9 C. 9 D. 5或9二、填空题(本大题有6小题,每小题3分,共18分)13.数轴上有两个实数,,且>0,<0,+ <0,则四个数,,,的大小关系为________(用“<”号连接).14.若与互为相反数,则的值为________.15.已知|a|=2,|b|=3,|c|=4,且a>b>c,则a+b+c=________.16.如图,已知四个有理数m、n、p、q在一条缺失了原点和刻度的数轴上对应的点分别为M、N、P、Q,且m+p=0,则在m,n,p,q四个有理数中,绝对值最小的一个是________.17.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=________.18.如图,点A、B在数轴上,其对应的数分别是-14和10,若点C也在这个数轴上,且AC:BC=2:5,则点C对应的数是________.三、解答题(本大题有7小题,共66分)19.(8分)小红在做作业时,不小心将两滴墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断墨水盖住的整数有哪几个?20.(8分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.;按照从小到大的顺序排列21.(8分)已知a、b互为相反数,m、n互为倒数(m、n都不等于±1),x为的倒数,求﹣2×m×n+﹣|x|的值.22.(10分)如图,P是线段AB上任一点,AB=12 cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2 cm/s,D点的运动速度为3 cm/s,运动的时间为t s.(1)若AP=8 cm.①运动1s后,求CD的长;②当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2 s时,CD=1 cm,试探索AP的值.23.(10分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?24.(10分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.25.(12分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.参考答案一、选择题(本大题有12小题,每小题3分,共36分)1. C2.A3. D4. D5. C6. D7. B 8. A 9. A 10. D 11. C 12. C二、填空题(本大题有6小题,每小题3分,共18分)13. b<-a<a<-b 14. 1 15. -5或-9 16. q 17. 718. - 或-30四、解答题(本大题有7小题,共66分)19. 解:墨水盖住的整数-12,-11,-10,-9,-8,11,12,13,14,15,16,17.20. 解:如图所示:,则−<−|−2|<−1.5<0<−(−1)<3.故答案是:−<−|−2|<−1.5<0<−(−1)<3.21. 解:a、b互为相反数,m、n互为倒数,故a+b=0,mn=1,x为的倒数,故x=-3,∴﹣2×m×n+﹣|x|=-2×1+-|-3|=-2+0-3=-5,故答案为-5.22. (1)解:①由题意可知:CP=2×1=2(cm),DB=3×1=3(cm).∵AP=8 cm,AB=12 cm,∴PB=AB-AP=4 cm.∴CD=CP+PB-DB=2+4-3=3(cm).②∵AP=8 cm,AB=12 cm,∴BP=4 cm,AC=(8-2t)cm.∴DP=(4-3t)cm.∴CD=CP+DP=2t+4-3t=(4-t)cm.∴AC=2CD.(2)解:当t=2时,CP=2×2=4(cm),DB=3×2=6(cm),当点D在点C的右边时,如图所示:∵CD=1 cm,∴CB=CD+DB=7 cm.∴AC=AB-CB=5 cm.∴AP=AC+CP=9 cm.当点D在点C的左边时,如图所示:∴AD=AB-DB=6 cm.∴AP=AD+CD+CP=11 cm.综上所述,AP=9 cm或11 cm23. (1)解:=答:守门员最后回到了球门线的位置.(2)解:由观察可知:答:在练习过程中,守门员离开球门线最远距离是12米. (3)解:答:守门员全部练习结束后,他共跑了54米24. (1)解:2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8(2)解:由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a25. (1)解:﹣2+4=2.故点B所对应的数是2.(2)解:(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度。
七年级上册第1章训练题一.选择题1.定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为()A.﹣7B.﹣1C.1D.﹣42.如图,点O为数轴的原点,若点A表示的数是﹣1,则点B表示的数是()A.﹣5B.﹣3C.3D.43.数轴上,点A、B分别表示﹣1、7,则线段AB的中点C表示的数是()A.2B.3C.4D.54.下列说法:①﹣a是负数;②﹣2的倒数是;③﹣(﹣3)的相反数是﹣3;④绝对值等于2的数2.其中正确的是()A.1个B.2个C.3个D.4个5.若|x|=3,|y|=4,则x+y值为()A.±7或±1B.7或﹣7C.7D.﹣76.如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则与点A表示的数互为相反数的是()A.﹣7B.3C.﹣3D.27.用分配律计算()×,去括号后正确的是()第1页(共1页)A .﹣B .﹣C .﹣D .﹣8.下列各式中,与3÷4÷5运算结果相同的是()A.3÷(4÷5)B.3÷(4×5)C.3÷(5÷4)D.4÷3÷5 9.如图,a,b在数轴上的位置如图所示,那么|a﹣b|+|a+b|的结果是()A.﹣2b B.2b C.﹣2a D.2a 10.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1二.填空题11.已知|a|=2,|b|=4,若|a﹣b|=a﹣b,则a+b 的值等于.12.若a、b互为相反数,c、d互为倒数,则(a+b)2﹣2cd=.13.已知|x|=3,|y|=7,且x+y>0,则x﹣y的值等于.14.如果规定向北为正,那么走﹣200米表示.15.a,b是自然数,规定a∇b=3×a﹣,则2∇17的值是.三.解答题16.计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);第1页(共1页)(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.17.现有15箱苹果,以每箱25kg为标准,超过或不足的部分分别用正、负数来表示,记录如下表,请解答下列问题:﹣102 2.53标准质量的差(单位:kg)﹣2﹣1.5箱数1322241(1)15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量相比,15箱苹果的总重量共计超过或不足多少千克?(3)若苹果每千克售价为8元,则这15箱苹果全部售出共可获利多少元?18.已知数轴上的点A和点B之间的距离为16个单位长度,点A在原点的左边,距离原点4个单位长度,点B在原点的右边.(1)点A所对应的的数是,点B对应的数是.(2)若已知在数轴上的点E从点A出发向右运动,速度为每秒1个单位长度,同时点F 从点B出发向左运动,速度为每秒3个单位长度,求当EF=4时,点E对应的数(列方第1页(共1页)程解答)(3)若已知在数轴上的点M从点A出发向右运动,速度为每秒a个单位长度,同时点N 从点B出发向右运动,速度为每秒2a个单位长度,设线段NO的中点为P(O为原点),在运动过程中,线段OP的值减去线段AM的值是否变化?若不变,求其值;若变化,说明理由.19.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?第1页(共1页)20.有个填写运算符号的游戏:“2_3_5_9”,在每个“____”上,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:2+3﹣5﹣9;(2)若2÷3×59=30,请推算横线上的符号;(3)在“235+9”的横线上填入符号后,使计算所得数最小,直接写出填上符号后的算式及算式的计算结果的最小值.第1页(共1页)参考答案一.选择题1.解:根据题中的新定义得:原式=(﹣5+3)×2=﹣4,故选:D.2.解:点B在原点的右侧,且到原点3个单位长度,因此点B表示的数为3,故选:C.3.解:线段AB的中点C 表示的数为:=3,故选:B.4.解:①﹣a不一定是负数,错误;②﹣2的倒数是,正确;③﹣(﹣3)的相反数是﹣3,正确;④绝对值等于2的数是±2,错误;故选:B.5.解:∵|x|=3,|y|=4,∴x=±3,y=±4,∴x+y=﹣3+4=1,或x+y=﹣3﹣4=﹣7,x+y=3+4=7或x+y=3﹣4=﹣1,综上所述,x+y的值为±7或±1,故选:A.第1页(共1页)6.解:数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,∵点C表示的数为1,∴点B表示的数为﹣4,∴点A表示的数为﹣2,∴则与点A表示的数互为相反数的是2,故选:D.7.解:()×=,故选:D.8.解:3÷4÷5=×=,A、原式=3÷=,不符合题意;B、原式=3÷20=,符合题意;C、原式=3÷=,不符合题意;D 、原式=×=,不符合题意,故选:B.9.解:根据题意得:b<a<0,且|a|<|b|,∴a﹣b>0,a+b<0,∴原式=a﹣b﹣a﹣b=﹣2b.第1页(共1页)故选:A.10.解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1+1+1=1,故选:D.二.填空题11.解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=a﹣b,∴a﹣b>0,∴a>b,∴a=2,b=﹣4,或a=﹣2,b=﹣4.(1)a=2,b=﹣4时,a+b=2+(﹣4)=﹣2.(2)a=﹣2,b=﹣4时,a+b=﹣2+(﹣4)=﹣6.故答案为:﹣2或﹣6.12.解:根据题意得:a+b=0,cd=1,则原式=0﹣2=﹣2.故答案为:﹣2.第1页(共1页)13.解:∵|x|=3,|y|=7∴x=3或x=﹣3;y=7或y=﹣7,又∵x+y>0,∴当x=3,y=7时,x﹣y=3﹣7=﹣4;当x=﹣3,y=7时,x﹣y=﹣3﹣7=﹣10;故答案为:﹣4或﹣10.14.解:规定向北走为正,则向南走为负,故走﹣200米表示向南走200米.故答案为:向南走200米.15.解:∵a∇b=3×a ﹣,∴2∇17=3×2﹣=6﹣=.故答案为:.三.解答题16.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)第1页(共1页)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.17.解:(1)3﹣(﹣2)=5(千克).答:最重的一箱比最轻的一箱重5千克;(2)﹣2+(﹣1.5×3)+(﹣1×2)+0×2+(0×2)+2×2+2.5×4+3×1=8.5(千克).答:与标准质量相比,15箱苹果的总重量共计超过8.5千克;(3)25×15+8.5=383.5(千克)383.5×8=3068(元).答:这15箱苹果全部售出共可获利3068元.18.解:(1)根据题意得:A点所对应的数是﹣4;B对应的数是12.故答案为﹣4,12;第1页(共1页)(2)设经过x秒时,EF=4.分两种情况:①相遇前,根据题意得:x+4+3x=16,解得:x=3.则点E对应的数为﹣4+1x3=﹣1;②相遇后,根据题意得:x﹣4+3x=16,解得:x=5,则点E对应的数为﹣4+5=1;(3)设运动时间是t秒,则AM=at,PO =ON =,则PO﹣AM =﹣at=6.即PO﹣AM为定值,定值为6.19.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.第1页(共1页)20.解:(1)原式=5﹣5﹣9=﹣9;(2)若2÷3×5×9=30,因此“空格”上的符号为“×”;(3)2﹣3×5+9=﹣4,故答案为:﹣×.第1页(共1页)。
一、解答题1.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.2.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.3.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 4.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯-(3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72.【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.5.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】 (1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 6.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦ =[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 7.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.8.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.9.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯- ⎪⎝⎭=1136623-⨯+⨯ =332-+=2; (2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.10.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.11.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.12.计算:()22216232⎫⎛-⨯--⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯--=213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.13.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.14.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.15.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可. 【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数, ∴点A 表示的数是-3,点B 表示的数是3; (2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3, ∴直尺此时左端点C 表示的数-3-0.5a . 【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键. 16.计算: (1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11. 【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可. 【详解】 解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-, =13-7, =6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++- =11. 【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序. 17.计算(1))()()(2108243-+÷---⨯-; (2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-.【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得. 【详解】(1)原式108412=-+÷-,10212=-+-, 20=-;(2)原式())(112976=--⨯-÷-,())(11776=--⨯-÷-,)(7176=-+÷-,116=--,116=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 18.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7- 【分析】(1)根据移动的方向和距离结合数轴即可回答; (2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解. 【详解】解:(1)点B 表示的数为-4+5=1, ∵-1<1<2,∴三个点所表示的数最小的数是-1; (2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点, AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上, 则点E 表示的数为-3. 【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键. 19.计算 (1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+. 解析:(1)14;(2)0 【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法. 【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.20.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一) 【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算; (2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可. 【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <, 所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※; (3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立. 【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可. 21.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 22.计算:(1)()()34287⨯-+-÷; (2)()223232-+---. 解析:(1)16-;(2)6. 【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值. 【详解】(1)原式12416=--=- (2)原式34926=-+-= 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米? 解析:(1)回到了球门线的位置;(2)11米;(3)56米 【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求; (3)求出所有数的绝对值的和即可. 【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10) =(5+10+13)-(4+8+6+10) =28-28 =0.答:守门员最后回到了球门线的位置; (2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10| =5+4+10+8+6+13+10 =56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.24.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.25.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点A B C D终点上车人数161512780下车人数0-3-4-10-11)到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解. 【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.26.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++; ②0,0a b <<,==11=2a b a b a b a b +-----; ③0ab <,=1+1=0a ba b+-, 综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键. 27.计算 (1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果; 【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷-- ()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭255104=-⨯+ 54=-.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.28.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间? 解析:(1)见解析;(2)4.5km ;(3)36分钟 【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可; (2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案. 【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=, 故小红家与学校之间的距离是4.5km ; (3)小明一共跑了(2 1.51)29()km ++⨯=, 跑步用的时间是:900025036÷=(分钟). 答:小明跑步一共用了36分钟. 【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.29.计算:2334[28(2)]--⨯-÷- 解析:21-. 【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得. 【详解】解:原式[]9428(8)=--⨯-÷-,[]942(1)=--⨯--,943=--⨯, 912=--, 21=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.30.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克 【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数. 【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克. (2)()5428001.56793+⨯=(克) 所以抽样检测的这些奶粉的总质量为9635克. 【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.。
(满分120分,考试时间90分钟) 姓名_________
一、选择题:(每小题3分,共30分)
1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )
2、下列说法中正确的是( )
A.两个负数相减,等于绝对值相减;
B.两个负数的差一定大于零
C.负数减去正数,等于两个负数相加;
D.正数减去负数,等于两个正数相减
3、计算: 123456789100.10.20.30.40.50.60.70.80.9
-+-+-+-+-++++++++的结果为( ) A.91 B.911 C.9
1- D.911- 4、若三个不等的有理数的代数和为0,则下面结论正确的是( )
个加数全为0 B.最少有2个加数是负数
C.至少有1个加数是负数
D.最少有2个加数是正数
5、以下命题正确的是( ).
(A )如果
那么a 、b 都为零 (B )如果 ,那么a 、b 不都为零 (C )如果 ,那么a 、b 都为零 (D )如果 ,那么a 、b 均不为零
6、若23(2)0m n -++=,则2m n +的值为( )
A .4-
B .1-
C .0
D .4
7、绝对值大于 1 小于 4 的整数的和是( )
A 、0
B 、5
C 、-5
D 、10
8、a,b 互为相反数,下列各数中,互为相反数的一组为( )
与b 2 B. a 3与b 3 C. a 2n 与b 2n (n 为正整数) D. a 2n+1与b 2n+1(n 为正整数)
9、若a 2003·(-b)2004<0,则下列结论正确的是( )
A .a>0,b>0 <0,b>0 <0,b<0 <0,b ≠0。
10、 2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200
米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数) ( )
A .-26°C
B .-22°
C C .-18°C
D .22°C
二、填空题(每空2分,共30分)
11、平方与绝对值都是它的相反数的数是________,这个数的立方和它的关系是_________。
12、已知P 是数轴上的一个点。
把P 向左移动3个单位后,再向右移动一个单位,这时它到原点的距离 是4个单位,则P 点表示的数是______。
13、数轴上哪个数与-24和40的距离相等_____,与数轴上数a 和b 距离相等的点表示的数是_______。
14、在数轴上表示 a 的点到原点的距离为 3,则 a -3=____。
15、若 n 为自然数,那么(-1)2n +(-1)2n +1=____。
16、定义2*1a b a b =+-,则(8)*17-=___________.
17、有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +1, a ⊕(b +1)= n -2 现在已知1⊕1 = 2,那么2008⊕2008 = .
18、已知3a =,且0a a +=,则321a a a +++=___________.
19、若a+2b+3c=10,且4a+3b+2c=15,则a+b+c= .
20、(a —1)2+2+b =0,则(a+b)2003的值是_____。
条件还可以怎样给出 .
21、已知2a —b=5,求代数式4a —2b+7=___________.
22、若a<0,且ab<0,化简|b-a+4|-|a-b-7|=___________.
三、计算题(每小题4分,共24分)
(23)100÷(-2)2-(-2)÷(-
32) (24) 215[4(10.2)(2)]5
---+-⨯÷- 4
(25)21122()(2)2
233-+⨯-- (26)53)8()92()4()52(8⨯-+-⨯---⨯
(27) (-)++(-114)+(-12
)++(-) (28)1-2+3-4+…+(-1)n+1·n.
四、解答题(共36分)
29、已知│x-1│=3,求 -3│1+x │-│x │+5的值.(4分)
30、()()
的值。
求且若b a c c b a a -⋅=-=++-32,21,0212(4分)
30、(1)已知 与2互为相反数, 互为倒数,试求代数式 的值.(3分)
(2)、若,a b 互为相反数,,c d 互为倒数,x 的绝对值是1,求
a b x cd x
+++的值(3分)
31、若用A 、B 、C 、D 分别表示有理数a 、b 、c,0为原点如图2-6-1所示.已知a<c<0,b>0. (6分)
(1)化简a c b a c a -+---; (2)a b c b a c -+---+-+
(2)化简2c+│a+b │+│c-b │-│c-a │.
C B A
O
33、规定图形表示运算a-b+c,图形表示运算x+z —y —w.则+=_______(5分) (要求写出计算过程)
34、在正数范围内规定一种运算※,其规则为 a ※b=
b a b a +-。
根据这个规则,求3※2及2※3的值.并说明※运算满足交换律吗(5分)
35、观察下列各正方形图案图2-6-2,每条边上有n(n ≥2)个圆点,•每个图案中圆点的总数是S 。
(6分) (要求写出解题过程)
(1)数一数为n=2时,s=_______,当n=3时,s=________.
(2)请你画出n=4时的图形,并指出此时,s=________.
(3)你是否发现了什么规律,能不能推断出s 与n 的关系式
....n=4n=3n=2
&。