证明教学设计
- 格式:doc
- 大小:130.08 KB
- 文档页数:3
参考答案:设赤道周长为c,铁丝与地球赤道之间的间隙为:它们的间隙不仅能放进一个红枣,而且也能放进一个拳头.注意事项:要充分让学生发表自己的见解,首先让学生对自己的结论确信无疑,再进一步计算,结果与学生的感觉产生矛盾,切忌直接进行计算,把结论告诉学生,这样就达不到预想的要求第三环节:猜想并验证活动(3)活动内容:如图,四边形ABCD四边的中点E、F、G、H,度量四边形EFGH的边和角,你能发现什么结论?改变四边形ABCD的形状,还能得到类似的结论吗?参考答案:连接AC.∵E、F、G、H分别是四边形ABCD四边中点,∴EF∥AC,EF=AC;GH∥AC,GH=AC;∴EF平行且等于GH,∴四边形EFHG为平行四边形.活动目的:通过对图形的直观感受得出结论,但要使学生清楚地知道对几何结论的验证,通常是用严谨的逻辑推理来论述.注意事项:让学生大胆地进行预测,但要让学生说清理由,让学生了解几何证明的必要性.第四环节:归纳与总结活动内容:①通过以上三个数学活动,使学生对每一个问题的结论的正确性有了怀疑,从而知道了由观察、猜想等渠道得到的结论还必须经过有效的证明才能对其进行肯定.也即:要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步,有根有据的推理.②举例说明“推理意识”与推理方法.活动目的:使学生理解仅有对图形的直观感受是不够的,从而帮助学生建立推理意识.注意事项:让学生用自己的语言进行叙述,培养学生的表达能力.第六环节:课堂小结活动内容:今天这节课你学到了什么知识?参考答案:①要说明一个数学结论是否正确,无论验证多少个特殊的例子,也无法保证其正确性.②要确定一个数学结论的正确性,必须进行一步一步、有根有据的推理.活动目的:通过学生的总结,使学生对证明的必要性有一个清楚的认识,数学杜绝随意性,数学是严密的科学.注意事项:通过前三个例题的感受以及反馈练习,学生都清楚地知道推理、论证的必要性,了解了数学不是一种直观感受,而是一种严密的科学.第七环节巩固练习课本第217页习题6.1第2,3题.。
浙教版数学八年级上册1.3《证明》教学设计一. 教材分析《证明》是浙教版数学八年级上册1.3节的内容,主要包括证明的意义和一般步骤。
本节内容是学生学习几何证明的起点,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
通过本节内容的学习,学生应该能够理解证明的意义,掌握几何证明的一般步骤,并为后续几何学习打下基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和问题解决能力,但是对几何证明的理解和应用还比较薄弱。
因此,在教学过程中,需要注重引导学生理解证明的意义和一般步骤,并通过丰富的实例让学生感受证明的过程和方法。
三. 教学目标1.理解证明的意义,认识证明的重要性。
2.掌握几何证明的一般步骤。
3.能够运用所学的证明方法解决一些简单的几何问题。
四. 教学重难点1.教学重点:证明的意义,几何证明的一般步骤。
2.教学难点:理解和应用证明方法,解决几何问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过问题的解决来理解证明的意义和一般步骤。
2.通过丰富的实例和练习,让学生在实践中掌握证明的方法和技巧。
3.注重学生的主体地位,鼓励学生积极参与讨论和思考,培养学生的逻辑思维能力和解决问题的能力。
六. 教学准备1.准备相关的教学材料和实例,包括几何图形、证明题等。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)通过一个简单的几何问题,引导学生思考证明的意义和必要性。
例如,已知三角形ABC,证明AB是三角形ABC的最长边。
2.呈现(15分钟)介绍证明的意义和一般步骤。
证明的意义在于验证几何命题的正确性,一般步骤包括:已知、求证、证明。
3.操练(15分钟)让学生分组讨论,尝试解决一些简单的几何证明问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对学生解决的问题,进行讲解和总结,强化对证明方法和步骤的理解。
5.拓展(10分钟)给出一些有一定难度的几何证明问题,让学生独立思考和解决。
高中数学证明教案
一、教学目标:
1. 了解数学证明的基本概念和方法。
2. 掌握数学证明的基本步骤和技巧。
3. 提高学生的逻辑思维能力和问题解决能力。
二、教学重点和难点:
重点:掌握数学证明的基本步骤和技巧。
难点:独立完成数学证明题目。
三、教学内容:
1. 数学证明的基本概念和特点。
2. 数学证明的基本方法和步骤。
3. 数学证明的常见技巧和策略。
四、教学过程:
1. 导入:通过一个简单的例子引入数学证明的概念,引发学生的兴趣和思考。
2. 提出问题:给学生提出一个需要证明的数学问题,要求学生独立思考一段时间后展开讨论。
3. 解题方法:介绍数学证明的基本方法和步骤,帮助学生理清证明的思路。
4. 案例分析:带领学生分析一道典型的证明题目,帮助学生理解数学证明的具体操作过程。
5. 练习训练:让学生在教师的指导下进行数学证明的练习,提高学生的解题能力。
6. 总结提升:对本节课的内容进行总结,并提出下节课的学习任务和要求。
五、教学评价:
1. 通过课堂练习和作业检查,检验学生是否掌握了数学证明的基本方法和技巧。
2. 通过课堂讨论和问答环节,了解学生是否能够独立进行数学证明的思考和操作。
六、教学反思:
1. 分析学生在学习数学证明过程中的问题和困难,并找出解决方法。
2. 对教学内容和方法进行评估和调整,提高教学效果和学生学习兴趣。
《相似三角形判定定理的证明》教学设计1.了解相似三角形判定定理.2.会证明相似三角形判定定理.1.相似三角形判定定理.2.掌握推理证明的方法,发展演绎推理能力.多媒体课件一、复习导入问题:相似三角形的判定方法有哪些?①两角对应相等,两三角形相似.②两边对应成比例且夹角相等,两三角形相似.③三边对应成比例,两三角形相似.在上一节中,我们探索了三角形相似的条件,本节课我们将对它们进行证明。
二、探究新知(1)判定定理1:两角分别相等的两个三角形相似.用数学符号表示:∵∠A=∠A',∠B=∠B'∴ ΔABC ∽ ΔA'B'C'证明相似三角形的判定定理1已知:如图,在 △ABC 和△A'B'C' 中,∠A = ∠A',∠B =∠B'. 求证:△ABC ∽△A'B'C'.分析:根据证明两三角形相似的定义,需要三个角对应相等,三边对应成比例的两三角形相似.证明:在 △ABC 的边 AB (或它的延长线)上截取AD =A'B',过点D 作BC 的平行线,交 AC 于点E ,则∠1=∠B ,∠2 =∠C ,AC AE AB AD = 过点 D 作 AC 的平行线,交 BC于点 F,CB CF AB AD =∴CB CF AC AE =∴∵ DE ∥BC, DF ∥AC,∴ 四边形 DFCE 是平行四边形.∴ DE = CF. CB DE AC AE =∴BC DE AC AE AB AD ==而 ∠ 1 = ∠ B ,∠ DAE = ∠ BAC ,∠ 2=∠ C ,∴ △ADE ∽ △ABC.∵ ∠ A = ∠ A',∠ ADE = ∠ B =∠ B',AD = A'B',∴ △ADE ≌△A' B ' C ' .∴ △ABC ∽△A'B'C.例1.已知:如图,ΔABC 中,∠ACB=90°,F 为AB 的中点,EF ⊥AB .求证:ΔCDF ∽ΔECF .证明∵F 是Rt △ABC 斜边的中点∴CF=AB 21=BF∴∠B=∠BCF∵∠ACB=90°∴∠ACF+∠BCF=90° ∵EF ⊥AB∴∠B+∠E=90°∴∠DCF=∠E又∠DFC=∠CFE∴△CDF ∽△ECF (两角对应相等,两三角形相似)练习:如图,在△ABC 中,AB =AC ,BD =CD ,CE ⊥AB 于点E.求证:△ABD ∽△CBE.证明:在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC.又∵CE ⊥AB ,∴∠ADB =∠CEB =90°.又∵∠B =∠B ,∴△ABD ∽△CBE(2)判定定理2:两边对应成比例且夹角相等的两个三角形相似. 用数学符号表示:∵∠A=∠A' ,''''C A AC B A AB ∴ ΔABC ∽ ΔA'B'C'证明相似三角形的判定定理2如图,在△ABC 与△A ′B ′C ′中,已知∠A= ∠A ′,''''C A AC B A AB =,求证:△A ′B ′C ′∽△ABC.证明:在△A ′B ′C ′的边A ′B ′上截取点D,使A ′D=AB .过点D 作DE ∥B ′C ′,交A ′C ′于点E.∵DE ∥B ′C ′,∴△A ′DE ∽△A ′B ′C ′. .''''''∴C A E A B A D A = ∵A ′D=AB ,''''CA ACB A AB = .''''''''∴C A AC C A E A B A D A == ∴A ′E=AC.又∠A ′=∠A.∴△A ′DE ∽△ABC ,∴△A ′B ′C ′∽△ABC.例2.如图,∠B=90°,AB=BE=EF=FC=1。
《相似三角形判定定理的证明》教学设计一、教学目标1、知识与技能目标学生能够理解相似三角形判定定理的内容。
掌握相似三角形判定定理的证明方法,提高逻辑推理能力。
2、过程与方法目标通过探究相似三角形判定定理的证明过程,培养学生的观察、分析和解决问题的能力。
经历“猜想验证证明”的数学探究过程,体会数学思维的严谨性。
3、情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索、创新的精神。
在合作学习中,增强学生的团队意识和交流能力。
二、教学重难点1、教学重点相似三角形判定定理的证明思路和方法。
2、教学难点如何引导学生构建证明的思路,运用已有的知识进行推理和论证。
三、教学方法讲授法、探究法、讨论法相结合四、教学过程1、复习引入回顾相似三角形的定义和性质。
提问:如何判断两个三角形相似呢?引导学生思考并回忆相似三角形的判定方法(如两角分别相等的两个三角形相似)。
2、提出猜想展示几组相似三角形的图片,让学生观察并猜想相似三角形的判定条件。
引导学生提出猜想:比如三边成比例的两个三角形相似;两边成比例且夹角相等的两个三角形相似等。
3、探究证明以“两角分别相等的两个三角形相似”为例,引导学生分析证明思路。
提问:如何构建两个角分别相等的条件?可以通过作平行线等方法。
让学生分组讨论,尝试写出证明过程。
对于“三边成比例的两个三角形相似”,先引导学生思考如何将三边的比例关系转化为线段的等量关系。
提示学生可以通过构建全等三角形来进行证明。
对于“两边成比例且夹角相等的两个三角形相似”,让学生思考如何利用已有的知识和方法进行证明。
4、证明展示与讲解选取几组学生代表,展示他们的证明过程,并进行讲解。
针对学生证明过程中出现的问题和不足,进行纠正和补充。
5、总结归纳总结相似三角形判定定理的证明方法和思路。
强调证明过程中需要注意的逻辑严谨性和规范性。
6、课堂练习布置一些相关的练习题,让学生巩固所学知识。
巡视学生的练习情况,及时给予指导和帮助。
七年级命题定理证明教学设计七年级命题定理证明教学设计1教学内容:命题教学目标:了解命题、定义的含义;对命题的概念有正确的理解。
会区分命题的题设和结论。
知道判断一个命题是假命题的方法。
教学重点:找出命题的题设和结论。
教学难点:命题概念的理解。
教学过程:一、复习引入:我们已经学过一些图形的特性,如“三角形的内角和等于180°”、“等腰三角形的两个底角相等”等.根据我们学过的图形特性,试判断下列句子是否正确. (1) 如果两个角是对顶角,那么这两个角相等; (2) 两直线平行,同位角相等; (3) 同旁内角相等,两直线平行; (4) 平行四边形的对角线相等; (5) 直角都相等.二、探究新知(一)命题、真命题和假命题学生回答后给出答案:句子(1)、(2)、(5)是正确的,句子(3)、(4)是错误的.引出概念:可以判断它是正确的或是错误的句子叫做命题(proposition).正确的命题称为真命题,错误的命题称为假命题.在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.这样的命题常可写成“如果??,那么??”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题(1)中,“两个角是对顶角”是题设,“这两个角相等”是结论.有的命题的题设与结论不十分明显,将它写成“如果??,那么??”的形式,也可分清它的题设与结论.例如,命题(5)可写成“如果两个角是直角,那么这两个角相等”.(二)例题选讲例1:把命题“三个角都相等的三角形是等边三角形”改写成“如果??,那么??”的形式,并分别指出命题的题设与结论.解:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.例2:指出下列命题的题设和结论,并把它改写成“如果??那么??”的形式,它们是真命题还是假命题?(1)对顶角相等;(2)如果ab,bc,那么a=c;(3)两角和其中一个角的对边对应相等的两个三角形全等;(4)菱形的四条边都相等; (5)全等三角形的面积相等。
公开课教案证明模板〔共4篇〕第1篇:为什么要证明公开课教案为什么要证明一、学情分析在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储藏,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的根底。
在以往的几何学习中,学生已经参与了对几何图形的观察、比拟、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助。
二、课标依据2022版义务教育数学课程标准:知道证明的意义和证明的必要性,知道证明要符合逻辑,知道证明的过程可以有不同的表达形式,汇总合法证明的格式。
三、教学过程教学目标1、通过观察,猜测,归纳等过程,体会由这些方法所得到的结论未必正确,从而认识证明的必要性。
2、学会检验数学结论的常用方法:实验验证,举出反例,推理计算等。
第一环节:引入新知图片展示,眼见不一定为实总结:直观不一定可靠第二环节:学习新知活动1:某学习小组发现,当n=0,1,2,3时,代数式n-n+11的值都是质数,于是得到结论:对于所有自然数n, n-n+11的值都是质数。
你认为呢?与同伴交流。
总结:归纳不一定可靠活动2:如图,假设用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大〔把地球看成球形〕?能放进一个红枣吗?能放进一个拳头吗?解:设赤道周长为c,铁丝与地球赤道之间的间隙为: 22c1c12220.16(m)它们的间隙不仅能放进一个红枣,而且也能放进一个拳头。
总结:猜测不一定可靠活动4如图,在△ABC中,点D,E分别是AB,AC的中点,连接DE.DE与BC有怎样的位置关系和数量关系?请你先猜一猜,再设法检验你的猜测.你能肯定你的结论对所有的△ABC都成立吗?与同伴进行交流.活动总结:猜测有时是正确的,但要经过证明。
第三环节:检测新知1、1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.2、哪一条和线段d在同一条直线上,先猜测,再验证。
证明(1)
教学目标
1、了解证明的含义。
2、体验、理解证明的必要性和推理过程中要步步有据。
3、了解证明的表达格式,会按规定格式证明简单命题。
4、了解证明的两种方法:综合法和分析法。
教学重点、难点
重点:本节教学的重点是证明的含义和表述格式.
难点:本节教学的难点是按规定格式表述证明的过程.
教学过程
一、复习引入
上一课时我们学习了定义与命题,老师出了这样一道题目来考考大家:“对于自然数n,代数式n2+1的值都是偶数”是一个命题吗?
由此题复习什么是命题,命题的分类和如何判断一个命题是假命题。
变式:“对于自然数n,代数式n2-3n+7的值都是素数”是一个真命题吗?
通过观察、猜想,并尝试用数学的方法实验,体会实验观察和归纳的必要性和重要性。
二、合作学习
如图,一组直线a,b,c,d是否都互相平行?
通过观察、先猜想结论,并动手实验,同桌两人一小组合作,记录探究过程和结论————凭实验、观察和归纳得出的结论不一定正确,引出课题
三、微课视频
学生观看由本人录制的关于柯南的微课视频,引起学生对证明定义的兴趣,从中引导和分析什么是证明。
并给出了引例,教师引导分析
四、证明的书写
1.把视频里给出的引例进行证明,注意强调书写过程。
2.练一练:
已知:如图,DE∥BC,∠1=∠E.
求证:BE平分∠ABC
3.学生归纳需要证明的三点注意:
(1)开头写证明
(2)从条件出发
(3)每一步后面写依据
五、证明的方法
例:已知:如图,AB∥CD,EP,FP分别平分∠BEF,∠DFE.
求证:∠PEF+∠PFE=90°
1、让学生分析例题,并总结思路方法:(1)综合法(由“因”导“果”)
(2)分析法(执“果”索“因”)
2、让学生完成证明的书写过程,并投影展示。
六、课时小结
同学们四人一小组讨论梳理,以思维导图的形式呈现,小组派代表分享。
七、拓展提高
命题“若n是自然数,则代数式(3n+1)(3n+2)+1的值是3的倍数”是真命题还是假命题?如果你认为是假命题,请说明理由;如果认为是真命题,给出证明。
八、作业布置
1.作业本(1)
2.选做:课本P18页B组第3题
九、张老师寄语
1.由“因”导“果”,言必有据.是初学证明者谨记和遵循的原则.
2.严格性之于证明,犹如道德之于人.。