教育统计学3
- 格式:ppt
- 大小:320.50 KB
- 文档页数:32
第4章差异量数1.度量离中趋势的差异量数有哪些?为什么要度量离中趋势?答:(1)度量离中趋势的差异量数有全距、四分位差、百分位差、平均差、标准差与方差。
差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称离散量数(measures of dispersion)。
(2)度量离中趋势的必要性在心理和教育研究中,要全面描述一组数据的特征,不但要了解数据的典型情况,而且还要了解特殊情况。
这些特殊性常表现为数据的变异性。
因此,只用集中量数不可能真实地反映出它们的分布情形。
为了全面反映数据的总体情况,除了必须求出集中量数外,这时还需要使用差异量数。
2.各种差异量数各有什么特点?答:(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。
缺点是较难理解,运算较繁琐,易受极端值的影响。
(2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。
因此,方差是推论统计中最常用的统计量数。
(3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使用。
(4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。
(5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。
(6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。
当组距不确定,其他差异量数都无法计算时,可以计算四分位差。
但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。
第一章绪论1,教育统计学是运用数理统计学的原理来研究教育问题的一门应用科学。
2,教育统计学分为描述统计、推断统计和实验设计三类。
(1)描述统计:计算集中量(算术平均数、中位数、众数、加权算术平均数、几何平均数、调和平均数)来反映集中趋势;计算差异量(全距、四分位距、百分位距、平均差、标准差、差异系数)反映离散程度;计算偏态量及峰态量反映分布形态;计算相关量(积差相关系数、等级、点二列、二列、四分、C相关系数、肯德尔和谐系数、多系列相关系数)反映一致性程度。
(2)推断统计包括总体参数估计和假设检验两部分。
3,随机现象三个特性:一,一次试验有多种可能的结果,其所有结果是已知的;二,试验之前不能预料那一种结果会出现;三,在相同条件下可以重复试验。
随机事件:随机现象的每一种结果。
随机变量:把能表示随机现象各种结果的变量称之4,总体:是我们研究的具有某种共同特性的个体的总和。
样本数目大于30称为大样本,小于等于30称为小样本。
第二章数据的初步整理1,教统资料来源有经常性资料和专题性资料。
专题性资料包括(1)教育调查。
按调查方法分为现情调查、回顾调查和追踪调查;按调查范围分全面调查和非全面调查(抽样调查和典型调查)。
(2)教育实验。
分为单组实验(指对同一实验对象先后实施两种实验处理)、等组实验(指在甲乙两组条件基本相同的情况下,对之实行不同的实验处理)和轮组实验(指在实验组和对照组分别进行两种实验处理,并且每种处理各重复一次,也即每个或多个单组实验的联合)2,数据的分类。
按来源分为点计数据和度量数据;按随机变量取值情况分为间断型随机变量(取值个数有限、独立的、两个单位之间不能再划分细小单位、一般用整数表示,如优劣程度、品德爱好打分)和连续性随机变量(个数无限、单位之间可以再划分、可以用小数表示如身高体重、完成作业的时间等)。
3,频数分布表制作步骤:求全距;决定组数和组距;决定组限;登记频数。
4,用累计频数表示的频数分布表称为累计频数分布表。
第13章多变量统计分析简介1.探索性因素分析与验证性因素分析有什么区别?答:(1)探索性因素分析(exploratory factor analysis,简写为EFA)就是指传统的因素分析。
这种因素分析方法对于观察变量因子结构的寻找,并未有任何事前的预设假定。
对于因子的抽取、因子的数目、因子的内容以及变量的分类,研究者也没有事前的预期,而是由因素分析的程序去决定。
在典型的EFA中,研究者通过共变关系的分解,找出最低限度的主要成分(principal component)或共同因子(common factor),然后进一步探讨这些主成分或共同因子与个别变量的关系,找出观察变量与其相对应因子之间的强度,也就是因子负荷值(factor loading),以说明因子与所属的观察变量的关系,决定因子的内容,为因子取一个合适的名字。
由于传统的因素分析企图找出最少的因子来代表所有的观察变量,因此研究者必须在因子数目与可解释变异量(explained variance)两者间寻找平衡点。
因为因素分析至多可以抽取出相等于观察变量总数的因子数目,这样,虽然可以解释全部百分之百的变异,但失去因素分析找寻因子结构的目的,但如果研究者企图以少数几个较明显的因子来代表所有的项目,势必然将损失部分可解释变异来作为代价。
因而在EFA中,研究者相当一部分工作是在决定因子数目与提高因子解释的变异(即R square)。
(2)验证性因素分析(confirmatory factor analysis,简写为CFA)是在研究人员积极改善传统因素分析的限制,扩大其应用范围的基础上产生的。
这类因素分析要求,研究者对于潜在变量的内容与性质,在测量之初就必须有非常明确的说明,或有具体的理论基础,并已先期决定相对应的观察变量的组成模式,进行因素分析的目的是为了检验这一先期提出的因子结构的适合性。
这种因素分析方法也可用于理论架构的检验,它在结构方程模型中占有相当重要的地位,有着重要的应用价值,也是近年来心理测量与测验发展中相当重视的内容。
第三章同步练习与思考题1.解释下列名词集中量数集中趋势平均数中数众数几何平均数倒数平均数百分位数四分位数2.平均数、中数、众数三者之间有何关系?如何选用?3.中数与百分位数、四分位数的关系如何?4.为什么说平均数是最具代表性、最好的集中量指标?作为一种优良集中量的指标应具备哪些条件?集中量的各项指标各有什么特殊用途?5.分析平均速度时应如何选择计算方法?6.某校2001级心理班学生的普通心理学的考试成绩如下表。
试问①平均数、中数、众数分别是多少?②百分之40和百分之86位置上的分数是多少?③四分位数分别是多少?表3-11 学生普通心理学考试成绩分布表组别93- 90- 87- 84- 81- 78- 75- 72- 69- 66- 63- 60- 57- 54- 人数 1 2 4 5 7 11 8 7 5 3 2 3 1 1 7.请就下列各组数据选择最佳的集中量指标,并计算出结果。
① 7,10,4,8,9,10,6,8② 8,5,9,10,11,14,11,12,40③ 17,19,12,16,18,10,22,18,178.某一团体成员的年龄分布如下表所示。
试问表示它们集中趋势的恰当指标是什么?为什么?并计算出你所选定的指标。
表3-12 年龄分布表25岁以下25-34岁35-44岁45-54岁55-64岁64岁以上f45 40 30 55 28 159.某院1995年至2004年研究生招生情况如表3-12所示。
①求平均发展速度和平均增长速度。
②估计2010年其研究生招生人数会达到多少?③若要达到500人需要多少年时间?表3-13 某院研究生招生人数发展水平1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 人数11 13 18 26 30 44 78 87 90 10210.某生英语阅读能力的测验分数如下表,求其平均进步率。
表2-14 某生的英语阅读量第1次第2次第3次第4次第5次第6次测验成绩28 39 55 67 77 8311.8名学生参加打字测验,每个学生每分钟打字的数量为18,20,23,25,29,33,37,41,求这8个学生的平均打字速度。
第14章抽样原理及方法1.什么是抽样误差?什么是最大允许抽样误差?答:任何一个抽样调查都可能产生误差。
调查的总误差可以分为两部分:非抽样误差和抽样误差。
非抽样误差指漏报、错报、测量误差以及在调查结果的登录、汇总等环节上产生的误差,其误差大小很大程度上取决于调查的组织工作是否完善;抽样误差则是根据样本信息来推断总体信息时产生的随机误差。
确定样本容量时应该考虑的因子(1)参数估计在样本平均数的分布中当或0.01时,或2.58。
此时而因此(公式14.14)可以看到,进行平均数的估计时,当α确定后(0.05或0.01),总体标准差σ和最大允许误差d是决定样本容量的两个因子。
2.什么情况下要进行分层抽样,举例说明或以公式证明分层抽样的优点。
答:1.方法(1)分层随机抽样简称分层抽样(stratified sampling或hierarchical sampling)。
具体做法是按照总体已有的某些特征,将总体分成几个不同的部分(每一部分叫一个层),再分别在每一部分中随机抽样。
它充分利用了总体的已有信息,因而是一种非常实用的抽样方法。
(2)对于一个总体究竟应该如何分层,分几层,要视具体情况而定。
总的一个原则是,各层内的变异要小,而层与层之间的变异越大越好,否则将失去了分层的意义。
(3)设总体为N,所需样本容量为n,则如何合理地将n分配在各层,是分层抽样的一个重要问题。
具体施行过程中有两种方式:①按各层人数比例分配这是在各层内的标准差不知道的情况下常用的分配方式,基本思想是人数多的层多分配,人数少的层少分配。
设各层的人数分别为N1,N2,N3…N k每层应分配的人数为n1,n2,n3…n k。
则如果按人数比例分配,则或任意一层应分配的人数应当为:(公式14.5)②最佳分配(最优配置法)这种分配不但根据各层人数比例,还考虑到了各层标准差。
如果各层内的标准差已知,就应该考虑到标准差大的层要多分配,标准差小的层要少分配。
张厚粲《现代心理与教育统计学》(第3版)笔记和课后习题(含考研真题)第一部分复习笔记本章重点ü心理与教育统计的研究内容ü选择使用统计方法的基本步骤ü统计数据的基本类型ü心理与教育统计的基本概念一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(applied statistics)两部分。
前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。
心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。
类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。
(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现2.心理与教育科学研究数据具有随机性和变异性3.心理与教育科学研究数据具有规律性4.心理与教育科学研究的目标是通过部分数据来推测总体特征(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题(1)学习心理与教育统计学时,必须要克服畏难情绪。
心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。
(2)在学习时要注意重点掌握各种统计方法使用的条件。
(3)要做一定的练习。
2.应用心理与教育统计方法时要做到:(1)克服“统计无用”与“统计万能”的思想,注意科研道德。
(2)正确选用统计方法,防止误用和乱用统计。