机械设计基础1第一章绪论
- 格式:ppt
- 大小:24.53 MB
- 文档页数:10
机械设计基础期末复习第1章绪论1、机械是和的总称。
2、零件是机器中不可拆卸的单元;构件是机器的单元。
第4章联接1、普通平键的工作面是,静联接主要失效形式是。
2、普通楔键的工作面是左右两侧面。
( )3、弹簧垫圈防松属机械防松。
4、松键联接的工作面是( )。
A 上下两面B 左右两侧面C 有时为上下面,有时为左右面5、普通平键静联接的主要失效形式是( )。
A 挤压破坏B 磨损 C剪断6、设计键联接的主要内容是:①按轮毂宽度确定键的长度,②按使用要求确定键的类型,③按轴径选择键的截面尺寸,④对联接进行强度校核。
在其体设计时,一般按下列( )顺序进行。
A ①-②-③-④B ②-③-①-④C ③-④-②-①7、螺旋副中,一零件相对于另一个零件转过一周,则它们沿轴线方向相对移动的距离是()。
A 一个螺距B 线数×导程C 线数×螺距8、两被接件之一太厚,需常拆装时,宜采用()联接。
A 螺栓B 螺钉C 双头螺柱D 紧定螺钉9、梯形螺纹、锯齿形螺纹、矩形螺纹常用于()。
A 联接B 传动C 联接和传动10、被联接件之一太厚且不常拆装的场合,宜选用()。
A螺栓 B 螺钉 C 双头螺柱 D 紧定螺钉11、属摩擦力防松的是()。
A 对顶螺母、弹性垫圈B 止动垫圈、串联钢丝C 用粘合剂、冲点12、凸缘联轴器、套筒联轴器属()联轴器。
A 刚性B 弹性C 安全13、下面几种联轴器,不能补偿两轴角度位移的是( )联轴器。
A套筒 B弹性柱销 C 齿轮14、为减少摩擦,带操纵环的半离合器应装在( )。
A主动轴上 B从动轴上15、螺距P,线数n,导程Pz的关系是( )。
A P=nPzB Pz=nPC n=PPz16、下列几种螺纹,自锁性最好的是( )螺纹。
A三角形 B梯形 c锯齿形 D矩形17、万向联轴器属于( )式联轴器。
A刚性固定 B刚性可移 C弹性可移式第5章挠性传动1、V带型号中,截面尺寸最小的是型。
2、在相同的压紧力下,V带传动与平带传动相比,承载能力较高的是传动。
机械设计基础1复习要点(机械原理部分)第1章 绪论掌握:机器的特征:人为的实物组合、各实物间具有确定的相对运动、有机械能参与或作机械功了解:机器、机构、机械、常用机构、通用零件、专用零件和部件的概念第2章 机构组成和机构分析基础知识2.1 掌握:构件的定义(运动单元体)、构件与零件(加工、制造单元体)的区别平面运动副的定义、分类(低副:转动副、移动副;高副:平面滚滑副)各运动副的运动特征、几何特征、表示符号及位置2.2 掌握:机构运动简图的画法(注意标出比例尺、主动件、机架和必要的尺寸)2.3 掌握平面机构自由度计算:自由度计算公式:H L P P n F --=23;在应用计算公式时的注意事项(复合铰链、局部自由度、虚约束);机构具有确定运动的条件(机构主动件数等于机构的自由度);2.4 速度瞬心及其在机构速度分析上的应用 :掌握:速度瞬心定义;绝对瞬心、相对瞬心;瞬心的数目;速度瞬心的求法:观察法: 三心定理法:用速度瞬心求解构件的速度;第4章 平面连杆机构4.1 掌握:铰链四杆机构的分类:铰链四杆机构的变异方法:改变构件长度、改变机架(倒置)4.2 掌握:铰链四杆机构的运动特性:曲柄存在条件:曲柄摇杆机构的极限位置:曲柄摇杆机构的极位夹角θ:曲柄摇杆机构的急回特性及行程速比系数 K ;铰链四杆机构的传力特性:压力角α:传动角γ:许用传动角[γ];曲柄摇杆机构最小传动角位置:死点(止点)位置:死点(止点)位置的应用和渡过4.3 掌握:平面连杆机构的运动设计:实现给定连杆二个或三个位置的设计;实现给定行程速比系数的四杆机构设计:曲柄摇杆、曲柄滑块第5章 凸轮机构5.1 掌握:凸轮机构的分类5.2 掌握:基圆(理论廓线上最小向径所作的圆)、理论廓线、实际廓线、行程;从动件运动规律(升程、回程、远休止、近休止)刚性冲击(硬冲)、柔性冲击(软冲);三种运动规律特点和等速、等加速等减速、余弦加速度位移曲线的画法;5.3 掌握:反转法绘制凸轮廓线的方法、对心或偏置尖端移动从动件、对心或偏置滚子移动从动件;5.4 掌握:滚子半径的选择、运动失真的解决方法,压力角α、许用压力角、基圆半径的确定;第6章 齿轮传动6.2 掌握齿廓啮合基本定律 定传动比条件、节点、节圆、共轭齿廓6.3 掌握:渐开线的形成、特点及方程;一对渐开线齿廓啮合特性:定传动比特性、可分性;一对渐开线齿廓啮合时啮合角、啮合线保持不变;6.4 掌握:渐开线齿轮个部分名称:基本参数:齿数、模数、压力角、齿顶高系数、顶隙系数;计算分度圆、基圆、齿顶圆、齿根圆;齿顶高、齿根高、齿全高,齿距(周节)、齿厚、齿槽宽;外啮合标准中心距;标准安装:分度圆与节圆重合(d d ='、αα='); 一对渐开线齿轮啮合条件:正确啮合条件、连续传动条件、重合度的几何含义;一对渐开线齿轮啮合过程:起始啮合点(入啮点)、终止啮合点(脱啮点);实际啮合线、理论啮合线、极限啮合点;6.5 了解:范成法加工齿轮的特点、根切现象及产生的原因、不根切的最少齿数第8章 轮系和减速器8.1 掌握:定轴轮系、周转轮系、混合轮系概念8.2 掌握:定轴轮系传动比计算,包括转向判定;周转轮系传动比计算;混合轮系传动比计算:第11章 其他传动机构11.1 掌握:棘轮机构的组成、工作原理、类型(齿式、摩擦式)运动特性:有噪音有磨损、运动准确性差、自动啮紧条件;11.2 掌握:槽轮机构组成、类型(外槽轮机构、内槽轮机构)、定位装置(锁止弧)、运动特性:连续转动转换为单向间歇转动了解:最少槽数、运动特性系数、主动拨销进出槽轮的瞬时其速度应与槽的中心线重合且有软冲、动力特性概念:第20章 机械系统动力学设计20.1 掌握:作用在机械上的力:驱动力、工作阻力等效构件、等效力矩、等效转动惯量、等效力、等效质量、等效动力学模型等效原则:等效力矩e M 、等效力e F :功或功率相等等效转动惯量e J 、等效质量e m :动能相等 等效方程:∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛±+⎪⎭⎫ ⎝⎛=n i i i i i i e M v F M 1cos ωωωα∑=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=n i i si si i e J v m J 122ωωω ∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛±+⎪⎭⎫ ⎝⎛=n i i i i i i e v M v v F F 1cos ωα∑=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ni i si si i e v J v v m m 122ω20.2 掌握:机器运动的三个阶段、周期性速度波动的原因、调节周期性速度波动的目的(限制速度波动幅值)和方法(转动惯量)平均角速度、不均匀系数;掌握等效力矩为位置函数时,飞轮转动惯量计算:[][]J n W J W J m F -∆=-∆≥δπδω22max 2max900 掌握:能量指示图、最大盈亏功、最大速度位置、最小速度位置20.3 掌握:静平衡的力学条件:0=∑i F ;动平衡的力学条件:0=∑i F 、0=∑i M 与平衡方法。
第一章绪论一、课题来源与意义1、课题来源减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要。
齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。
当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。
国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。
但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。
日本住友重工研制的FA型高精度减速器和美国Alan-Newton公司研制的X-Y式减速器,在传动原理和结构上与本项目类似或相近,都为目前先进的齿轮减速器。
2、课题的意义通过该课题的毕业设计可以使学生掌握减速器设计的基本原理和方法,综合运用本专业所学的专业基础理论和专业知识分析和解决减速器设计中的问题,着重培养学生的工程设计能力(主要包括设计、计算,CAD绘图及三维造型软件应用能力)以及独立解决和分析问题的能力。
二、目前课题的研究现状和发展方向国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。
另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。
国内使用的大型减速器(500kw以上),多从国外(如丹麦、德国等)进口,花去不少的外汇。
60年代开始生产的少齿差传动、摆线针轮传动、谐波传动等减速器具有传动比大,体积小、机械效率高等优点。
但受其传动的理论的限制,不能传递过大的功率,功率一般都要小于40kw。
由于在传动的理论上、工艺水平和材料品质方面没有突破,因此,没能从根本上解决传递功率大、传动比大、体积小、重量轻、机械效率高等这些基本要求。
90年代初期,国内出现的三环(齿轮)减速器,是一种外平动齿轮传动的减速器,它可实现较大的传动比,传递载荷的能力也大。
它的体积和重量都比定轴齿轮减速器轻,结构简单,效率亦高。
《机械设计基础》目录第一章绪论11 机械设计的基本概念12 机械设计的发展历程13 机械设计的重要性及应用领域第二章机械设计的基本原则和方法21 机械设计的基本原则211 功能满足原则212 可靠性原则213 经济性原则214 安全性原则22 机械设计的方法221 传统设计方法222 现代设计方法223 创新设计方法第三章机械零件的强度31 材料的力学性能311 拉伸试验与应力应变曲线312 硬度313 冲击韧性314 疲劳强度32 机械零件的疲劳强度计算321 疲劳曲线和疲劳极限322 影响机械零件疲劳强度的因素323 稳定变应力下机械零件的疲劳强度计算324 不稳定变应力下机械零件的疲劳强度计算第四章摩擦、磨损及润滑41 摩擦的种类及特性411 干摩擦412 边界摩擦413 流体摩擦414 混合摩擦42 磨损的类型及机理421 粘着磨损422 磨粒磨损423 疲劳磨损424 腐蚀磨损43 润滑的作用及润滑剂的选择431 润滑的作用432 润滑剂的种类433 润滑剂的选择第五章螺纹连接51 螺纹的类型和特点511 螺纹的分类512 普通螺纹的主要参数52 螺纹连接的类型和标准连接件521 螺纹连接的类型522 标准连接件53 螺纹连接的预紧和防松531 预紧的目的和方法532 防松的原理和方法54 螺纹连接的强度计算541 松螺栓连接的强度计算542 紧螺栓连接的强度计算第六章键、花键和销连接61 键连接611 平键连接612 半圆键连接613 楔键连接614 切向键连接62 花键连接621 花键连接的类型和特点622 花键连接的强度计算63 销连接631 销的类型和用途632 销连接的强度计算第七章带传动71 带传动的类型和工作原理711 平带传动712 V 带传动713 同步带传动72 V 带和带轮721 V 带的结构和标准722 带轮的结构和材料73 带传动的工作情况分析731 带传动中的力分析732 带的应力分析733 带传动的弹性滑动和打滑74 带传动的设计计算741 设计准则和原始数据742 设计计算的内容和步骤第八章链传动81 链传动的类型和特点811 滚子链传动812 齿形链传动82 链条和链轮821 链条的结构和标准822 链轮的结构和材料83 链传动的运动特性和受力分析831 链传动的运动不均匀性832 链传动的受力分析84 链传动的设计计算841 设计准则和原始数据842 设计计算的内容和步骤第九章齿轮传动91 齿轮传动的类型和特点911 圆柱齿轮传动912 锥齿轮传动913 蜗杆蜗轮传动92 齿轮的失效形式和设计准则921 轮齿的失效形式922 设计准则93 齿轮的材料和热处理931 齿轮常用材料932 齿轮的热处理94 直齿圆柱齿轮传动的受力分析和强度计算941 受力分析942 强度计算95 斜齿圆柱齿轮传动的受力分析和强度计算951 受力分析952 强度计算96 锥齿轮传动的受力分析和强度计算961 受力分析962 强度计算97 蜗杆蜗轮传动的受力分析和强度计算971 受力分析972 强度计算第十章蜗杆传动101 蜗杆传动的类型和特点102 蜗杆和蜗轮的结构103 蜗杆传动的失效形式和设计准则104 蜗杆传动的材料和热处理105 蜗杆传动的受力分析和强度计算106 蜗杆传动的效率、润滑和热平衡计算第十一章轴111 轴的分类和材料1111 轴的分类1112 轴的材料112 轴的结构设计1121 轴上零件的定位和固定1122 轴的结构工艺性113 轴的强度计算1131 按扭转强度计算1132 按弯扭合成强度计算1133 轴的疲劳强度校核第十二章滑动轴承121 滑动轴承的类型和结构1211 整体式滑动轴承1212 剖分式滑动轴承1213 调心式滑动轴承122 滑动轴承的材料1221 金属材料1222 非金属材料123 滑动轴承的润滑1231 润滑剂的选择1232 润滑方式124 非液体摩擦滑动轴承的设计计算第十三章滚动轴承131 滚动轴承的类型和特点1311 滚动轴承的分类1312 滚动轴承的特点132 滚动轴承的代号1321 基本代号1322 前置代号和后置代号133 滚动轴承的选择1331 类型选择1332 尺寸选择134 滚动轴承的组合设计1341 轴承的固定1342 轴承的配合1343 轴承的装拆1344 滚动轴承的润滑和密封第十四章联轴器和离合器141 联轴器1411 联轴器的类型和特点1412 联轴器的选择142 离合器1421 离合器的类型和特点1422 离合器的选择第十五章弹簧151 弹簧的类型和特点152 弹簧的材料和制造153 圆柱螺旋压缩弹簧的设计计算第十六章机械系统设计161 机械系统设计的任务和过程162 机械系统总体方案设计163 机械系统的执行系统设计164 机械系统的传动系统设计165 机械系统的支承系统设计第十七章机械设计中的创新思维171 创新思维的概念和特点172 创新思维在机械设计中的应用173 培养创新思维的方法和途径第十八章机械设计实例分析181 简单机械装置的设计实例182 复杂机械系统的设计实例183 设计实例中的经验教训和改进方向。
关于机械设计基础知识总结关于机械设计基础知识总结第一章绪论1、机械的组成:完整的机械系统由原动机、传动装置、工作机、和控制系统四大基本组成部分2、机械结构组成层次:零件→构件→机构→机器3、机械零件:加工的单元体4、机械构件:运动的单元体5、机械机构:具有确定相对运动的构件组合体第二章机械设计概论1、机械设计的基本要求:使用功能、工艺性、经济性、其他2、机械设计的一般程序:(1)确定设计任务书(2)总体方案设计(3)技术设计(4)编制技术文件(5)技术审定和产品鉴定3、机械零件的失效:机械零件不能正常工作、失去所需的工作效能4、设计计算准则:保证零件不产生失效5、机械零件的结构工艺性:铸造工艺性;模锻工艺性;焊接工艺性;热处理工艺性;切削加工工艺性;装配工艺性;6、工程材料:金属材料、非金属材料7、金属材料的机械性能:强度、刚度、硬度、塑性、韧性和疲劳强度8、金属材料的工艺性能:铸造性、铸造性、焊接性、切削加工性9、钢的热处理方式:退火、正火、淬火与回火、表面淬火、表面化学热处理10、常用金属材料:铸铁、碳素钢、合金钢、有色金属材料11、配合:间隙配合:具有间隙的配合,孔的公差带在轴公差带上过盈配合:具有过盈的配合,孔的公差带在轴公差带下过度配合:可能具有间隙或过盈的配合,孔的公差带与轴的公差带相互交叠12、基准值:基孔制、基轴制(优先选用基孔制)13、运动副:构件与构件之间通过一定的相互接触和制约,构成保持相对运动的可动连接低副:通过面接触构成的运动副,分为回转副和移动副高副:两构件通过电线接触构成的运动副14、机构中的构件:机架、原动件、从动件15、机构具有确定运动的条件:(1)机构的自由度F>0(2)机构的原动件数等于机构的自由度F16、机构自由度的计算:机构自由度计算的注意事项:复合铰链:两个以上的构件同时在一处用转动副相联结就构成复合铰链.由K个构件组成的复合铰链应含有(K-1)个转动副局部自由度:在机构中常会出现一种与输出构件运动无关的自由度,称局部自由度(或多余自由度)。
第1章 绪 论教学提示:初步介绍机械设计基础课程研究的内容和机械零件设计的基本要求。
教学要求:掌握构件、零件、机构、机器、机械等名词的含义及机械零件的工作能力计算准则。
1.1 机器的组成在人们的生产和生活中,广泛使用着各种机器。
机器可以减轻或代替人的体力劳动,并大大提高劳动生产率和产品质量。
随着科学技术的发展,生产的机械化和自动化已经成为衡量一个国家社会生产力发展水平的重要标志之一。
1.1.1 几个常用术语1. 机器、机构、机械尽管机器的用途和性能千差万别,但它们的组成却有共同之处,总的来说机器有三个共同的特征:①都是一种人为的实物组合;②各部分形成运动单元,各运动单元之间具有确定的相对运动;③能实现能量转换或完成有用的机械功。
同时具备这三个特征的称为机器,仅具备前两个特征的称为机构。
若抛开其在做功和转换能量方面所起的作用,仅从结构和运动观点来看两者并无差别,因此,工程上把机器和机构统称为“机械”。
以单缸内燃机(如图1.1所示)为例,它是由气缸体l、活塞2、进气阀3、排气阀4、连杆5、曲轴6、凸轮7、顶杆8、齿轮9和齿轮10等组成。
通过燃气在气缸内的进气—压缩—爆燃—排气过程,使其燃烧的热能转变为曲轴转动的机械能。
单缸内燃机作为一台机器,是由连杆机构、凸轮机构和齿轮机构组成的。
由气缸体、活塞、连杆、曲轴组成的连杆机构,把燃气推动的活塞往复运动,经连杆转变为曲轴的连续转动;气缸体、齿轮9和10组成的齿轮机构将曲轴的转动传递给凸轮轴;而由凸轮、顶杆、气缸体组成的凸轮机构又将凸轮轴的转动变换为顶杆的直线往复运动,进而保证进、排气阀有规律的启闭。
可见,机器由机构组成,简单的机器也可只有一个机构。
2. 构件、零件、部件组成机器的运动单元称为构件;组成机器的制造单元称为零件。
构件可以是单一的零件,也可以由刚性组合在一起的几个零件组成。
如图1.1所示中的齿轮既是零件又是构件;而连杆则是由连杆体、连杆盖、螺栓及螺母几个零件组成,这些零件形成一个整体而进行运动,所以称为一个构件,如图1.2所示。