数学归纳法及应用举例
- 格式:pptx
- 大小:260.19 KB
- 文档页数:17
数学归纳法及应用举例重点难点分析:(1)第一步递推基础,第二步是递推依据,密切相关缺一不可。
(2)归纳思想充分体现了特殊与一般的思想,数学归纳法体现了有限与无限的辩证关系与转化思想。
(3)归纳—猜想—证明是经常运用的数学方法,观察是解决问题的前提条件,需要进行合理的试验和归纳,提出合理猜想,从而达到解决问题的目的。
(4)数学归纳法的应用通常与数学的其它方法联系在一起,如比较、放缩、配凑、分析和综合法等。
典型例题:例1.证明:=-n(n+1)(4n+3)。
证明:①当n=1时,左,右=-1(1+1)(4+3)=-14,等式成立。
②假设n=k时等式成立,即=-k(k+1)(4k+3)。
n=k+1时,+[(2k+1)(2k+2)2-(2k+2)(2k+3)2] =-k(k+1)(4k+3)-2(k+1)(4k2+12k+9-4k2-6k-2) =-(k+1)[4k2+3k+2(6k+7)]=-(k+1)(4k2+15k+14)=-(k+1)(k+2)(4k+7)=-(k+1)[(k+1)+1][4(k+1)+3],等式成立。
由①②知,当n∈N′时等式成立例2.试证S n=n3+(n+1)3+(n+2)3能被9整除。
证明:①n=1时,S1=4×9,能9整除。
②假设,n=k时,S k能被9整除,则S k+1=(k+1)3+(k+2)3+(k+3)3=S k+(k+3)3-k3=S k+9(k3+3k+3)由归纳假设知S k+1能被9整除,也就是说n=k+1时命题也成立。
综上所述:命题成立。
点评:用数学归纳法证明整除问题时,关键是把n=k+1时的式子分成两部分,其中一部分应用归纳假设,另一部分经过变形处理,确定其能被某数(某式)整除。
例3.通过一点有n个平面,其中没有任何3个平面交于同一条直线,用数学归纳法证明这些平面把空间分成(n2-n+2)个部分。
证明:设适合条件的n个平面把空间分成p n个部分,∴p n=n2-n+2①当n=1时,p1=1-1+2=2,显然符合条件,故命题成立。
数学归纳法在中学数学中的应用数学归纳法是高中数学中的一项重要内容,它不仅在代数学和数学分析中具有广泛的应用,而且在初中数学中也扮演着重要的角色。
本文将重点介绍中学数学中数学归纳法的应用,以及如何正确运用数学归纳法解题。
一、数学归纳法的基本思想数学归纳法是一种证明方法,通常用于证明由自然数组成的数列或命题,其基本思想是:第一步:证明当n=1时,命题成立。
第二步:假设当n=k(k≥1)时命题成立,并用此假设来证明当n=k+1时命题也成立。
第三步:由第一、二步可知,对于集合{1,2…}中的每一个正整数n,命题成立。
二、应用举例1.证明1+2+…+n=n(n+1)/2对于此题,我们可以按照数学归纳法的步骤逐步解题。
第一步:当n=1时,1=1(1+1)/2,命题成立。
第二步:假设当n=k时1+2+…+k=k(k+1)/2,根据假设,当n=k+1时:1+2+…+k+(k+1)=(k)(k+1)/2+(k+1)=(k+1)(k/2+1)=(k+1)((k+1)+1)/2命题成立。
第三步:由第一、二步可知,对于集合{1,2…}中的每一个正整数n,命题成立。
因此,数学归纳法可以用来证明1+2+…+n=n(n+1)/2。
(注:此处省略了对不符合条件的情况的讨论)2.证明以下命题成立2的n次方大于等于n+1,其中n为正整数。
第一步:当n=1时,2的1次方大于等于1+1,命题成立。
第二步:假设当n=k时,2的k次方大于等于k+1,根据假设,当n=k+1时:2的k+1次方大于等于2(k+1)而(k+1)+1=k+2因此,当n=k+1时,命题成立。
第三步:由第一、二步可知,对于集合{1,2…}中的每一个正整数n,命题成立。
因此,命题为真。
三、数学归纳法的要点虽然数学归纳法是一种简单的证明方法,但是正确的运用还有一定难度。
下面是数学归纳法中需注意的要点:1.首先要确保递推式适用于所有的正整数。
2.要明确所要证明的命题。
3.要分清递推式、递推式中的变量和由递推式推出的式子。
《数学归纳法应用举例》讲义一、数学归纳法的基本原理数学归纳法是一种用于证明与自然数有关的命题的重要方法。
它基于两个基本步骤:基础步骤和归纳步骤。
基础步骤:证明当 n 取第一个值(通常是 1)时,命题成立。
归纳步骤:假设当 n = k(k 是一个满足条件的自然数)时命题成立,然后证明当 n = k + 1 时命题也成立。
通过这两个步骤,就可以得出对于所有的自然数 n,命题都成立的结论。
二、简单的应用举例例 1:证明 1 + 2 + 3 +… + n = n(n + 1) / 2基础步骤:当 n = 1 时,左边= 1,右边= 1×(1 + 1) / 2 = 1,等式成立。
归纳步骤:假设当 n = k 时等式成立,即 1 + 2 + 3 +… + k =k(k + 1) / 2 。
那么当 n = k + 1 时,左边= 1 + 2 + 3 +… + k +(k + 1) ,而右边=(k + 1)(k + 2) / 2 。
左边= k(k + 1) / 2 +(k + 1) =(k + 1)(k + 2) / 2 =右边,所以当 n = k + 1 时等式也成立。
例 2:证明 1^2 + 2^2 + 3^2 +… + n^2 = n(n + 1)(2n + 1) /6基础步骤:当 n = 1 时,左边= 1^2 = 1,右边= 1×(1 + 1)×(2×1 + 1) / 6 = 1,等式成立。
归纳步骤:假设当 n = k 时等式成立,即 1^2 + 2^2 + 3^2 +…+ k^2 = k(k + 1)(2k + 1) / 6 。
当 n = k + 1 时,左边= 1^2 + 2^2 + 3^2 +… + k^2 +(k +1)^2 ,右边=(k + 1)(k + 2)(2k + 3) / 6 。
左边= k(k + 1)(2k + 1) / 6 +(k + 1)^2 ,经过化简可得(k + 1)(k + 2)(2k + 3) / 6 =右边,所以当 n = k + 1 时等式也成立。