1.半导体物理:半导体中的电子状态
- 格式:ppt
- 大小:13.07 MB
- 文档页数:15
第一篇习题半导体中的电子状态1-1、什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
1-2、试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征。
1-4、简述Ge、Si和GaAS的能带结构的主要特征。
1-5、某一维晶体的电子能带为其中E=3eV,晶格常数a=5х10-11m。
求:(1)能带宽度;(2)能带底和能带顶的有效质量。
第一篇题解半导体中的电子状态刘诺编1-1、解:在一定温度下,价带电子获得足够的能量(≥E)被激发到导带成为g导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge、Si的禁带宽度具有负温度系数。
1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A、荷正电:+q;B、空穴浓度表示为p(电子浓度表示为n);C、EP =-EnD、mP *=-mn*。
1-4、解:(1)Ge、Si:a)Eg (Si:0K) = ;Eg (Ge:0K) = ;b)间接能隙结构c)禁带宽度E g随温度增加而减小;(2)GaAs:a)Eg(300K)第二篇习题-半导体中的杂质和缺陷能级刘诺编2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。
2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p型半导体。
2-4、掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。
第一章半导体中的电子状态1.分类说明半导体材料的晶格结构与结合特性。
答:金刚石结构特点:每个原子周围有四个最邻近的原子,组成一个正四面体结构,配位数是4. 夹角109°28′。
金刚石结构可以看成是两个面心立方晶包沿立方体的空间对角线相互位移四分之一对角线套构而成。
闪锌矿结构特点:双原子复式结构,它是由两类原子各自组成的面心立方晶胞沿立方体的空间对角线相互位移四分之一对角线套构而成。
以共价键为主,结合特性具有不同程度的离子性,称为极性半导体。
2.什么是电子共有化运动?原子中内层电子和外层电子参与共有化运动有何不同?答:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去。
因而,电子可以在整个晶体上运动。
因为个原子中相似壳层上的电子才有相同能量,电子只能在相似壳层上转移,因此共有化运动的产生是由于不同原子的相似壳层之间的交叠。
由于内外层交叠程度很不相同,所以只有最外层电子的共有化运动才显著。
3.说明能级分裂成能带的根本原因以及内外层能带有何不同?答:根本原因,当周围n个原子相互靠近时,每个原子中的电子除受到本身原子的势场作用外,还要受到其他原子的作用,其结果是每一个n度简并的能级都分裂为n个彼此相距很近的能级;·内壳层原来处于低能级,共有化运动很弱,能级分裂的很小,能带窄。
外壳层电子原来处于高能级,共有化运动显著,能带分裂的厉害,能带宽。
4.原子中的电子自由电子和晶体中电子受势场作用情况有何不同?自由电子和晶体中电子运动情况有何不同?答: 孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,晶体中的电子是在严格周期性重复排列的势场中运动5.导体、半导体和绝缘体能带的区别?答:金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导电体。
绝缘体禁带宽度大,常温下激发到导带的电子很少,导电性差。
半导体物理问答题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一篇 习题 半导体中的电子状态1-1、什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
1-2、试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征。
1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。
1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。
求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。
第一篇 题解 半导体中的电子状态1-1、解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge 、Si 的禁带宽度具有负温度系数。
1-3、解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。
1-4、解:(1) Ge 、Si:a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )E g (300K )= 1.428eV , Eg (0K) = 1.522eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE oooo 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。
第三章半导体中的电子状态半导体独特的物理性质与其内部电子的运动状态密切相关。
本章扼要介绍一些有关的基本概念。
§3-1 电子的运动状态和能带§3-1-1孤立原子和自由空间中的电子状态为了便于理解半导体中的电子运动状态和能带的概念,先复习一下孤立原子中的电子状态和能级﹑自由空间中的电子状态和能谱的概念。
一.原子中的电子状态和能级。
原子是由带正电荷的原子核和带负电荷的电子组成的,原子核的质量远大于电子的质量。
因此,可认为电子是在原子核的库仑引力作用下绕着原子核运动的。
电子绕原子核运动遵从量子力学规律,处于一系列特定的运动状态,这些特定状态称量子态或电子态。
在每个量子态中,电子的能量(能级)是确定的。
处于确定状态的电子在空间的几率分布是一定的。
在讨论原子中的电子运动时,也常采用经典力学的“轨道”概念,不过其实际含义是指电子在空间运动的一个量子态和几率分布。
按“轨道”概念,对于原子中的电子,能级由低到高可分为E1﹑E2﹑E3﹑E4..等,分别对应于1s﹑2s﹑2p﹑3s…等一系列量子态。
如图3-1所示,内层轨道上的电子离原子核近,受到的库仑束缚作用强,能级低。
越往外层,电子受到的束缚越弱,能级越高。
总之,在单个原子中,电子运动的特点是其运动状态为一些局限在原子核周围的局域化量子态,其能级取一系列分立值。
二.自由空间中的电子状态和能谱。
根据量子力学理论,在势场不随位置变化的自由空间中,电子的运动状态满足下面的定态薛定谔方程)()()(222r k E r mψψ=∇- (3-1) 该方程的解为平面波:r k i ke V r ⋅=1)(ψ )(22)(222222z y x k k k mm k k E ++== (3-2) 其中,)(r k ψ称波函数,)(k E 称能量谱值或本征值,V 为空间体积,k 为平面波的波矢,其大小为波长倒数的2π倍,即k=2π/λ。
这里k 也起着量子数的作用,用来标志自由电子的运动状态。
第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。
试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。
解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:min 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为0.25 nm 的一维晶格,当外加102 V/m 、107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102 V/m 时,88.310t s -=⨯;当E = 107 V/m 时,138.310t s -=⨯。
半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
第一章 半导体中的电子状态§1.1 锗和硅的晶体结构特征 金刚石结构的基本特征§1.2 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。
几种常用半导体的禁带宽度; 本征激发的概念§1。
3 半导体中电子的运动 有效质量导带底和价带顶附近的E(k )~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =。
§1。
4本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§1。
5 回旋共振§1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§2。
1 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。
§2。
2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§3。
1状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4ncc m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4p v Vm g E V E E hπ=-§3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关.1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。
3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。
半导体物理考点归纳第一章 半导体中的电子状态一.名词解释1.电子的共有化运动:(P10)原子组成晶体后,由于电子壳的交叠,电子不再局限于某一个原子上,可以由一个原子转移到相邻的原子上去。
因而,电子可以在整个晶体中运动。
这种运动称为电子的共有化运动。
2.单电子近似:(P11)单电子近似方法认为,晶体中德电子是在周期性排列且固定不动的原子核势场,以及其他大量电子的平均势场中运动,这个势场是周期性变化的,且其周期与晶格周期相同。
3.有效质量:(P19)有效质量2*22n h m d Edk =,它直接把外力f 和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括。
二.判断题1.金刚石和闪锌矿结构的结晶学原胞都是双原子复式格子,而纤锌矿结构与闪锌矿结构型类似,以立方对称的正四面体结构为基础。
(X )金刚石型结构为单原子复式格子,纤锌矿型是六方对称的。
2.硅晶体属于金刚石结构。
(√)3.Ge 的晶格是单式格子。
(X ) (复式)4.有效质量都是正的。
(X ) (有正有负)5.能带越窄,有效质量越小。
(X )(2*22n h m d Edk =,能带越窄,二次微商越小,有效质量越大) 6.硅锗都是直接带隙半导体。
(X ) (间接)7.Ge 和Si 的价带极大值均位于布里渊区的中心,价带中空穴主要分布在极大值附近,对应同一个k 值,()E k 可以有两个值。
8.实际晶体的每个能带都同孤立原子的某个能级相当,实际晶体的能带完全对应于孤立原子的能带。
(X ) (不相当,不完全对应)三.填空题1.晶格可以分为7大晶系,14种布拉菲格子,按照每个格子所包含的各点数,可分为原始格子,体心,面心,底心。
2.如今热门的发光材料LED 是直接带隙半导体,该种材料的能带结构特点是当k=0时的能谷的极值小。
3.Ge 、Si 是间接带隙半导体,InSb 、GaAs 是直接带隙半导体。
4.回旋共振实验中能测出明显的共振吸收峰,就要求样品纯度高,而且要在低温下进行。
半导体物理半导体中的电子状态半导体物理:半导体中的电子状态半导体是一种在电性能上介于导体和绝缘体之间的材料。
半导体中的电子状态对于半导体器件的特性和性能起着至关重要的作用。
本文将探讨半导体中的电子状态,并介绍与之相关的几个重要概念。
1. 能带结构半导体中的电子状态与能带结构密切相关。
能带是将材料中的电子能级按照能量高低进行分类的一种方式。
在半导体中,一般存在两个主要的能带,即价带和导带。
价带是电子处于较低能量状态的能带,而导带则是电子处于较高能量状态的能带。
能带之间的能隙决定了电子的跃迁行为。
2. 杂质能级半导体中的杂质能级是指由掺入杂质引起的局部能量水平。
掺杂是通过向半导体中引入少量的杂质元素改变其电子状态。
掺入五价元素(如磷)会产生施主能级,该能级位于导带上方,提供自由电子;而掺入三价元素(如硼)会产生受主能级,该能级位于价带下方,吸收自由电子。
杂质能级的引入对半导体器件的性能起着决定性作用。
3. 载流子在半导体中,载流子是负责电荷传输的粒子。
主要有电子(负载流子)和空穴(正载流子)两种类型。
在纯净的半导体中,电子和空穴的浓度相等,称为本征半导体。
通过掺杂,可以改变载流子的浓度,从而实现半导体的导电性的调控。
4. 载流子的浓度与掺杂浓度的关系半导体材料的光、热、电等特性与掺杂浓度有关。
掺杂浓度越高,材料的导电性能越好。
在一定范围内,载流子浓度与掺杂浓度成正比。
然而,过高的掺杂浓度可能导致材料中的杂质能级相互重叠,从而影响器件的性能。
5. 半导体的禁带宽度禁带宽度是指价带和导带之间的能量间隔,决定了半导体材料的电导率。
半导体的禁带宽度较小,比绝缘体的小,但比导体的大。
通过控制禁带宽度,可以实现对半导体的电学性质调控。
总结:本文讨论了半导体中的电子状态。
通过对能带结构、杂质能级、载流子浓度与掺杂浓度关系,以及禁带宽度等概念的介绍,我们可以更好地理解半导体器件的工作原理和性能特点。
半导体物理作为一门重要的学科领域,对于现代电子技术的发展和应用具有重要意义。
半导体物理习题答案 The document was prepared on January 2, 2021第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(1)能带宽度;(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响8描述半导体中电子运动为什么要引入“有效质量”的概念用电子的惯性质量描述能带中电子运动有何局限性9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
第一章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值周围能量E c (k )和价带极大值周围能量E v (k )别离为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =。
试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的转变。
[解] ①禁带宽度Eg依照dk k dEc )(=0232m kh +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k ,由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;而且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯= ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dkE d V -=,∴0222'61/m dk E d h m Vn -== ④准动量的改变量h △k =h (k min -k max )= a hk h 83431=2. 晶格常数为的一维晶格,当外加102V/m ,107V/m 的电场时,试别离计算电子自能带底运动到能带顶所需的时刻。
[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 21dk =aqE h 21代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s ) 当E =102 V/m 时,t =×10-8(s );E =107V/m 时,t =×10-13(s )。