第2章光电导器件
- 格式:ppt
- 大小:1.52 MB
- 文档页数:32
第2章光电子学基础知识第一部分光学基础知识第二部分半导体基础知识第一部分光学基础知识一、光的基本属性R.Fresnel 圆孔衍射实验, T.Young 双缝干涉实验1864年麦克斯韦给出麦克斯韦方程组,横波,光速20年后赫兹实验验证。
17世纪中期提出光属性的两种学说牛顿粒子理论惠更斯原理光是由发光物体发出的遵循力学规律的粒子流。
光是机械波,在弹性介质“以太”中传播。
ILCLCf π21=dS C ε=22RlN L πµ=−q+ql电磁波的产生——振荡电路产生电磁波电偶极子当电偶极子的正、负电荷的距离随时间按余弦规律变化时,形成交替变化的电场与磁场,产生电磁波。
振荡偶极子附近一条闭合电场线的形成过程如图所示:光波与电波虽然同是电磁波,但其产生的本质原因不同,因而波长相差很大,且频率越高,粒子性与波动性相比越加明显;电波的波导由金属导体构成,而光波的波导是由电介质构成的。
31061091012101410191040691143H Z H Z 1M H Z 1G H Z 1T 1km1m 1mm 11nm μm X 射线紫外线可见光红外线微波高频电视调频广播无线电射频射线γ频率长1017——电磁波谱8sm f c /8103×≈=λ光波波段光波与电磁波Albert Einstein 引入光子的概念Thomson 电子干涉实验, Davisson 电子束经晶体的干涉实验证明了De Broglie 假设的正确性。
1921年获Nobel 物理学奖De Broglie 构造了De Broglie 假设1929年获Nobel 物理学奖所有物质都有类波属性1937年获Nobel 物理学奖粒子学说可合理地解释光的吸收、光压、光的发射与光电效应、光的化学效应、黑体辐射、康普顿效应等现象。
波动学说能解释光的干涉、衍射、偏振、运动物体的光学现象等现象。
光的波粒二象性宏观解释——既是一种电磁波又是一种粒子微观解释本质上讲,粒子性与波动性各有其存在的合理性。
光电子学与光子学的原理及应用第二章-课后答案1. 选择题1.1 题目一答案:C解析:光电效应是指物质受到光的照射后,吸收光能,将光能转化为电能的一种现象。
光电效应首先是由爱因斯坦在1905年提出的,他在描述光电效应时,引入了光子概念,假设光是由一组个别粒子组成的(即光量子),这些粒子就是后来被称为光子的电磁辐射量子。
1.2 题目二答案:A解析:光电倍增管是指通过光电效应,在光电面上光电发射物质外壳的钨丝和灯管之间加一个高达2000-3000伏的电压使其产生光电流,再对光电流进行电子倍增,最后输出检测的一种光电探测器。
光电倍增管的结构与普通的电子管相似,但是在各个电极和玻璃壳之间加入了紧密和高度真空的保护,同时在阳极和阳极网之间还添加了一个用直流电压加电的光电体。
当阳极对外加正电压使阳极电流开始增大时,就成为光电倍增管。
1.3 题目三答案:D解析:光电二极管是一种能够将光信号转化为电信号的器件。
光电二极管的基本原理是利用半导体材料的PN结在光照射下产生光电效应,使得PN结两端产生电荷,从而产生电压信号。
光电二极管的结构和普通二极管类似,主要由P型和N型的半导体材料组成,当光照射到光电二极管上时,光子能量被半导体材料所吸收,产生的热力激发电子,从而引起半导体PN结的载流子的复合和流动,产生感光电流。
光电二极管应用广泛,如光通信、光电测量、光谱分析等领域。
1.4 题目四答案:B解析:光导纤维是一种能够传输光信号的特殊纤维材料。
光导纤维的核心部分是由高折射率的材料构成,而外部由低折射率的材料构成。
当光线传输到光导纤维中时,会发生全反射现象,使得光线能够沿着光导纤维进行传输,最终到达目标地点。
光导纤维具有传输距离远、损耗小、带宽大、抗电磁干扰等优点,在通信、医疗、传感等领域得到广泛应用。
2. 填空题2.1 题目一答案:钠解析:钠具有低电离电势,激发电子的能量比较低,是光电电子极容易脱离的材料之一。
2.2 题目二答案:光电效应解析:光电效应是指物质受到光的照射后,吸收光能,将光能转化为电能的一种现象。
光电技术第二版习题答案光电技术第二版习题答案光电技术是一门研究光与电的相互转换关系的学科,广泛应用于光电子器件、光学通信、光电显示等领域。
对于学习光电技术的学生来说,做习题是提高理论掌握和解决实际问题的重要方式之一。
本文将为大家提供光电技术第二版习题的详细答案,希望能够帮助大家更好地理解和应用光电技术。
第一章:光电效应1. 什么是光电效应?光电效应是指当光照射到金属表面时,金属中的自由电子被光子激发而跃迁到导带中,从而产生电流的现象。
2. 光电效应与光的频率有什么关系?光电效应与光的频率有直接关系。
当光的频率小于临界频率时,无论光的强度如何增大,都无法引起光电效应;当光的频率大于临界频率时,光电效应可以发生。
3. 什么是逸出功?逸出功是指金属表面的电子从金属内部跃迁到导带所需的最小能量。
逸出功的大小决定了光电效应的临界频率。
4. 什么是光电流?光电流是指光照射到金属表面后,由于光电效应而产生的电流。
5. 什么是光电倍增管?光电倍增管是一种利用光电效应放大光信号的器件。
它由光阴极、倍增结构和阳极组成,光照射到光阴极上产生光电子,经过倍增结构的倍增作用后,最终产生大量的电子被收集到阳极上,从而放大光信号。
第二章:光电子器件1. 什么是光电二极管?光电二极管是一种能够将光信号转换为电信号的器件。
它由光敏材料和P-N结构组成,当光照射到光敏材料上时,产生光电效应,从而在P-N结构上形成电流。
2. 什么是光电导?光电导是一种能够将光信号转换为电信号并放大的器件。
它由光敏电阻、放大电路和输出电路组成,当光照射到光敏电阻上时,光电阻的电阻值发生变化,从而在放大电路中产生电流信号。
3. 什么是光电晶体管?光电晶体管是一种能够将光信号转换为电信号并放大的器件。
它由光敏基区、放大区和输出区组成,当光照射到光敏基区上时,产生光电效应,从而在放大区中形成电流信号,并通过输出区输出。
4. 什么是光电耦合器件?光电耦合器件是一种能够将光信号转换为电信号并隔离输入输出的器件。
光电导效应的光电器件
光电导效应是指当光照射到半导体材料时,会产生电子-空穴对,从而使半导体的电导率增加的现象。
利用光电导效应可以制作多种光电器件,例如光敏电阻、光敏二极管、光敏三极管等。
光敏电阻是一种基于光电导效应的电阻器件,其电阻值随着光强的增加而减小。
光敏电阻通常由半导体材料制成,例如硅、锗、砷化镓等。
当光照射到光敏电阻上时,会产生电子-空穴对,从而使半导体的电导率增加,电阻值减小。
光敏电阻的优点是响应速度快、灵敏度高、成本低,广泛应用于光控开关、光探测器、光敏传感器等领域。
光敏二极管和光敏三极管是一种基于光电导效应的二极管和三极管器件,其工作原理与光敏电阻类似,但具有更高的灵敏度和更快的响应速度。
光敏二极管和光敏三极管通常由硅、锗等半导体材料制成,当光照射到光敏二极管或光敏三极管上时,会产生电子-空穴对,从而使半导体的电导率增加,产生电流信号。
光敏二极管和光敏三极管的优点是灵敏度高、响应速度快、噪声低,广泛应用于光通信、光探测器、光敏传感器等领域。
除了上述光电器件外,利用光电导效应还可以制作其他光电器件,例如光敏电池、光敏集成电路等。
这些光电器件在光学通信、光学检测、光学控制等领域具有广泛的应用前景。
习题:一.填空题1. 半导体的导电能力与温度、光照强度、掺杂浓度和材料性质有关。
2. 利用PN结击穿时的特性可制成稳压二极管,利用发光材料可制成发光二级管,利用PN结的光敏性可制成光敏(光电)二级管。
3.在本征半导体中加入__5价__元素可形成N型半导体,加入_3价_元素可形成P型半导体。
N型半导体中的多子是_自由电子_______;P型半导体中的多子是___空穴____。
4. PN结外加正向电压时导通外加反向电压时截止这种特性称为PN结的单向导电性。
5. 通常情况下硅材料二极管的正向导通电压为0.7v ,锗材料二极管的正向导通电压为0.2v 。
6..理想二极管正向电阻为__0______,反向电阻为_______,这两种状态相当于一个___开关____。
7..晶体管的三个工作区分别为放大区、截止区和饱和区。
8.. 稳压二极管是利用PN结的反向击穿特性特性制作的。
9.. 三极管从结构上看可以分成 PNP 和 NPN 两种类型。
10. 晶体三极管工作时有自由电子和空穴两种载流子参与导电,因此三极管又称为双极型晶体管。
11.设晶体管的压降U CE不变,基极电流为20μA时,集电极电流等于2mA,则β=__100__。
12. 场效应管可分为绝缘栅效应管和结型两大类,目前广泛应用的绝缘栅效应管是MOS管,按其工作方式分可分为耗尽型和增强型两大类,每一类中又分为N沟道和P沟道两种。
13. 查阅电子器件手册,了解下列常用三极管的极限参数,并记录填写题表2-1在下表中题表2-1二.选择题1.杂质半导体中,多数载流子的浓度主要取决于A。
A、杂质浓度B、温度C、输入D、电压2.理想二极管加正向电压时可视为 B ,加反向电压时可视为__A__。
A.开路B.短路C.不能确定3.稳压管的稳压区是二极管工作在__D__状态。
A.正向导通B.反向截止C.反向导通D.反向击穿4.当温度升高时,二极管的反向饱和电流将__A__。