高压发电机组和低压发电机组的区别
- 格式:ppt
- 大小:312.00 KB
- 文档页数:7
按热力特性:有凝汽式、供热式、背压式、抽汽式和饱和蒸汽汽轮机等类型。
凝汽式汽轮机排出的蒸汽流入凝汽器,排汽压力低于大气压力,因此具有良好的热力性能,是最为常用的一种汽轮机。
供热式汽轮机既提供动力驱动发电机或其他机械,又提供生产或生活用热,具有较高的热能利用率。
饱和蒸汽轮机是以饱和状态的蒸汽作为新蒸汽的汽轮机。
背压式汽轮机的排汽压力大于大气压力的汽轮机,是以热负荷来调整发电负荷的发电机组,发电量跟着外界供蒸汽的多少来变化的,汽轮机进多少汽机组排多少汽,经济性较好。
背压机组是热电联合生产(热电联产)运行的机组,热电联产使能源得到合理利用,是节约能源的一项重要措施。
在众多的汽轮发电机组中,背压机由于消除了凝汽器的冷源损失,在热力循环效率方面是最高的,从而降低了发电煤耗、节约能源,故而得以广泛应用。
背压机亦有下述缺点:它对负荷变化的适应性差,机组发电量受制于热负荷变化。
当低热负荷时,汽轮机效率下降,从而使经济效益降低。
抽汽式汽轮机是能从中间级抽出蒸汽供热的汽轮机,可以纯发电也可以通过抽气向外界供热,它的电热相互调整性比较好,一般热电单位都装有两台汽轮机,单位可以根据外界负荷的变化作出相应的调整,保证机组经济运行。
抽汽式汽轮机是由汽轮机中间级抽出一部分蒸汽供给用户,即在发电的同时还供热的汽轮机。
根据用户需要可以设计成一次调节抽汽式或二次调节抽汽式。
一次调节抽汽式汽轮机又称单抽汽式汽轮机。
由高压部分和低压部分组成,相当于一台背压式汽轮机与一台凝汽式汽轮机的组合。
新汽进入高压部分作功,膨胀至一定压力后分为二股,一股抽出供给热用户,一股进入低压部分继续膨胀作功,最后排入凝汽器。
抽汽压力设计值根据热用户需要确定,并由调压器控制,以维持抽汽压力稳定。
单抽汽式汽轮机的功率为高、低压部分所生产功率之和,由进汽量和流经低压部分蒸汽量所决定。
调节进汽量可以得到不同的功率。
因此,在一定范围内,可同时满足热、电负荷需要。
单抽汽式汽轮机在供热抽汽量为零时,相当于一台凝汽式汽轮机;若将进入高压缸的蒸汽全部抽出供给热用户,则相当于一台背压式汽轮机。
收稿日期:2018 ̄03 ̄05作者简介:汤明星(1987-)ꎬ男ꎬ工程师ꎬ研究方向:柴油发电机组设计ꎮ.数据中心高压柴油发电机组的设计汤明星ꎬ叶雄伟ꎬ张俊君ꎬ钟森发ꎬ李㊀伟(泰豪电源技术有限公司ꎬ江西南昌㊀330020)摘要:为了满足数据中心应急备用电源的需求ꎬ设计了10.5kV高压柴油发电机组ꎮ结果表明:该机组具有快速自启动并机㊁启动冗余功能ꎻ既可单机对外供电ꎬ又可实现多机并联对外供电ꎻ机组动态指标能力强ꎬ能适应负载频繁突变ꎬ输出稳定ꎻ同时机组噪音低㊁振动小㊁节油ꎬ人机界面友好ꎬ产品维护简单ꎬ绿色环保ꎮ关键词:数据中心ꎻ高压柴油发电机组doi:10.3969/j.issn.1003 ̄4250.2018.01.004中图分类号:TM611.2㊀㊀文献标志码:A㊀㊀文章编号:1003 ̄4250(2018)01 ̄0013 ̄04㊀㊀随着大数据的发展ꎬ各行业都离不开数据中心ꎬ数据中心的建设数量急剧增长ꎬ单个数据中心的建设规模也越来越大ꎬ数据中心的蓬勃发展还将持续很长一段时间ꎮ根据预测ꎬ未来5年里ꎬ中国的数据中心市场还将以20%的复合年增长率增长ꎬ配置发电机组的数量也在迅速增加ꎮ柴油发电机组被视为备用和应急电源的较佳形式ꎮ目前ꎬ尽管已有不少其他解决备用和应急用电的手段ꎬ如UPS和双回路供电等ꎬ但不能取代柴油发电机组的作用ꎬ除价格因素之外ꎬ主要是因为柴油发电机组作为备用和应急电源ꎬ可靠性更高ꎬ其作为备用电源㊁移动电源和自备电源的优势在短期内是无可取代的[1]ꎮ虽然现在出现了各种代用燃料的发电机ꎬ如醇类㊁植物油和氢等作燃料的发电机ꎬ由于受技术㊁成本和应用能力的限制ꎬ无法大规模应用到相关领域ꎮ柴油发电机组因能源来源丰富㊁功率大㊁范围广ꎬ结构紧凑㊁重量轻㊁便于移动ꎬ起动迅速㊁操作简便㊁进入全负荷运行快等优点[2]ꎬ将长期作为数据中心的应急备用电源ꎮ目前数据中心应急备用电源主要有三种方案:(1)低压方案:400V低压机组ꎬ单机/并机ꎬ小容量ꎻ(2)低压升高压方案:400V升至20kVꎬ低压机组ꎬ升压变压器ꎬ高压柜ꎬ大容量ꎻ(3)高压方案:10kV高压机组ꎬ单机/并机ꎬ大容量ꎮ随着负载容量和供电距离的不断增加ꎬ低压供电已不能满足需求ꎬ高压供电将逐渐成为发展的趋势ꎮ高压备用电源系统可以满足数据中心用电设备的需要ꎬ同时具有远距离传输线损小㊁节能和大容量等特点[3-5]ꎮ为了满足数据中心高压供电的市场需求ꎬ设计研发了数据中心高压柴油发电机组ꎮ本文中的发电机组为10.5kV高压发电机组ꎬ既可单机对2000kW以内的用电设备供电ꎬ又可实现自动并联对用电设备供电ꎮ设计研发的机组能快速启动并机ꎬ可以满足多台机组8-12s启动并机带负载的要求ꎬ同时采用控制冗余和启动冗余技术ꎬ保证了数据中心应急电源的可靠性ꎮ1㊀高压柴油发电机组设计原则及要求1.1㊀高压柴油发电机组设计原则为了满足数据中心应急备用电源的使用要求ꎬ在设计10.5kV高压柴油发电机组时遵循的原则有:(1)在性能指标方面ꎬ满足GB/T2820.1-2009等相应国家标准ꎬ同时满足用户的使用要求ꎻ(2)在产品选型配置方面ꎬ在满足设计要求的前提下优先选用国内外知名品牌的高性能发动机㊁发电机ꎻ(3)在产品设计方面ꎬ结合公司柴油发电机组研发设计经验ꎬ满足数据中心对发电机组高可靠性的要求ꎬ并进一步提高数据中心电源系统的使用效率ꎬ降低成本ꎬ以及绿色环保ꎮ1.2㊀高压柴油发电机组设计要求10.5kV高压柴油发电机组的设计指标和主要技术参数见表1ꎮ表1㊀10.5kV高压柴油发电机组的设计指标和主要技术参数项目技术指标额定功率(kW)2000功率因数0.8(滞后)额定电压(V)10.5kV额定电流(A)137额定频率(Hz)50额定转速(r/min)1500稳态电压偏差ɤʃ1%瞬态电压偏差ɤ+20%ꎬ-15%电压恢复时间ɤ2s瞬态频率偏差ɤ+10%ꎬ-7%频率恢复时间ɤ3s稳态频率带ɤ0.5%空载线电压波形畸变率ɤ5%空载电压整定范围ȡ5%2㊀高压柴油发电机组设计方案2.1㊀高压柴油发电机组整体结构10.5kV高压柴油发电机组主要由柴油机㊁发电机㊁散热水箱㊁控制屏及公共底盘等组成ꎮ机组整体结构设计见图1ꎮ1.散热水箱ꎬ2.公共底盘ꎬ3.柴油发动机ꎬ4.橡胶减震器ꎬ5.弹性联轴器ꎬ6.发电机ꎬ7.控制屏.图1㊀10.5kV高压柴油发电机组整体结构㊀㊀柴油机是机组的核心部分ꎬ机组采用MTU的20V4000G233F数据中心专用柴油发动机ꎬ其中3F为连续功率ꎬ负载系数为100%ꎬ过载能力为10%ꎬ年运行时间不受限制ꎬ满足数据中心恒功率连续运行的要求ꎮ该发动机采用了先进的ADEC电子管理系统ꎬ可以控制每个喷嘴ꎬ也就是可以控制每个汽缸的供油量ꎬ因此MTU机组对发动机控制精度高ꎬ瞬态特性好ꎮ先进的电子管理系统为双CPU计算机控制系统ꎬ可以实现在启动和负载突变状态下迅速响应ꎬ恢复时间短ꎬ还可以独立完成全部发动机的控制ꎬ仅对发动机的保护功能就达320项之多ꎮ该发动机采用特质整体灰色合金铸铁制造曲柄㊁曲轴和连杆机构ꎬ极大地增强机构运行强度ꎬ在降低噪声和震动的同时ꎬ减少维护成本ꎬ延长机组大修周期ꎬ大修周期长达3万小时ꎮ该发动机还采用了燃油共轨技术ꎬ将燃油压力产生和燃油喷射分离开来ꎬ开辟了降低柴油发动机排放和降噪的新途径ꎬ降低了燃油消耗和有害气体排放ꎬ更加节油㊁环保ꎮMTU设计独立的活塞头ꎬ并使其具备两个进气阀和两个出气阀ꎬ不仅可承受极高的活塞压力ꎬ同时确保发动机具有低油耗㊁低排放和低维护成本的优良特性ꎮ交流发电机采用ABB公司生产的10.5kV交流高压发电机ꎮ该发电机采用PMG无刷励磁系统ꎬ采用数字式电压调节器(DVR)提高发电机抗谐波能力ꎬ加快励磁系统对负载的反馈速度ꎬ减小非线性负载对发电机的影响ꎬ为运行提供很好的稳定性ꎮ电机采用ABB特有的偏阻尼绕组技术ꎬ优化发电机输出的电压波形ꎬ提高了发电机抗谐波能力ꎻ采用成型绕组技术ꎬ可降低谐波对发电机绝缘系统的影响ꎬ同时加强了电机的机械性能ꎬ安全可靠ꎬ提高发电机的稳定性能ꎮ该发电机采用真空压力浸漆ꎬ微小的间隙将得到完全浸渍ꎮ电机绝缘材料经芬兰绝缘试验室认可后用于产品ꎬ保证电机的长期稳定运行ꎮ电机输出电压㊁频率等重要参数的稳定性高ꎬ抗干扰性能好ꎬ可以确保输出的电能稳定可靠ꎬ维护简单ꎮ电机还配备有DVR全自动稳压装置ꎬDVR安装在发电机内部的电力接线箱中ꎮ柴油机㊁发电机㊁散热水箱与公共底盘采用刚性连接ꎬ发动机与发电机的同轴度通过连接环的止口定位保证ꎬ柴油机飞轮通过弹性联轴器驱动发电机ꎬ这种联结方式能对柴油机在起动㊁停机及负载突变时ꎬ所产生的冲击起到缓冲减振作用ꎮ底盘采有工字钢结构ꎬ具有机械强度高㊁美观等特点ꎮ为便于操作和观察ꎬ控制屏装于发电机的侧面ꎮ本产品具有结构紧凑ꎬ安装使用方便等特点ꎻ电源带有自充电系统和浮充电系统ꎬ保证在正常运行或停机时能对蓄电池充电ꎮ发电机采用H级绝缘(F级温升考核)ꎬ并配备有DVR自动稳压装置ꎬ能自动保持和调节输出电压在规定范围内ꎻ柴油机的冷却系统采用闭式循环水冷却ꎻ控制模块自动检测和控制电压和频率ꎬ使其达到并机条件ꎬ发出合闸指令ꎬ实现自动并机ꎮ此外ꎬ控制模块自动检测负荷的大小ꎬ协调DVR和ADECꎬ实现系统的功率管理和有功/无功的均衡分配ꎮ2.2㊀高压柴油发电机组智能控制系统设计10.5kV高压柴油发电机组自动控制系统的设计方面主要可以实现自启动㊁自动并联㊁自动负载转移㊁低负载备用机自动解列/停机㊁高负载备用机自动启动/并联/投入㊁功率管理等功能ꎻ并能对机组多种异常状况提供自动保护报警㊁停机功能ꎬ包括:超速报警㊁停机ꎬ低油压报警㊁停机ꎬ高水温报警㊁停机ꎬ电压过高㊁过低报警㊁停机ꎬ差动保护ꎬ频率过高㊁过低报警㊁停机ꎬ短路及IDMT特性过流保护ꎬ电池电压过高㊁过低报警等ꎬ同样能极大地减少人工操作㊁维护成本ꎮ控制模块可以显示发电机组的各种参数ꎬ包括:三相电压㊁三相电流㊁频率㊁功率因数㊁有功功率㊁无功功率㊁用电量㊁机油压力㊁冷却液温度㊁转速㊁运行时间㊁电池电压㊁查看故障信息ꎮ同时机组自动控制系统能够提供三遥功能ꎬ通过Modbus通信协议的RS232通信接口ꎬ实现计算机远程通信㊁远程监测和远程控制功能ꎮ控制系统能远程监测发电机组的各种参数ꎬ远程控制机组的自动启动㊁自动停机ꎬ极大提高了维护中心监测机组运行状态和远程紧急状况处理的能力ꎮ控制屏屏体采用标准化㊁系列化㊁通用化的设计原则ꎬ系统设计贯彻人性化的设计思想ꎬ便于操作㊁观察㊁维修ꎮ2.3㊀高压柴油发电机组启动并机系统设计柴油发电机组传统的并机方式是:多台发电机组同时启动ꎬ先启动成功的先合闸ꎻ其它机组与母线电压调同步后ꎬ再合闸ꎬ然后ꎬ进入功率管理模式ꎬ当负载小于在线机组功率的20%(可调整)时ꎬ优先权最低的机组将卸载停机ꎻ同理ꎬ当负载大于在线机组功率的的70%(可设定参数)时ꎬ经延时会自动启动未运行的优先等级高的发电机组ꎬ机组启动稳定后自动同步合闸ꎬ与在线的发电机组实现软性加载并自动负载分配ꎮ图2㊀快速启动并机方式㊀㊀快速启动并机方式如图2所示ꎬ启动机组同时合闸ꎬ减少同步过程ꎬ从而实现快速并机带载ꎮ整个启动过程为:当得到自动启动命令ꎬ多台机组同时启动ꎬ每台机组在执行启动动作同时合闸ꎬ当达到要求转速时(可设置)ꎬ延时1s后ꎬ多台机组开始启动励磁系统ꎬ发电机开始励磁建压ꎬ此时ꎬ多台机组完成并机并可带载运行ꎬ整个过程只有启动时间ꎬ无需同步的时间ꎬ可以满足多台机组8-12s启动并机带负载的要求ꎮ若某台机组启动后ꎬ在规定的时间未到达要求转速ꎬ该机组的断路器会自动分闸ꎬ避免了由于该台机组启动过慢导致倒送电的情况ꎬ然后该机组进入标准的启动流程ꎬ即执行三次启动过程和自动同步的过程ꎮ机组并机成功后ꎬ即转入标准并机方式的功率管理ꎮ通过对标准并机和快速并机方案的比较ꎬ发现采用快速并机可以缩短机组启动时间ꎬ保证数据中心柴油发电机组的可靠性ꎮ2.4㊀高压柴油发电机组控制冗余系统与启动冗余系统的设计在10.5kV高压柴油发电机组中还采用了控制冗余系统和启动冗余系统ꎮ冗余控制器是一种热备份的应用ꎬ是为了防止系统崩溃导致机组无法正常工作停机ꎮ当主控制器出现故障的时候ꎬ备份控制器可以无缝的接替主用控制器当前的工作状态ꎬ确保控制系统的高可靠性ꎮ两套模块均能实现自动启动和自动并机ꎬ即可独立运行ꎬ且是在线冗余热备ꎬ在主控制系统故障后会自动切换到备用控制系统ꎬ两套均可实现自启动和自动并机功能ꎬ不会因一台并机控制器故障影响整体并机功能ꎮ为了充分考虑数据中心备用电源启动稳定性和可靠性的要求ꎬ提供两套启动系统ꎬ其中一套为传统铅酸蓄电池组ꎬ另一套则为辅助启动电源ꎮ这样可以充分减少了发电机组起动时对于电池的依赖ꎻ同时大大提高了发电机组起动的可靠性ꎬ缩短了平均起动时间ꎮ3㊀结论此次研发设计的10.5kV高压柴油发电机组主要作为数据中心的应急备用电源ꎮ通过试验现场调试ꎬ结果表明机组各项性能指标均达到或优于设计指标ꎬ机组具有快速启动并机㊁启动冗余功能ꎬ并具有备用一套辅助启动电源ꎻ既可单机对外供电ꎬ又可实现多机并联对外供电ꎻ同时具有自启动㊁自动并联㊁功率管理和远程监控能力等功能ꎮ机组动态指标能力强ꎬ能适应负载频繁突变ꎬ输出稳定㊁可靠性高ꎬ大修周期长ꎻ噪音低㊁振动小㊁节油㊁环保ꎻ机组还具有功能全面的自动控制和保护能力ꎮ与市场同类产品相比ꎬ该机组人机界面友好ꎬ产品维护简单ꎬ能可靠的为数据中心供电ꎮ参考文献:[1]㊀杨贵恒ꎬ张海呈ꎬ张寿珍ꎬ钟进.柴油发电机组实用技术技能[M].北京:化学工业出版社ꎬ2013. [2]㊀苏石川ꎬ刘炳霞.现代柴油发电机组的应用与管理[M].北京:化学工业出版社ꎬ2010.[3]㊀卢攀.高压柴油发电机在大型数据中心的应用[J].电源技术应用ꎬ2014ꎬ3:243.[4]㊀郭志龙ꎬ王长龙ꎬ可宏刚.高压柴油发电机在数据中心应用中若干问题的探究[J].信息通信ꎬ2017ꎬ174(6):287-288.[5]㊀惠成洲.浅析10kV高压柴油发电机组在数据中心的应用及运维[J].数字通信世界ꎬ2017(10).DesignofHighVoltageDieselGeneratorSetinDataCenterTANGMing ̄xingꎬYEXiong ̄weiꎬZHANGJun ̄junꎬZHONGSen ̄faꎬLIWei(CompanyofTellhowPowerTechnologyꎬNanchang330020ꎬChina)Abstract:A10.5kVhighvoltagedieselgeneratorsetwasdesignedinordertomeettheneedsofthestandbyemergencypowersupplyinthedatacenter.Theresultsshowthatthisunithasthefunctionsofrapidself ̄startingꎬparalleloperationandstartingbackups.Thepowercanbesuppliedbyasinglemachineandalsomulti ̄parallelma ̄chines.Theunithasstrongdynamicindexcapabilityanditcanadapttofrequentloadmutations.Meanwhileꎬithaslownoiseꎬsmallvibrationandsavesoilandthusisenvironmentallyfriendly.Ithasfriendlyhuman ̄machineinter ̄faceandiseasyformaintenance.Keywords:datacenterꎻhighvoltagedieselgeneratorset。
汽轮发电机工作的基本原理汽轮发电机是一种常用的发电机组,它利用燃料的燃烧产生的高温高压气体驱动涡轮转动,从而产生电能。
本文将详细介绍汽轮发电机工作的基本原理。
一、汽轮发电机的组成汽轮发电机主要由燃气系统、汽轮机、发电机和控制系统等组成。
燃气系统负责将燃料燃烧产生的高温高压气体送入汽轮机中。
它由燃料供给系统、点火系统、燃烧室和排气系统组成。
燃料供给系统负责将燃料供应给燃烧室,点火系统用于点燃燃料,燃烧室中的燃料与空气混合燃烧,产生高温高压气体,最后通过排气系统排出。
汽轮机是汽轮发电机中的核心部件,它通过涡轮叶片的转动将高温高压气体的热能转化为机械能。
汽轮机主要由高压缸、中压缸和低压缸组成。
高温高压气体经过高压缸和中压缸的扩张驱动涡轮叶片转动,从而产生机械能。
低压缸主要利用高温高压汽体余热,进一步扩张,以提高发电机组的热效率。
发电机负责将汽轮机输出的机械能转化为电能。
发电机基本原理是利用电磁感应现象,当导体在磁场中运动时会产生感应电动势。
发电机通过转子和定子的相对运动,在导线中产生感应电流,从而产生电能。
控制系统是汽轮发电机的“大脑”,负责自动控制发电机组的启动、运行和停机等过程。
控制系统可以监测发电机组的运行状态,通过自动调节燃气供给和转速等参数,以保证发电机组的安全稳定运行。
二、汽轮发电机的工作原理汽轮发电机的工作原理可以概括为“燃烧-膨胀-排放”三个过程。
首先,燃气系统将燃料供应给燃烧室,与空气混合后点燃,燃烧产生高温高压气体。
燃烧反应主要包括燃料与空气的氧化反应,产生大量热能。
接下来,高温高压气体进入汽轮机,驱动涡轮叶片转动。
汽轮机中的涡轮叶片受到高温高压气体的冲击,产生转动力矩。
转动的涡轮叶片通过轴连接到发电机的转子上,从而将机械能传递给发电机。
最后,低温低压的排气经过排气系统排出。
排气过程中,余热可以被利用,提高发电机组的热效率。
三、汽轮发电机的特点汽轮发电机具有以下几个特点:1. 高效率:汽轮发电机利用高温高压气体的热能转化为机械能,再通过发电机将机械能转化为电能,整个过程能量转换效率较高。
1、发电厂按使用能源划分有几种基本类型?答:发电厂按使用能源划分有下述基本类型:(1)火力发电厂:火力发电是利用燃烧燃料(煤、石油及其制品、天然气等)所得到的热能发电。
火力发电的发电机组有两种主要形式:利用锅炉产生高温高压蒸汽冲动汽轮机旋转带动发电机发电,称为汽轮发电机组;燃料进入燃气轮机将热能直接转换为机械能驱动发电机发电,称为燃气轮机发电机组。
火力发电厂通常是指以汽轮发电机组为主的发电厂。
(2)水力发电厂:水力发电是将高处的河水(或湖水、江水)通过导流引到下游形成落差推动水轮机旋转带动发电机发电。
以水轮发电机组发电的发电厂称为水力发电厂。
水力发电厂按水库调节性能又可分为:①径流式水电厂:无水库,基本上来多少水发多少电的水电厂;②日调节式水电厂:水库很小,水库的调节周期为一昼夜,将一昼夜天然径流通过水库调节发电的水电厂;③年调节式水电厂:对一年内各月的天然径流进行优化分配、调节,将丰水期多余的水量存入水库,保证枯水期放水发电的水电厂;④多年调节式水电厂:将不均匀的多年天然来水量进行优化分配、调节,多年调节的水库容量较大,将丰水年的多余水量存入水库,补充枯水年份的水量不足,以保证电厂的可调出力。
(3)核能发电厂:核能发电是利用原子反应堆中核燃料(例如铀)慢慢裂变所放出的热能产生蒸汽(代替了火力发电厂中的锅炉)驱动汽轮机再带动发电机旋转发电。
以核能发电为主的发电厂称为核能发电厂,简称核电站。
根据核反应堆的类型,核电站可分为压水堆式、沸水堆式、气冷堆式、重水堆式、快中子增殖堆式等。
(4)风力发电场:利用风力吹动建造在塔顶上的大型桨叶旋转带动发电机发电称为风力发电,由数座、十数座甚至数十座风力发电机组成的发电场地称为风力发电场。
(5)其他还有地热发电厂、潮汐发电厂、太阳能发电厂等。
2锅炉的循环方式有几种,简述其含义?答:火力发电厂中的锅炉按水循环方式可分为自然循环,强制循环,直流锅炉三种类型。
依靠工质的重度差而产生的循环流动称为自然循环。
天然气发电机组原理
天然气发电机组运行原理是通过燃烧天然气产生高温高压气体,然后利用高温高压气体推动涡轮转子转动,进而带动发电机发电。
具体过程如下:
1. 气体供给:天然气从储气罐或管网输送到发电机组内进行供给。
通常,天然气进入发电机组前会经过压缩处理,以增加其密度和提高能量输入。
2. 空气进入:发电机组内的空气会通过进气系统进入燃烧室。
进气系统通常包括进气道、空气滤清器和进气阀,这些组件共同确保稳定的空气供应。
3. 燃气燃烧:空气与供给的天然气混合后,通过点火装置被点燃。
点燃后的燃气产生高温高压气体,产生的热能将被用于产生蒸汽。
4. 涡轮转动:高温高压气体进入涡轮机组,推动涡轮转子高速旋转。
涡轮机组由高压涡轮和低压涡轮组成,高压涡轮负责驱动压缩机,低压涡轮负责驱动发电机。
5. 发电:涡轮机组带动发电机转动,通过磁场感应原理产生电能。
发电机内的转子和定子之间的相对运动产生电磁感应效应,转换为电能输出。
6. 能量回收:为了提高能量利用效率,发电过程中产生的废热通常会被回收利用。
废热可用于加热水或提供其他供热需求,
从而实现能源的综合利用。
通过以上过程,天然气发电机组将化学能转换为机械能,再转换为电能,实现了可持续、高效的能源转化过程。
电力生产常识一、填空1、风力发电机组的类型分为(恒速恒频)与(变速恒频)。
2、对电气主接线的基本要求是:(可靠性)、(灵活性)、(经济性)。
3、电力系统分为(发电)、(输电)和(配电)三个基本部分。
4、厂用电耗电量占同一时期发电厂全部发电量的百分数,称为(厂用电率)。
5、运行中的电气设备可分为四种状态,即(运行状态)、(热备用状态)、(冷备用状态)和(检修状态)。
6、风是一个矢量,用(风向)和(风速)表示。
7、安全生产管理,坚持(安全第一、预防为主)的方针。
8、电气设备分为高压和低压两种:设备对地电压在(250V以上)者为高压,设备对地电压在(250V 及以下)者为低压。
9、操作票应填写设备的双重名称,即设备(名称)和(编号)。
10、“三不伤害”是指(不伤害自己)、(不伤害别人)、(不被别人伤害)。
11、电气倒闸操作最少由(两)人进行。
12、电流对人体的伤害形势主要有(电击)和(电伤)两种。
13、两个相同的电阻串联式的总电阻是并联时总电阻的(4倍)。
14、为了区别相序,交流三相系统中L1、L2、L3三相裸导线的涂色分别为(黄)、(绿)、(红)。
15、两票指的是(工作票)和(操作票)。
16、风力发电机组重要的参数是(风轮直径)和(额定功率)。
17、在电力系统中,中性点运行方式有(直接接地)、(不接地)、(经消弧线圈接地)。
18、继电保护的四个基本要求(选择性)、(灵敏性)、(可靠性)、(速动性)。
19、绝缘油在少油断路器中的主要作用是(灭弧)。
20、隔离开关因没有专门的(灭弧)装置,故不能用来接通负荷电流和切断短路电流。
21、电荷的基本特性是(异性电荷相吸引,同性电荷相排斥)。
22、变电所的接地装置有三种:(工作接地)、(保护接地)和(防雷接地)。
23、在全部停电或部分停电的电气设备上工作,保证安全的技术措施有:(停电)、(验电)、(装设接地线)、(悬挂标示牌和装设遮拦)。
24、电压互感器二次不允许(短路),一旦短路将会(烧毁)。
蒸汽高压中压低压的划分蒸汽是一种常见的物质,广泛应用于能源生产、工业制造、航空航天等领域。
在蒸汽的应用过程中,根据蒸汽的压力等级进行划分是非常重要的。
本文将深入探讨蒸汽高压、中压和低压的划分,并分析其在不同领域中的应用。
一、蒸汽高压、中压和低压的定义在工程领域,对于蒸汽高压、中压和低压并没有统一的定义,不同行业和国家对于这些划分标准也存在差异。
一般而言,根据国际标准化组织(ISO)制定的标准,可以将蒸汽按照其绝对工作压力进行划分。
1. 蒸汽高压根据ISO标准,绝对工作压力大于3.5MPa(35巴)被定义为高压蒸汽。
这种高温高能量状态下的蒸汽通常用于大型电站锅炉和工业生产过程中需要大量能量输入的设备。
2. 蒸汽中压绝对工作压力介于1.0MPa(10巴)至3.5MPa(35巴)之间的蒸汽被定义为中压蒸汽。
中压蒸汽常用于工业生产过程中的加热、干燥和驱动设备。
3. 蒸汽低压绝对工作压力小于1.0MPa(10巴)的蒸汽被定义为低压蒸汽。
低压蒸汽通常用于建筑物供暖、小型工业设备和加工过程中的加热。
二、不同压力级别下的应用领域1. 能源生产领域在能源生产领域,高压蒸汽被广泛应用于大型电站锅炉,通过高温高能量的蒸汽驱动涡轮发电机组,产生大量电能。
而中、低压蒸汽则通常用于锅炉供暖系统和小型发电机组。
2. 工业制造领域在工业制造过程中,不同级别的蒸汽应用广泛。
高温高能量的高压蒸汽通常被用作驱动大型涡轮机械设备,如发电机组、制冷循环系统等。
而中、低温低能量级别的中、低压蒸汽则常用于加热、干燥和热处理过程中。
3. 航空航天领域在航空航天领域,高压蒸汽被广泛应用于飞机和火箭的动力系统中,通过高温高压的蒸汽驱动喷气发动机或火箭发动机,提供强大的推力。
而中、低压蒸汽则通常用于飞机和火箭的供暖系统。
4. 其他领域除了上述应用领域外,蒸汽在医疗、化工、食品加工等多个领域也有广泛应用。
不同级别的蒸汽根据具体需求被应用于不同设备和工艺过程中。
通信电源系统概述通信电源是向电信设备提供交直流电的能源,它在电信网上处于极为重要的位置,人们往往把电源设备的供电比喻为电信设备运行的“心脏”。
如果一个市话局的供电发生故障,中断供电将使整个电话局瘫痪,影响社会的正常生活和运作。
如果一个长途干线站或电信枢纽局发生供电故障,中断供电则必将造成严重的经济损失和社会影响。
因此,要求电源工作人员全面掌握电源设备的基本性能、工作原理和运用方法,做好电源设备的维护工作。
通信电源设备和设施主要包括:交流市电引入线路、高低压局内变电站设备、柴油发电机组、整流器、蓄电池组、直流变换器和交流逆变设备、以及各种交直流配电设备等。
通信配电就是把上述的电源设备,组合成一个完整的供电系统,合理地进行控制、分配、输送,满足通信设备的要求。
一个完整的电源系统,其组成如图1-1-1所示。
第一节交流供电系统交流供电系统由主用交流电源、备用交流电源(油机发电机组)、高压开关柜、电力降压变压器、低压配电屏、低压电容器屏和交流调压稳压设备及连接馈线组成的供电总体。
主用交流电源均采用市电。
为了防备市电停电,采用油机发电机等设备作为备用交流电源。
大中型电信局采用10KV高压市电,经电力变压器降为380V/220V低压后,再供给整流器、不间断电源设备(UPS)、通信设备、空调设备和建筑用电设备等。
小型电信局(站)则一般采用低压市电电源。
一、交流供电系统的组成1、高压开关柜。
高压开关柜的主要功能,除了引入高压(一般10KV)市电外,并能保护本局的设备和配线,同时还能防止由本局设备故障造成的影响波及到外线设备。
高压开关柜还有操作控制和监测电压和电流的性能。
高压开关柜内安装有高压隔离开关、高压真空断路器(或油断路器)、高压熔断器、高压仪用互感器和避雷器等元器件。
2、降压电力变压器。
降压电力变压器是把10KV高压电源变换到380V/220V低压的电源设备。
电力变压器一般采用油浸式变压器,也有的采用有载调压变压器。
高低压配电一、交流高压配电系统较大的通信局、长途通信枢扭大楼为保证高质量的稳定市电,以及供电规范要求(超过600KVA变压器),一般都由市电高压电网供电。
为保证供电的可靠性,通常都从两个不同的变电站引入两路高压,其运行方式为用一、备一,并且不实行与供电局建立调度关系的调度管理,同时要求两路电源开关(或母联开关)之间加装机戒连锁或电气连锁装置,以避免误操作或误并列。
为控制两路高压电源,常用成套高压开关柜,开关柜的一次线路可根据进出线方案、电路容量、变压器台数和保护方式先用若干一次线路方案的高压开关柜组成高压供电系统。
目前大多数较大的通信局、长途通信枢扭大楼多选用单母线用断路器分段的方式供电,其系统图1-2-1如下:图1-2-1 10kv高压系统图来自两个不同供电局变电站的两路高压经户外隔离开关、电流互感器、高压断路器接到高压母线,然后经隔离开关、计量柜、测量及避雷器柜、出线柜接到降压变压器。
1、电力系统的供电质量要求和电压标准我国发电厂的发电机组输出额定电压为3.15~20kV。
为了减少线路能耗、压降,经发电厂中的升压变电所升压至35~500kV,再由高压输电线传送到受电区域变电所,降压至6~10kV,经高压配电线送到用户配电变电所降压至380V 低压,供用电设备使用。
对于用电设备来说,它的额定电压规定与同级电力网线路额定电压相等。
发电机的额定电压比电网电压高5%是考虑到负荷电流导致在线路上产生压降损失。
变压器在与发电机直接相联时(通常为升压变压器),它的一次线圈额定电压应与发电机额定电压相同。
即高于同级线路额定电压的5%;不与发电机直接相联时,即相当于线路上的用户设备时(通常为降压变压器),其一次线圈的额定电压应与线路的额定电压相等。
变压器二次线圈的额定电压是指变压器一次侧加入额定电压,而二次侧开路的电压即空载电压,而在满载时二次线圈内有约5%的电压降。
因此。
如果变压器二次侧供电线路较长,则变压器二次侧线圈的额定电压一方面要考虑补偿变压器内部5%的阻抗电压降,另一方面还要考虑线路上的压降损失需高于线路额定电压5%。
燃煤火电厂给煤机高、低电压穿越摘要:介绍国内燃煤火力发电厂发电的工艺流程,给煤机可靠运行的必要性;由国内火力发电厂厂用电的一般结构,分析导致给煤机系统电压异常原因,以及导致的严重后果;根据给煤机变频器的原理,针对变频器进线电压标准,在原理上分析给煤机高、低电压穿越的技术方案,寻找最优方案。
关键词:给煤机;变频器;高、低电压穿越。
引言:在我国的电力系统中,火电厂扮演主力能源生产角色。
对于燃煤火电厂,燃煤由给煤机供给,给煤机运行必须可靠,以保证燃煤持续供应且计量准确,得到准确的水煤比、风煤比,通过DCS系统的自动调节、联锁保护,并且在人工干预下,达到最佳的燃烧效率和安全性,保证过热主汽压力和温度符合机组负荷要求,推动汽轮机联接发电机旋转,向电网输出稳定的电能。
给煤机由变频器调节转速,因此变频器工作是否可靠,直接关系着给煤机是否可靠。
1、导致给煤机变频器异常的原因和危害给煤机变频器由厂用电网供电。
对于大型发电机组,厂用电分为高压厂用电和低压厂用电,高压厂用电由发电机出口经高压变压器降压得到,一般是10KV、6KV等级,机组的重要辅机用电来源于此。
低压厂用电由高压厂用电再次通过降压变压器降压成0.4KV等级。
给煤机电源来自于低压厂用电,当机组10KV厂用母线电源切换、辅机设备启停、大型辅机设备短路故障,或者高、低压厂用电网出现故障时,会引起给煤机系统电源电压突降、突升。
给煤机系统电源分为控制电源和动力电源。
控制电源大幅波动,会让给煤机控制电路的继电器误动作,给煤机控制板卡工作异常甚至损坏。
动力电源大幅波动,迫使变频器保护闭锁,给煤机停运,若无法及时重启,磨煤机存煤全被烧空,失去全部燃料触发锅炉MFT。
2、保证给煤机电源电压异常平稳过渡的标准根据电力行业标准DL/T 1648-2016 《发电厂及变电站辅机变频器高低电压穿越技术规范》,给煤机变频器进线电压升高、降低,能够进行高、低电压穿越。
所谓低电压穿越,就是当给煤机系统电压跌落在额定电压的90%及以上,能保证给煤机连续稳定运行;当电压跌落在低于额定电压的90%至60%,必须保证5S给煤机稳定运行,以渡过电压短时跌落;当电压跌落低于额定电压的60%至20%,必须保证0.5S的给煤机稳定运行,平稳渡过电压跌落。
供电电压分类
供电电压是指电力系统中用于输送电能的电压等级。
根据不同的电压等级,可以将供电电压分为高压、中压和低压三类。
1. 高压:高压是指电压在10kV及以上的供电电压。
高压供电主要用于远距离输电和大型工业用电,如发电厂、变电站等。
高压供电具有传输距离远、损耗小等优点,但也存在安全隐患和设备成本高等问题。
2. 中压:中压是指电压在1kV至10kV之间的供电电压。
中压供电主要用于城市和乡村地区的配电网,如街道照明、商业建筑、住宅小区等。
中压供电相对于高压供电来说,安全性更高,设备成本更低,但传输距离较短。
3. 低压:低压是指电压在120V至220V之间的供电电压。
低压供电主要用于家庭和小型办公场所的电器设备,如电视机、电脑、灯具等。
低压供电具有安全性高、使用方便等优点,但传输距离较短,不适合长距离输电。
风力发电机组的电缆线路随着我国环保意识的日益提高和对可再生能源需求的不断增加,风力发电行业逐渐进入了快速发展期。
风力发电机组作为实现发电的核心设备,其电缆线路也是不可或缺的重要组成部分。
本文将介绍风力发电机组的电缆线路及其特点。
一、概述风力发电机组的电缆线路主要分为外部高压输电线路和内部低压配电线路两部分。
其中高压输电线路负责输送发电机组产生的电能到变电站进行进一步加工处理,而低压配电线路则负责将变电站处理后的电能输送到用户手中。
传输线路一般都由铝合金电缆组成,包括高压输电线路和低压配电线路。
它们都相对较细且柔软,避免在风吹雨淋和行进中受到磨损和断裂。
外覆层则根据使用环境不同,可以是PVC材料或聚烯烃,既耐久又具有阻燃性能。
由于工作环境十分恶劣,铝合金电缆使用寿命相对较短,每5年都必须进行更换一次。
二、特点1. 高度受到环境影响。
风力发电机组工作在户外,随着经年累月的风吹日晒,电缆线路中的绝缘层会随着时间的流逝而逐渐老化,容易导致绝缘性能下降。
同时,各种极端环境即便是表面光滑的风力发电塔内部,也存在着大量的尘垢和污物,这会影响线路的绝缘性能。
因此,在电缆线路的选材、设计、安装及运维过程中,必须充分考虑我国特殊的自然环境及气候条件。
2. 高度依赖传输效率。
一般来说,低压配电线路的输电距离相对较近,线损较小;而在高压输电线路方面,由于传输距离越远,线损也就越大,因此必须严格控制线路输送的电量及其能源效率,以确保系统的正常运行。
3. 重要性不言而喻。
风力发电机组的电缆线路在发电系统中起着非常重要的作用,一旦发生问题,会导致系统出现故障,严重时还会破坏系统设备。
因此,在风力发电行业中,电缆线路必须得到十分重视,对其的安装、使用以及维护必须严格按照相关规定和标准来实施,并定期进行检测和维护。
三、总结综上所述,风力发电机组的电缆线路是发电系统中必不可少的重要组成部分,必须得到足够的重视和管理。
只有在科学的设计和管理下,才能保证发电系统正常运行,同时为建设我国清洁能源做出积极贡献。
风力发电机组的分类及各自特点风力发电机组主要由两大部分组成:风力机部分――它将风能转换为机械能;发电机部分――它将机械能转换为电能。
根据风机这两大部分采用的不同结构类型、以及它们分别采用的技术方案的不同特征,再加上它们的不同组合,风力发电机组可以有多种多样的分类。
(1) 如依风机旋转主轴的方向(即主轴与地面相对位置)分类,可分为:“水平轴式风机”――转动轴与地面平行,叶轮需随风向变化而调整位置;“垂直轴式风机”――转动轴与地面垂直,设计较简单,叶轮不必随风向改变而调整方向。
(2) 按照桨叶受力方式可分成“升力型风机”或“阻力型风机”。
(3) 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机;叶片的数目由很多因素决定,其中包括空气动力效率、复杂度、成本、噪音、美学要求等等。
大型风力发电机可由1、2 或者3 片叶片构成。
叶片较少的风力发电机通常需要更高的转速以提取风中的能量,因此噪音比较大。
而如果叶片太多,它们之间会相互作用而降低系统效率。
目前 3 叶片风电机是主流。
从美学角度上看,3 叶片的风电机看上去较为平衡和美观。
(4) 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向(即在塔架的前面迎风旋转)和“下风向型”――叶轮背顺着风向,两种类型。
上风向风机一般需要有某种调向装置来保持叶轮迎风。
而下风向风机则能够自动对准风向, 从而免除了调向装置。
但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。
(5) 按照功率传递的机械连接方式的不同,可分为“有齿轮箱型风机”和无齿轮箱的“直驱型风机”。
有齿轮箱型风机的桨叶通过齿轮箱及其高速轴及万能弹性联轴节将转矩传递到发电机的传动轴,联轴节具有很好的吸收阻尼和震动的特性,可吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。
而直驱型风机则另辟蹊径,配合采用了多项先进技术,桨叶的转矩可以不通过齿轮箱增速而直接传递到发电机的传动轴,使风机发出的电能同样能并网输出。
高压发电机组与低压发电机组的比较类别项目低压高压备注基本电压0.4KV 10KV(6.3KV)电流大小同负荷电流低压是高压26适用范围总电流≦8000A 总电流≧12000A公共母排限流8KA-12KA,低压系统供电功率4000KW,高压可达10万KW单机容量≤1200KW >1200KW设备性能温升主/备H 105℃/150℃ F 105℃/130℃电机性能低高高压阻尼设计,2/3节距抗谐开关性能低高高压真空灭弧励磁调压一般完善高压DVR,PMG保护系统一般完善高压差动保护,零序保护资说明:1. 电流大:低压发电机组与高压发电机组的主要区别是电压不同, 在同功率情况下低压的电流就是高压电流的26倍.低压发电机组将产生如下问题:1) 单机容量:≤1200KW 可考虑低压,当单机容量>1200KW 应选用高压;2) 公共母排电流不宜大于8000A-12000A ,即总负荷≤4000KW 可考虑低压,否则选高压发电机组为宜;3) 输电电缆大幅度增加例如 一台2000KVA 发电机,4芯95mm 2YJV22 输电缆,长度500米223)老化加速:低压电流是高压的26倍,热负荷损耗大幅度增加,设备易损坏; 4)安全性差:低压机组的输出断路器由于电流过大,灭弧不如高压,经常出现因拉弧损坏,; 5)供电分散:低压发电机因电缆使用多,热损耗大无法实现远距离供电;6)无法安全并机:同期断路器拉弧,电压调节性能差等原因很难实现安全并机输出。
2. 抗谐波能力低:因发电机设计结构工艺等方面原因低压发电机组抗谐波能力比高压发电机要低;高压油机由于通过变压器供电,变压器对谐波有部分消除作用,高压油机的中性点接地对系统谐波也有部分消除作用.总体高压油机比的压油机有较强的的带非线性负载的能力.3. 非同期短路风险:多台低压发电机非并机供电时,由于各供电系统不同步存在成非同期短路风险;4. 低压一般用于Tier1 Tier2(C,B)类机房,Tier3 Tier4(A) 机房按标准使用高压.5. 低压发电机优点:1) 投资低:低压设备比同容量的高压机组价投资(一般大约低15%); 2) 维护运行人员要求低; 3) 可用ATS 实现无人值守.。
高压和低压的电力运输与储备方案在现代社会中,电力已成为人们日常生活和工业生产的重要能源。
为了保障电力的高效运输和储备,高压和低压电力运输方案成为了必不可少的组成部分。
本文将探讨高压和低压电力运输的重要性以及相关的储备方案。
一、高压电力运输高压电力运输是通过输电线路将电力从发电厂传输到各个用电地点的过程。
高压电力运输具有如下优势:1. 降低能量损失:高压电力可以减少运输线路上的能量损失。
因为电能损失主要与电流的大小相关,而高压电力传输的电流较低,从而减少了能量损失。
2. 提高经济性:高压电力运输可以减少输电线路的铺设和维护成本。
一条高压输电线路可以代替多条低压输电线路,从而减少投资和运营成本。
3. 增加输电距离:高压电力运输可以实现远距离的电力传输。
高压电力传输损耗更少,因此能够更高效地覆盖广大地区,满足用电需求。
针对高压电力运输的储备方案,主要包括储备电源和储备线路。
储备电源方案:为了应对电力供应中断或突发需求,可以设置备用的发电机组或电力储能系统。
备用发电机组可以在主电源中断时启动,提供必要的电力。
电力储能系统则可以通过蓄电池或其他新型能源储存技术,将多余的电能储存起来,供应电力需求。
储备线路方案:为了防止输电线路故障导致的电力中断,可以建设备用的备用输电线路。
备用线路可以在主线路故障或维修时启用,保障电力的持续供应。
二、低压电力运输低压电力运输主要指通过配电网络将电力从变电站送达到用户的过程。
低压电力运输的特点如下:1. 保障用户用电需求:低压电力运输能够根据用户用电需求,通过变压器将高压电力转化为符合用户要求的低压电力,保证用户的用电需求得到满足。
2. 运输线路简单:相较于高压电力运输,低压电力运输的输电线路相对简单。
这是由于低压电力运输主要覆盖小范围的用户,不需要大规模的高压输电线路。
3. 安全性高:低压电力运输中的电压较低,对人体的安全风险较小。
这为用户的安全用电提供了保障。
低压电力运输的储备方案主要包括备用变电站和备用配电线路。