药物晶型
- 格式:doc
- 大小:32.50 KB
- 文档页数:5
药物盐型和晶型专利十大典型案例
药物的盐型和晶型专利是药物研发中非常重要的一部分,下面
我将介绍一些典型的案例。
1. 盐型专利,盐型是药物分子与无机或有机酸结合形成的盐,
例如氯化钠。
在盐型专利中,一种药物的盐型可以通过与不同的酸
结合来改变其性质,如溶解度、稳定性等,从而提高其药物活性或
改善其制剂特性。
典型案例包括帕罗西汀甲磺酸盐、枸橼酸西地那
非盐等。
2. 晶型专利,晶型是药物分子在晶体中的排列形式,不同的晶
型对药物的溶解度、稳定性、生物利用度等性质有重要影响。
晶型
专利通常涉及到对药物晶型的研究和应用,以及晶型的制备方法等。
典型案例包括赛来酸盐的晶型、格列齐特的多晶型等。
3. 盐晶型联合专利,有些药物的专利涉及到盐型和晶型的联合
应用,即特定盐型与特定晶型的组合。
这种联合专利可以进一步优
化药物的性质,提高其疗效和制剂特性。
典型案例包括盐晶型联合
专利的阿莫西林克拉维酸钾盐。
4. 法律案例,在盐型和晶型专利中,也存在一些法律案例,涉
及到专利权的争议和侵权问题。
例如,曾经发生过盐型专利侵权案件,涉及到盐型转换和专利权的界定等问题。
总的来说,药物的盐型和晶型专利在药物研发中具有重要意义,能够通过改变药物的物化性质来优化药物的性能和疗效。
在专利申
请和权益保护方面也存在一些挑战和争议,需要在法律和科学技术
上进行综合考量和处理。
以上是一些典型的案例和情况,希望能够
对你有所帮助。
药物晶型、无定形、水合物和无水物是药物的固态形态之一,它们在药物制备和药物性质方面都具有重要的影响。
本文将分别对药物晶型、无定形、水合物和无水物进行详细的介绍,以便读者更好地理解这些药物固态形态的特点和应用。
一、药物晶型在固体药物中,晶型是指药物分子在晶格中的排列方式。
药物晶型的不同会对药物的物理性质、化学活性、生物利用度等产生巨大的影响。
主要晶型包括多晶型和单晶型两种。
1. 多晶型多晶型指的是同一种药物在结构上存在多种结晶形式。
多晶型的存在可以使药物的稳定性和溶解度发生变化,从而影响其在制剂中的使用效果。
2. 单晶型单晶型指的是一种药物只存在一种结晶形式。
单晶型的药物通常具有更稳定的性质,并且更容易进行制剂加工,因此在药物研发中具有较高的价值。
二、无定形无定形是指一种物质没有规则的结晶结构,其原子、分子的排列无规则。
在药物研发中,一些药物由于生产过程的影响,会形成无定形的固态形态。
无定形的药物通常具有较大的比表面积和较高的活性,但其稳定性和溶解度却常常较差,因此在制剂加工中需要特殊处理。
三、水合物水合物是指某种物质中包含结合水分子的结晶形式。
水合物广泛存在于化学品和药物中,其存在会影响药物的稳定性和溶解度,且在制剂中的使用也需要特别的注意。
四、无水物无水物是指某种物质中不含有结合水分子的固态形式。
无水物的存在会对药物的稳定性和溶解度产生重要影响,因此在药物研发和制剂加工中都需要针对其特性进行研究和控制。
结语药物晶型、无定形、水合物和无水物是药物固态形态中常见的形式,它们在药物的制备和性质上均具有重要的影响。
了解和研究这些药物固态形态的特点,不仅有助于提高药物的质量和稳定性,还有助于拓展新的药物研发方向。
希望读者通过本文的介绍,能够对药物固态形态有更清晰的认识,从而推动药物研发和制剂加工的进步。
零一、药物晶型1.1 多晶型与单晶型在药物研发中,晶型对于药物的性质和稳定性具有重要的影响。
多晶型的存在使得药物在制剂中的性能可能会有所变化,这对于药物的加工和使用都提出了要求;而单晶型的药物由于结晶结构较为有序,因此在稳定性和制剂加工方面有着明显的优势。
药物晶型研究
药物晶型研究指的是对药物分子在晶体中的排列和结构进行研究。
药物晶型是药物分子在固态下的结晶形态,它的形成受到诸多因素的影响,如温度、溶剂、溶液浓度等。
药物晶型的研究对药物的性质和性能有重要影响。
首先,药物晶型的研究可以帮助确定药物的物理性质。
不同晶型的药物分子之间的排列方式不同,因而对药物的熔点、溶解度、稳定性等物理性质产生影响。
比如,某一晶型的药物熔点较低,溶解度较高,可以更快地在体内发挥药效;而另一种晶型的药物则可能具有较高的稳定性,适合长时间保存。
其次,药物晶型的研究对药物的生物利用度和药效也有直接影响。
药物的晶型能够影响溶解度,而溶解度又是药物被吸收的关键因素之一。
不同晶型的药物溶解度不同,进一步影响了药物在体内的吸收和分布。
同时,在某些情况下,药物的晶型还可以改变其药效。
一些晶型可能会增强药物的生物活性,从而提高药物的疗效。
另外,药物晶型的研究还可以为药物的制备方法提供参考。
药物晶型的选择对制备工艺有重要影响。
不同晶型的药物分子之间的排列方式不同,其在结晶过程中的形态和颗粒度也会有所差异。
因此,在制备药物的过程中,研究药物晶型可以帮助选择合适的溶剂和结晶条件,从而得到所需的晶型。
总结起来,药物晶型的研究对药物的物理性质、生物利用度、药效和制备工艺都有重要影响。
随着科技的发展,人们对药物
晶型的研究也变得越来越深入,为药物的研发和生产提供了更多的选择和可能性。
药物分子的晶型与溶解度研究药物分子的晶型与溶解度是药物科学领域中的重要研究内容。
药物的晶型及其溶解度直接影响药物的稳定性、生物利用度和药效等因素,因此对药物分子晶型与溶解度进行深入研究具有重要的意义。
一、药物晶型的研究药物晶型是指药物化合物在固态下的排列形式,不同的晶型具有不同的晶体结构、形态和热力学性质。
药物晶型可以通过多种方法进行研究和确定。
1. X射线衍射研究X射线衍射是一种常用的药物晶型研究手段。
通过将药物晶体样品暴露在X射线束中,根据药物晶体中原子的布局和散射规律来确定晶型结构。
X射线衍射还可以用于药物晶型的定性和定量分析。
2. 热分析技术热分析技术包括差示扫描量热法(DSC)、热重分析法(TGA)等。
通过测量药物晶体在不同温度下的热性质变化,可以确定晶型结构以及药物晶型的变化规律。
3. 晶体学方法晶体学研究是一种在药物晶型研究中常用的手段。
通过晶体学方法,可以确定药物晶体的晶胞参数、晶体对称性以及分子间的相互作用力。
二、药物溶解度的研究药物溶解度是指药物在一定条件下在溶剂中溶解的程度。
药物的溶解度与药效、生物利用度以及制剂研发密切相关。
因此,对药物的溶解度进行研究具有重要的意义。
1. 环境因素的影响药物溶解度除了受到溶剂、温度等因素的影响,还受到pH值、离子强度等因素的影响。
了解这些环境因素对药物溶解度的影响,有助于优化药物的溶解度及其制剂。
2. 溶解度与生物利用度关系的研究药物的溶解度与其在体内的吸收、分布、代谢、排泄等过程密切相关。
通过研究药物溶解度与体内药物动力学参数的关系,可以为药物的生物利用度提供理论依据。
3. 提高药物溶解度的策略对于溶解度较低的药物,可以通过多种方法提高其溶解度。
如物理改性技术(如晶型转化、固体分散体制备)、化学改性技术(如酯化、盐酸化)等手段,可以有效提高药物的溶解度。
三、研究进展与应用前景近年来,随着药物晶型与溶解度研究的深入,对于药物在制剂方面的应用也逐渐展开。
药用优势药物晶型药用优势药物晶型引言药物晶型是指药物分子在固态中的排列方式。
不同的晶型对于药物的稳定性、生物利用度、溶解度等方面都有着重要影响。
因此,研究和掌握药物晶型对于药物研发和生产具有重要意义。
一、药用优势1.提高生物利用度不同的晶型对于药物的生物利用度有着重要影响。
例如,一些药物只有在特定的晶型下才能被人体消化吸收,而其他晶型则会被人体排出。
因此,研究和掌握正确的晶型选择对于提高药物生物利用度至关重要。
2.增加稳定性不同的晶型具有不同的稳定性。
某些晶型会因为受到温度、湿度等环境因素影响而发生结构变化,从而导致其失去活性或产生副作用。
因此,在制备过程中选择稳定性较高的晶型可以有效提高产品质量。
3.改善溶解度一些药物在特定的晶型下溶解性较差,难以被人体吸收。
但是,通过控制药物晶型,可以改善药物的溶解度,从而提高其生物利用度。
二、药物晶型的分类1.单晶型单晶型是指药物分子在固态中只存在一种排列方式。
单晶型具有较高的稳定性和生物利用度,因此在制备过程中通常会选择单晶型。
2.多晶型多晶型是指药物分子在固态中存在多种排列方式。
多晶型具有较低的稳定性和生物利用度,因此在制备过程中需要进行筛选和选择合适的晶型。
3.非结晶态非结晶态是指药物分子在固态中没有明显的排列方式。
非结晶态具有较低的稳定性和生物利用度,但是由于其溶解度高,因此可以作为一种特殊的制剂形式使用。
三、药物晶型的研究方法1.X射线衍射法X射线衍射法是目前最常用的研究药物晶型的方法之一。
该方法通过测量药物样品对于X射线衍射光线的反射和散射情况来确定药物的晶型。
2.热分析法热分析法是一种通过测量药物样品在不同温度下的热性质来确定药物晶型的方法。
该方法包括差示扫描量热法、热重分析法等。
3.核磁共振法核磁共振法是一种通过测量药物样品中原子核在外加电磁场作用下的共振现象来确定药物晶型的方法。
四、结论药物晶型对于药物的稳定性、生物利用度和溶解度等方面都有着重要影响。
药物晶型基本知识什么是药物晶型?药物晶型是指药物分子在固态中的排列方式和结构形态。
药物晶型的不同会影响药物的物理性质、化学稳定性、生物利用度以及药物的溶解度和溶出速度等关键特性。
因此,研究药物晶型对于药物的研发、制备和品质控制至关重要。
药物晶型的分类药物晶型可以分为多种不同的形式,常见的分类包括:1.同质晶型:同一种药物分子以不同的方式组成晶体结构,但其化学成分相同。
同质晶型的不同排列方式可能会导致药物性质的差异。
2.多态晶型:同一种药物分子以不同的晶体结构形态存在,其晶体结构和物理性质各不相同。
多态晶型的存在可能会对药物的稳定性、生物利用度和溶解度等产生显著影响。
3.伪多态晶型:与多态晶型类似,但伪多态晶型的晶体结构形态是由于外界条件(如溶剂、温度、压力等)的影响而产生的。
4.共晶型:两种或多种药物分子共同形成晶体结构,共晶型的存在可能会影响药物的溶解度和溶出速度等特性。
药物晶型的研究方法为了研究药物晶型,科学家们使用了多种实验方法和理论模型。
以下是一些常见的药物晶型研究方法:1.X射线衍射(XRD):XRD是一种常用的技术,可以通过测量药物晶体对X射线的衍射来确定晶体结构。
XRD可以用来鉴定药物的晶型以及晶体结构的变化。
2.热分析(Thermal Analysis):热分析技术包括差示扫描量热法(DSC)和热重分析法(TGA)。
DSC可以测量药物晶体的热性质,如熔点和熔解热等。
TGA可以测量药物晶体的热稳定性。
3.核磁共振(NMR):NMR可以用来研究药物分子在晶体中的结构和动力学性质。
4.计算模拟:通过计算模拟方法,可以预测药物晶型的稳定性和物理性质。
分子动力学模拟和密度泛函理论等方法被广泛应用于药物晶型研究。
药物晶型的影响因素药物晶型的形成和转变受到多种因素的影响,包括:1.溶剂选择:不同的溶剂可以促进或抑制药物晶型的形成,溶剂的选择对于控制药物晶型具有重要意义。
2.温度和压力:温度和压力的变化可以导致药物晶型的相变,从而影响药物的物理性质和溶解度等。
1.晶型药物研究现状1.1固体化学物质的“多晶型现象”是1832年前俄国科学家乌勒(F.Wohler)等人在研究苯甲酰胺化合物时首次发现。
通过对“同质异晶”等无机晶体的研究,科学家发现了一些由分子排列规律变化造成的相同固体化学物质在不同方向上所具有的光学、磁性性质变化,同时也发现了相同物质的不同晶型现象可以引起固体物质在熔点、硬度、密度等物理参数的变化现象,从而全面改变了固体物质本身的各种物理特征。
1.2我国对晶型药物的研究起步较晚,20世纪90年代中期,我国首次进口尼莫地平固体药物的临床疗效是国产仿制固体药品的3倍以上。
通过多种分析方法比较,发现造成进口尼莫地平片剂优势的真正原因是两者采用了不同晶型固体物质。
目前在《中国药典》中存在晶型问题的化学药品达数百个,而这些品种在晶型质量控制上缺少相关控制标准,已经严重影响和制约我国固体化学药物发展和药品质量。
2优势药物晶型2.1药用优势药物晶型是指对于具有多种形式物质状态的晶型药物而言,应具备晶型物质相对稳定、能够最好发挥防治疾病作用、毒副作用较低的晶形物质状态。
药用的优势药物晶型研究主要内容包括:1.晶型稳定性;2.不同晶型物质对药物生物利用度的影响;3.优势药物晶型的选择需要观察药物的有效性和毒副反应。
3晶型药物与机体吸收固体化学药物晶型不同,可造成其溶解度和稳定性不同,从而影响药物的吸收和生物利用度,并因此导致临床药效的差异。
3.1无定型态物质影响药物吸收有些药物的晶态晶型不如无定形态晶型好,这样在制剂过程中需将原料药制备成无定型态。
3.2晶态物质影响药物吸收药物的不同晶型由于溶解度和溶出速率不同,从而影响药物的吸收和生物利用度,进而导致临床药效差异。
4.影响药物晶型产生的因素多晶型是固体药物中非常普遍的存在形式,但由于固体有机药物样品大多是分子晶体,其晶格能差较小,容易发生转型。
而这种转变在很大程度上会影响药物的物理化学性质、药效和毒副作用,影响生物利用度。
药物晶型的分类及特点
药物晶型是指药物分子在结晶过程中所形成的具有特定结构和特征的晶体形态。
药物晶型的分类主要包括单质晶型和共晶型,同时还可以根据晶体结构、物理性质和热学性质等特点进行进一步的细分。
单质晶型是指药物分子在结晶过程中只存在一种结构形态。
根据晶体结构的不同,单质晶型可以分为α晶型、β晶型等。
这些不同晶型的形成可以由多种因素引起,包括温度、溶剂、浓度、晶体生长速率等。
不同晶型的药物可能具有不同的物理性质和稳定性,对药物的效果和剂型设计有重要影响。
共晶型是指两种或多种物质以化学反应的形式结合形成的晶体结构。
共晶型的
药物结晶通常具有更好的溶解度和生物利用度,因此具有更好的药效。
共晶型的形成一般由药物分子和辅助物质之间的相互作用和相对比例决定。
共晶型的药物更易于制备和吸收,因此对于药物的研发和制造具有重要意义。
药物晶型的特点主要包括物理性质、溶解度和生物利用度等方面。
不同晶型的
药物可能具有不同的结晶形态、熔点和储存稳定性。
药物晶型的选择和控制可以对药物的质量、稳定性和疗效产生重要影响。
在药物开发过程中,了解药物晶型的分类和特点对于药物的研发、制造和质量
控制非常重要。
研究药物晶型可以帮助科学家们理解药物的结构和性质,并提供指导药物制造工艺和剂型设计的依据。
同时,药物晶型的探索还可以为药物的结构优化和性能改善提供新的思路和方法。
药物晶型
物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。
同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。
虽然在一定的温度和压力下,只有一种晶型在热力学上是稳定的,但由于从亚稳态转变为稳态的过程通常非常缓慢,因此许多结晶药物都存在多晶现象。
固体多晶型包括构象型多晶型、构型型多晶型、色多晶型和假多晶型。
同一药物的不同晶型在外观、溶解度、熔点、溶出度、生物有效性等方面可能会有显著不同,从而影响了药物的稳定性、生物利用度及疗效,该种现象在口服固体制剂方面表现得尤为明显。
药物多晶型现象是影响药品质量与临床疗效的重要因素之一,因此对存在多晶型的药物进行研发以及审评时,应对其晶型分析予以特别的关注。
目前鉴别晶型主要是针对不同的晶型具有不同的理化特性及光谱学特征来进行的,现将几种常用且特征性强、区分度高的方法介绍如下,以供参考。
1 X-射线衍射法(X-ray diffraction)
X-射线衍射是研究药物晶型的主要手段,该方法可用于区别晶态和非晶态,鉴别晶体的品种,区别混合物和化合物,测定药物晶型结构,测定晶胞参数(如原子间的距离、环平面的距离、双面夹角等),还可用于不同晶型的比较。
X-射线衍射法又分为粉末衍射和单晶衍射两种,前者主要用于结晶物质的鉴别及纯度检查,后者主要用于分子量和晶体结构的测定。
1.1 粉末衍射粉末衍射是研究药物多晶型的最常用的方法。
粉末法研究的对象不是单晶体,而是众多取向随机的小晶体的总和。
每一种晶体的粉末X-射线衍射图谱就如同人的指纹,利用该方法所测得的每一种晶体的衍射线强度和分布都有着特殊的规律,以此利用所测得的图谱,可获得出晶型变化、结晶度、晶构状态、是否有混晶等信息。
该方法不必制备单晶,使得实验过程更为简便,但在应用该方法时,应注意粉末的细度,而且在制备样品时需特别注意研磨过筛时不可发生晶型的转变。
1.2 单晶衍射单晶衍射是国际上公认的确证多晶型的最可靠方法,利用该方法可获得对晶体的各晶胞参数,进而确定结晶构型和分子排列,达到对晶型的深度认知。
而且该方法还可用于结晶水/溶剂的测定,以及对成
盐药物碱基、酸根间成键关系的确认。
然而,由于较难得到足够大小和纯度的单晶,因此该方法在实际操作中存在一定困难。
2 红外吸收光谱法
不同晶型药物分子中的某些化学键键长、键角会有所不同,致使其振动-转动跃迁能级不同,与其相应的红外光谱的某些主要特征如吸收带频率、峰形、峰位、峰强度等也会出现差异,因此红外光谱可用于药物多晶型研究。
目前已知的由于晶型不同引起红外光谱不同的药物有甲苯咪唑等20多个品种。
红外光谱法常用的样品制备方法有KBr压片法、石蜡糊法、漫反射法以及衰减全反射法(attenuated total reflection, ATR)等。
考虑到研磨可能会导致药物晶型的改变,所以在用红外光谱法进行药物晶型测定时多采用石蜡油糊法,或采用扩散反射红外傅里叶变化光谱法(DRIFT)。
近些年来,随着计算机及分析软件的发展,近红外傅里叶变换拉曼光谱法(NIR-FTRS)也应用在药物多晶型的定性、定量研究中,它融合了NIR速度快、不破坏样品,不需试剂、可透过玻璃或石英在线测定的优势[6]和拉曼光谱不需专门制备样品以及对固体药物晶型变化灵敏的特点,可视为传统红外光谱法研究药物多晶型的一种延伸。
红外光谱法较为简便、快速,然而对于部分晶型不同而红外图谱相同或差别不大的药物,红外光谱就难以区分了,如苯乙阿托品的晶型I和晶型II的红外光谱一致;而且有时图谱的差异也可能是由于样品纯度不够,晶体的大小,研磨过程的转晶等导致的分析结果偏差。
这时就需要同时采取其他方法共同确定样品的晶型。
3 熔点法和热台显微镜法
如上所述,药物晶型不同,熔点可能会有差异,除常见的毛细管法和熔点测定仪方法外,热台显微镜也是通过熔点研究药物多晶型存在的常见方法之一,该方法能直接观察晶体的相变、熔化、分解、重结晶等热力学动态过程,因此利用该工具照药典规定进行熔点测定可初步判定药物是否存在多晶现象。
部分药物多晶型之间熔点相差幅度较小,甚至无差别,故以熔点差异确定多晶型,只是初步检测方法之一。
一般来说,晶型稳定性越高熔点也越高;两种晶型的熔点差距大小,可以相对地估计出它之间的稳定性关系。
如果两种晶型熔点相差不到1℃时,则这两种晶型在结晶过程中就可以同时析出,且两者的相对稳定性较难判别。
两者熔点越接近,不稳定的晶型越不易得到。
4 热分析法
不同晶型,升温或冷却过程中的吸、放热也会有差异。
热分析法就是在程序控温下,测量物质的物理化学性质与温度的关系,并通过测得的热分析曲线来判断药物晶型的异同。
热分析法主要包括差示扫描量热法、差热分析法和热重分析法。
4.1 差示扫描量热法(differential scanning calorimeter, DSC) DSC 是在程序控制下,通过不断加热或降温,测量样品与惰性参比物(常用
α-Al2O3)之间的能量差随温度变化的一种技术。
DSC多用于分析样品的熔融分解情况以及是否有转晶或混晶现象。
4.2 差热分析法(differential thermal analysis, DTA) DTA和DSC 较为相似,所不同的是,DTA是通过同步测量样品与惰性参比物的温度差来判定物质的内在变化。
各种物质都有自己的差热曲线,因此DTA是物质物理特性分析的一种重要手段。
4.3 热重分析法(thermogravimetric analysis, TGA) TGA是在程序控制下,测定物质的质量随温度变化的一种技术,适用于检查晶体中溶剂的丧失或样品升华、分解的过程,可推测晶体中含结晶水或结晶溶剂的情况,从而可快速区分无水晶型与假多晶型。
热分析法所需样品量少,方法简便,灵敏度高,重现性好,在药物多晶型分析中较为常用。
5 偏光显微镜法
偏光显微镜除了含有一般光学显微镜的结构外,最主要的特点是装有两个偏光零件,即装在载物台下方的起偏镜(又称下偏光镜)和装在镜筒中的分析镜(又称上偏光镜)。
两镜均由人工合成偏光片组成,通过角度的调整,可将射入光源转换成正交偏光。
正因为如此,该方法主要适用于透明固体药物。
透明固体药物的观测一般是在正交偏光下进行。
由于晶体结构不同和偏光射入时的双折射作用,在偏光显微镜上、下偏光镜的正交作用下,晶体样品置于载物台上旋转360º时,则晶体显现短暂的隐失和闪亮,晶体隐失时晶体与偏振器振动力向所成的交角称为消光角,通过不同的消光角,即可决定晶体所属的晶型]。
偏光显微镜法还可研究晶型间的相变,可以准确测定晶体熔点;对于具有各项向异性的动植物材料(如纤维蛋白、淀粉粒)的结构,具有特殊的鉴定作用。
6 核磁共振法
不同晶型结构中分子中的原子所处化学环境存在细微差异,类似核对施加的外磁场即产生不同的响应,致使类似核在不同化学位移处发生共振,因此其13C—NMR谱图不同,通过对不同晶型图谱的对比,即可判断药物是否存在多晶现象,通过与已知晶型的13C—NMR比较,也可获得测试样品的具体晶型。
尤其是近年来出现的固态13C—NMR、高效质子去耦合、交叉极化(CP)、幻角自旋(CAS)等新技术的应用,使得我们能获得高分辨率的
13C—NMR谱,这种谱图能给出有关动力学和局部化学环境的详细原子水平的信息,因此利这种高分辨率的13C—NMR谱图可进行多晶型的混晶分析以及某种特征晶型的测定。
扫描隧道显微镜法
扫描隧道显微镜可使人类能够直接观察到晶体表面上的单个原子及其排列状态,并能够研究其相应的物理和化学特性;可以直接观测晶体的晶格和原子结构、晶面分子原子排列、晶面缺陷等。
因此STM用于药物多晶型研究非常有利,具有广阔的应用前景。
8 溶解度方法
如前所叙,药物的不同晶型的自由能不同,导致了其溶解度不同,一般说来,自由能越大,晶型越不稳定,溶解度越大;反之则小。
在实践中常测定各晶型再不同温度下的溶解度,并绘制出溶解度(Cs)-温度(T)曲线。
通过测定Cs-T曲线,可以区分出不同的晶型,如有相交的曲线,还可得到其热力学转变温度(Tp)
9 药物多晶型计算机辅助预测
近年来,随着计算机技术的发展,计算机辅助预测药物晶型也有了较大进展。
例如,在固体药物结构已知的前提下,运用商业程序Polymorph Predictor, 通过计算点阵能量最小化方法寻找能量上可能的晶体结构和
分子排列规律,并将它们按能量大小排列,计算出不同洁净条件下的最可能生成的晶型。
但该方法在药物中的成功率目前还较低。
10 其他
除上述常见的的几种方法外,还可根据不同晶型药物因分子或原子在晶格空间排列不同所导致在密度、折射率、吉布斯自由能等方面的差异,通过测定药物的密度、折光率或采用磁性异向仪和膨胀计等仪器进行不同晶型的确定;对于存在色多晶型药物,还可通过观察药物的颜色,推测药物动物晶型。
另外随着科学技术的进步,随着对化学物质细微结构认识的加深,相信还会有新的技术手段可用于药物晶型的研究。
11 结语
上述所提及的药物晶型确定方法多数仅能反映药物不同晶型某一方面的物理性质,因此,不同测试手段的综合运用,可达到对药物晶型的全面认识。
近年来出现的红外与热显微镜法,以及差示扫描量热法与热台显微镜法联用方法即是该思路的一种体现。