哈夫曼树
- 格式:doc
- 大小:157.50 KB
- 文档页数:23
哈夫曼树定义
哈夫曼树是一种二叉树,它用来表示一组符号权值的最优编码。
它应用于编码论,通常用来代表数据权值的树。
哈夫曼树是指一种最短带宽传输时能够有效工作的最优编码树。
哈夫曼树是每个节点都包含一个权值的二叉树。
它的定义如下:每一个权值所构成的数据集合,其最优树形式是每一个数据项的权值都比它的子节点的权值大,最终形成一个哈夫曼树。
哈夫曼树的构建一般是以权值的大小为基础进行的,权值越大,在哈夫曼树上就越靠近根节点,在结点之间的路径越短,这样便可以减少树的总长度,可以加快数据的传输速度。
此外,哈夫曼树还可以用于实现多种额外的功能。
哈夫曼树的构建有一种特别的方法,叫做“哈夫曼编码”,它采用“编码”和“解码”的方法来把一个数据集分成不同的组,这些组就是哈夫曼树的节点。
每组的数据都含有一个权值,当这些组被组合到一起时,它们就构成了一棵哈夫曼树。
哈夫曼树的建立是低耗时的,最优建立方式是将权值数组排序,然后依次添加,添加过程为:先将最小的两个数字添加到根节点,再将它们的和也添加到根节点,重复此过程,直到所有数字都被添加完为止。
哈夫曼树在编码的时候,如果一个字符出现的次数越多,它的权值就越大,它就越接近根节点。
数据结构哈夫曼树和哈夫曼编码权值一、引言在计算机领域,数据结构是非常重要的一部分,而哈夫曼树和哈夫曼编码是数据结构中非常经典的部分之一。
本文将对哈夫曼树和哈夫曼编码的权值进行全面评估,并探讨其深度和广度。
通过逐步分析和讨论,以期让读者更深入地理解哈夫曼树和哈夫曼编码的权值。
二、哈夫曼树和哈夫曼编码的基本概念1. 哈夫曼树哈夫曼树,又称最优二叉树,是一种带权路径长度最短的二叉树。
它的概念来源于一种数据压缩算法,可以有效地减少数据的存储空间和传输时间。
哈夫曼树的构建过程是基于给定的权值序列,通过反复选择两个最小权值的节点构建出来。
在构建过程中,需要不断地重排权值序列,直到构建出一个满足条件的哈夫曼树。
2. 哈夫曼编码哈夫曼编码是一种变长编码方式,它利用了哈夫曼树的特点,对不同的字符赋予不同长度的编码。
通过构建哈夫曼树,可以得到一套满足最优存储空间的编码规则。
在实际应用中,哈夫曼编码经常用于数据压缩和加密传输,能够有效地提高数据的传输效率和安全性。
三、哈夫曼树和哈夫曼编码的权值评估1. 深度评估哈夫曼树和哈夫曼编码的权值深度值得我们深入探究。
从构建哈夫曼树的角度来看,权值决定了节点在树中的位置和层次。
权值越大的节点往往位于树的底层,而权值较小的节点则位于树的高层。
这种特性使得哈夫曼树在数据搜索和遍历过程中能够更快地找到目标节点,提高了数据的处理效率。
而从哈夫曼编码的角度来看,权值的大小直接决定了编码的长度。
权值越大的字符被赋予的编码越短,可以有效地减少数据传输的长度,提高了数据的压缩率。
2. 广度评估另哈夫曼树和哈夫曼编码的权值也需要进行广度评估。
在构建哈夫曼树的过程中,权值的大小直接影响了树的结构和形状。
当权值序列较为分散时,哈夫曼树的结构会更加平衡,节点的深度差异较小。
然而,当权值序列的差异较大时,哈夫曼树的结构也会更不平衡,而且可能出现退化现象。
这会导致数据的处理效率降低,需要进行额外的平衡调整。
简述哈夫曼树的定义哈夫曼树是一种重要的二叉树,它有着广泛的应用,是许多计算机系统中常用的数据结构。
哈夫曼树是一种完全二叉树,其中任意一个结点都有左右子树,叶子结点只有左子树或者右子树。
它是根据“最优化原则”建立的,目的是使总代价最低。
它是一种最高效率、最具有利用价值的数据结构,因此深受广大科学家和技术工作者的喜爱。
简而言之,哈夫曼树是一种带权路径长度最小的二叉树,即它的任一非叶子结点的权值之和等于所有叶子结点的权值之和。
它的定义如下:将n个权值不同的叶子结点组成的n棵二叉树,它们的带权路径长度之和最小称为哈夫曼树。
哈夫曼树的带权路径长度指的是从根节点到叶子节点的路径上结点权值的乘积之和,它是求解最优二叉树的重要参数。
哈夫曼树可分为正哈夫曼树和负哈夫曼树,它们的不同之处在于哈夫曼树的根节点权值是正数或者负数,而负哈夫曼树的根节点权值总是负数。
哈夫曼树的构造方法是从叶子结点开始,依次将权值较小的两棵二叉树合并,然后将这两棵子树的权值之和作为新的父母亲结点,新的子树的根节点的权值就是这两个结点的权值之和。
构造方法至将所有的n个结点合并为一棵树,最后得到的哈夫曼树即为最优二叉树。
哈夫曼树是最优二叉树,在许多需要使用最优二叉树的算法中均可运用,如字符编码算法、矩阵乘法算法、最短路径算法等,它的应用非常广泛。
哈夫曼树的设计既可以给出解决问题的最佳答案,又能将数据结构设计得非常有效。
哈夫曼树可以帮助计算机系统显著提高性能,在网络通信、数据压缩、资源分配等方面均有用处。
总而言之,哈夫曼树是一种完全二叉树,其中每一个结点都有左右子树,根据“最优化原则”建立,其带权路径长度最小,广泛应用于计算机系统中。
它可以有效地解决许多计算机系统中的性能瓶颈问题,无论是在数据组织方面还是在计算机系统性能提升方面都有重要的意义。
哈夫曼树及其应用一、基本术语1.路径和路径长度在一棵树中,从一个结点往下可以达到的孩子或子孙结点之间的通路,称为路径。
通路中分支的数目称为路径长度。
若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
2.结点的权及带权路径长度若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。
结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
3.树的带权路径长度树的带权路径长度(Weighted Path Length of Tree):也称为树的代价,定义为树中所有叶结点的带权路径长度之和,通常记为:其中:n表示叶子结点的数目wi和li分别表示叶结点ki的权值和根到结点ki之间的路径长度。
二、哈夫曼树构造1.哈夫曼树的定义在权为w l,w2,…,w n的n个叶子所构成的所有二叉树中,带权路径长度最小(即代价最小)的二叉树称为最优二叉树或哈夫曼树。
【例】给定4个叶子结点a,b,c和d,分别带权7,5,2和4。
构造如下图所示的三棵二叉树(还有许多棵),它们的带权路径长度分别为:(a)WPL=7*2+5*2+2*2+4*2=36(b)WPL=7*3+5*3+2*1+4*2=46(c)WPL=7*1+5*2+2*3+4*3=35其中(c)树的WPL最小,可以验证,它就是哈夫曼树。
2.哈夫曼树的构造假设有n个权值,则构造出的哈夫曼树有n个叶子结点。
n 个权值分别设为w1,w2,…,wn,则哈夫曼树的构造规则为:(1) 将w1,w2,…,wn看成是有n 棵树的森林(每棵树仅有一个结点);(2) 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;(3)从森林中删除选取的两棵树,并将新树加入森林;(4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为我们所求得的哈夫曼树。
下面给出哈夫曼树的构造过程,假设给定的叶子结点的权分别为1,5,7,3,则构造哈夫曼树过程如下图所示。
6.3哈夫曼树6.3.1基本术语1.路径和路径长度若在一棵中存在着一个结点序列k1 ,k2,…,kj,使得ki是k1+i 的双亲(1ji<≤),则称此结点序列是从k1~kj的路径,因树中每个结点只有一个双亲结点,所以它也是这两个结点之间k 1~kj所经过的分支数称为这两点之间的路径长度,它等于路径上的结点数减1(实际就是边数)。
如在图5-19(a)所示的二叉树中,从树根结点L到叶子结点P的路径为结点序列L、M、S、P,路径长度为3。
(a) (b)(c) (d)图5-19 二叉排序树的删除2.结点的权和带权路径长度在许多应用中,常常将树中的结点赋上一个有着某种意义的实数,我们称此实数为该结点的权。
结点的带权路径长度规定为从树根结点到该结点之间的路径长度与该结点上权的乘积3.树的带权路径长度树的带权路径长度定义为树中所有叶子结点的带权路径长度这和,通常记为:2 WPL = ∑=n i i i lw 1其中n 表示叶子结点的数目,i w 和i l 分别表示叶子结点i k 的权值和根到i k 之间的路径长度 。
4.哈夫曼树哈夫曼(Huffman)树又称最优二叉树。
它是n 个带权叶子结点构成的所有二叉树中,带权路径长度 WPL 最小的二叉树。
因为构造这种树的算法是最早由哈夫曼于1952年提出的,所以被称之为哈夫曼树。
例如,有四个叶子结点a 、b 、c 、d ,分别带权为9、4、5、2,由它们构成的三棵不同的二叉树(当然还有其它许多种)分别如图5-20(a)到图5-20(c)所示。
b ac a b cd d c a b d(a) (b) (c)图5-20 由四个叶子结点构成的三棵不同的带权二叉树 每一棵二叉树的带权路径长度WPL 分别为:(a) WPL = 9×2 + 4×2 + 5×2 + 2×2 = 40(b) WPL = 4×1 + 2×2 + 5×3 + 9×3 = 50(c) WPL = 9×1 + 5×2 + 4×3 + 2×3 = 37其中图5-20(c)树的WPL 最小,稍后便知,此树就是哈夫曼树。
哈夫曼树的定义
哈夫曼树的定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树。
扩展资料:
哈夫曼树也可以是k叉的,只是在构造k叉哈夫曼树时需要先进行一些调整。
构造哈夫曼树的思想是每次选k个权重最小的元素来合成一个新的元素,该元素权重为k个元素权重之和。
但是当k大于2时,按照这个步骤做下去可能到最后剩下的元素少于k个。
解决这个问题的办法是假设已经有了一棵哈夫曼树(且为一棵满k叉树),则可以计算出其叶节点数目为(k-1)nk+1,式子中的nk表示子节点数目为k的节点数目。
于是对给定的n个权值构造k叉哈夫曼树时,可以先考虑增加一些权值为0的叶子节点,使得叶子节点总数为(k-1)nk+1这种形式,然后再按照哈夫曼树的方法进行构造即可。
哈夫曼树的实际应用
哈夫曼树(Huffman Tree)是一种重要的数据结构,它在信息编码和压缩、数据传输和存储、图像处理等领域有广泛应用。
1. 数据压缩:哈夫曼树是一种无损压缩的方法,能够有效地减小数据的存储空间。
在进行数据压缩时,可以使用哈夫曼树构建字符编码表,将出现频率较高的字符用较短的编码表示,而出现频率较低的字符用较长的编码表示,从而减小数据的存储空间。
2. 文件压缩:在文件压缩领域,哈夫曼树被广泛应用于压缩算法中。
通过构建哈夫曼树,可以根据字符出现的频率来生成不同长度的编码,从而减小文件的大小。
常见的文件压缩格式如ZIP、GZIP等都使用了哈夫曼树。
3. 图像压缩:在图像处理中,哈夫曼树被用于图像压缩算法中。
通过将图像中的像素值映射为不同长度的编码,可以减小图像的存储空间,提高图像传输和存储的效率。
常见的图像压缩格式如JPEG、PNG等都使用了哈夫曼树。
4. 文件传输:在数据传输中,哈夫曼树被用于数据压缩和传输。
通过对数据进行压缩,可以减小数据的传输时间和带宽占用。
在传输过程中,接收方可以通过哈夫曼树解码接收到的数据。
5. 数据加密:在数据加密中,哈夫曼树可以用于生成密钥,从而实现数据的加密和解密。
通过将字符映射为不同长度的编码,可以实
现对数据的加密和解密操作。
哈夫曼树在信息编码和压缩、数据传输和存储、图像处理等领域有广泛应用,能够有效地减小数据的存储空间、提高数据传输效率、实现数据加密等功能。
哈夫曼树长度计算
哈夫曼树(Huffman Tree)是一种特殊的二叉树,通常用于数据压缩等领域。
在哈夫曼树中,每个叶子节点都对应一个权值(或频率),而非叶子节点的权值则等于其左右子节点权值之和。
哈夫曼树的构建过程是根据节点权值,不断选取权值最小的两个节点进行合并,直到只剩下一个根节点为止。
哈夫曼树的长度通常是指其带权路径长度(WPL,Weighted Path Length),即树中所有叶子节点的带权路径长度之和。
带权路径长度是指从根节点到该叶子节点的路径长度与该叶子节点权值的乘积。
计算哈夫曼树的长度(WPL)通常按照以下步骤进行:
根据给定的权值(或频率)构建哈夫曼树。
计算每个叶子节点的带权路径长度。
从根节点到叶子节点的路径长度可以通过从叶子节点向上回溯到根节点,累加每条边的权值得到。
叶子节点的带权路径长度则是该路径长度与叶子节点权值的乘积。
将所有叶子节点的带权路径长度相加,得到哈夫曼树的长度(WPL)。
需要注意的是,哈夫曼树的构建和长度计算通常使用优先队列(如最小堆)来优化过程,以提高效率。
在实际应用中,哈夫曼编码就是基于哈夫曼树的一种数据压缩方法,通过将出现频率
较高的字符编码为较短的二进制串,从而实现数据压缩。
名词解释哈夫曼树哈夫曼树哈夫曼树是一种常绿乔木,可高达25米,树冠圆形或卵形。
单叶互生,全缘,革质,掌状3- 5裂,两面无毛,有长柄,深绿色,侧脉在两面隆起,网脉细密。
聚伞花序顶生,花小,白色;萼5深裂;花瓣5,分离,长椭圆形,早落;雄蕊与花瓣同数而对生;子房上位,心皮2,合生, 2室,每室1胚珠。
核果倒卵形,具短柄,内果皮薄骨质。
分类地位:种。
形态特征:常绿乔木,树冠呈圆形。
叶为奇数羽状复叶,具有长柄,基部膨大成鞘状。
叶片呈三角形,分裂为两半,在两半之间又成V字形向上裂开。
叶肉呈楔形,背面呈暗绿色,叶的边缘光滑无锯齿,腹面叶脉明显突出。
花白色,花期3月。
果实球形,外果皮厚,光滑。
6。
星芒鼠尾草星芒鼠尾草的一个变种。
多年生草本,株高30厘米至50厘米。
根茎肥厚,紫红色。
茎直立,基部木质化。
叶簇生于茎端,剑形,长约40厘米,宽1厘米至2厘米,先端尖锐,两面无毛,边缘波状,背面具龙骨,中脉明显。
轮伞花序有花2朵;花梗长3毫米,被短柔毛;苞片卵状披针形,长5毫米;花萼钟状,长约2毫米,外面被短柔毛,裂片4,三角形,长1毫米,先端渐尖;花冠钟形,淡黄色,长约2.5厘米,花冠筒隐于花萼内,长约5毫米,冠檐二唇形,上唇短,直伸, 2裂,下唇3裂,中裂片最大;能育雄蕊2,着生于花冠筒上,花丝长1毫米,药隔长约5毫米,弯曲,上臂长2毫米,下臂长3毫米,分离,药室2,并行,顶端联合;退化雄蕊短小,顶端不明显2裂。
花盘前方略膨大。
小坚果长圆形,褐色,光滑。
花期4月。
7。
华西紫茉莉华西紫茉莉的一个变种。
多年生草本,具匍匐茎,茎细长,有棱,无毛,带紫色,高约70厘米。
叶对生,膜质,卵圆形,长约8毫米,宽5毫米,先端钝,基部圆形或近截形,叶脉3条,顶端连接;茎生叶对生,同形。
顶生总状花序长7厘米,直径3厘米;苞片及小苞片线形,长3毫米,早落;花小,花冠淡紫色,长2.5毫米,花冠筒隐于萼内,长约1毫米;花萼管状,长3毫米,外面被毛,萼齿三角形,长0.5毫米,边缘具纤毛;花冠长5毫米,花冠筒隐于萼内,长约2毫米,冠檐二唇形,上唇长圆形,长1毫米,下唇比上唇稍长, 3裂,中裂片最大,先端微缺,侧裂片短小, 2裂,极不明显。
第八节最优二叉树(哈夫曼树)一、概念在具有n个带权叶结点的二叉树中,使所有叶结点的带权路径长度之和(即二叉树的带权路径长度)为最小的二叉树,称为最优二叉树(又称最优搜索树或哈夫曼树),即最优二叉树使(W k—第k个叶结点的权值;P k—第k个叶结点的带权路径长度)达到最小。
二、最优二叉树的构造方法假定给出n个结点ki(i=1‥n),其权值分别为Wi(i=1‥n)。
要构造以此n个结点为叶结点的最优二叉树,其构造方法如下:首先,将给定的n个结点构成n棵二叉树的集合F={T1,T2,……,Tn}。
其中每棵二叉树Ti中只有一个权值为wi的根结点ki,其左、右子树均为空。
然后做以下两步⑴在F中选取根结点权值最小的两棵二叉树作为左右子树,构造一棵新的二叉树,并且置新的二叉树的根结点的权值为其左、右子树根结点的权值之和;⑵在F中删除这两棵二叉树,同时将新得到的二叉树加入F 重复⑴、⑵,直到在F中只含有一棵二叉树为止。
这棵二叉树便是最优二叉树。
三、最优二叉树的数据类型定义在最优二叉树中非叶结点的度均为2,为满二叉树,因此采用顺序存储结构为宜。
如果带权叶结点数为n个,则最优二叉树的结点数为2n-1个。
Const n=叶结点数的上限;m=2*n-1;{最优二叉树的结点数}Typenode=record{结点类型}data:<数据类型>;{权值}prt,lch,rch,lth:0‥m;{父指针、左、右指针和路径长度}end;wtype=array[1‥n] of <数据类型> ;{n个叶结点权值的类型}treetype=array[1‥m] of node;{最优二叉树的数组类型}Var tree:treetype;{其中tree [1‥n]为叶结点,tree [n+1‥2n-1]为中间结点,根为tree [2n-1]}四、构造最优二叉树的算法。
数据结构——哈夫曼(Huffman)树+哈夫曼编码前天acm实验课,⽼师教了⼏种排序,抓的⼀套题上有⼀个哈夫曼树的题,正好之前离散数学也讲过哈夫曼树,这⾥我就结合课本,整理⼀篇关于哈夫曼树的博客。
哈夫曼树的介绍Huffman Tree,中⽂名是哈夫曼树或霍夫曼树,它是最优⼆叉树。
定义:给定n个权值作为n个叶⼦结点,构造⼀棵⼆叉树,若树的带权路径长度达到最⼩,则这棵树被称为哈夫曼树。
这个定义⾥⾯涉及到了⼏个陌⽣的概念,下⾯就是⼀颗哈夫曼树,我们来看图解答。
(01) 路径和路径长度定义:在⼀棵树中,从⼀个结点往下可以达到的孩⼦或孙⼦结点之间的通路,称为路径。
通路中分⽀的数⽬称为路径长度。
若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
例⼦:100和80的路径长度是1,50和30的路径长度是2,20和10的路径长度是3。
(02) 结点的权及带权路径长度定义:若将树中结点赋给⼀个有着某种含义的数值,则这个数值称为该结点的权。
结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
例⼦:节点20的路径长度是3,它的带权路径长度= 路径长度 * 权 = 3 * 20 = 60。
(03) 树的带权路径长度定义:树的带权路径长度规定为所有叶⼦结点的带权路径长度之和,记为WPL。
例⼦:⽰例中,树的WPL= 1*100 + 2*50 +3*20 + 3*10 = 100 + 100 + 60 + 30 = 290。
⽐较下⾯两棵树上⾯的两棵树都是以{10, 20, 50, 100}为叶⼦节点的树。
左边的树WPL=2*10 + 2*20 + 2*50 + 2*100 = 360 右边的树WPL=350左边的树WPL > 右边的树的WPL。
你也可以计算除上⾯两种⽰例之外的情况,但实际上右边的树就是{10,20,50,100}对应的哈夫曼树。
⾄此,应该堆哈夫曼树的概念有了⼀定的了解了,下⾯看看如何去构造⼀棵哈夫曼树。
数据结构课程设计哈夫曼树数据结构课程设计 - 哈夫曼树一、引言哈夫曼树(Huffman Tree)是一种经典的数据结构,常被用于数据压缩和编码中。
它是一种特殊的二叉树,具有最优的前缀编码性质。
本文将详细介绍哈夫曼树的定义、构建方法以及应用场景。
二、哈夫曼树的定义哈夫曼树是一种满足以下条件的二叉树:1. 所有的叶子节点都带有权值;2. 没有度为1的节点;3. 任意两个叶子节点的路径长度不相同。
三、哈夫曼树的构建方法1. 构建哈夫曼树的基本思想是将权值较小的节点放在较低的层次,权值较大的节点放在较高的层次;2. 首先,根据给定的权值集合,将每一个权值看做一个独立的节点;3. 然后,选择两个权值最小的节点,将它们合并为一个新节点,并将新节点的权值设置为这两个节点的权值之和;4. 重复上述步骤,直到只剩下一个节点,即为哈夫曼树的根节点。
四、哈夫曼编码哈夫曼编码是一种变长编码方式,用于将字符转换为二进制编码。
它的特点是没有编码冗余,即每一个字符的编码都不是其他字符编码的前缀。
这种编码方式可以大幅度减小数据的存储空间和传输带宽。
五、哈夫曼树的应用场景1. 数据压缩:哈夫曼树可以根据字符浮现的频率构建最优的编码方式,从而实现数据的高效压缩;2. 文件压缩:将文件中的字符转换为哈夫曼编码,可以大幅度减小文件的大小;3. 图象压缩:将图象中的像素值转换为哈夫曼编码,可以实现图象的无损压缩;4. 视频压缩:将视频中的帧数据转换为哈夫曼编码,可以减小视频文件的大小。
六、哈夫曼树的时间复杂度和空间复杂度1. 构建哈夫曼树的时间复杂度为O(nlogn),其中n为权值的个数;2. 哈夫曼编码的时间复杂度为O(n),其中n为字符的个数;3. 哈夫曼树的空间复杂度为O(n),其中n为权值的个数。
七、总结哈夫曼树是一种重要的数据结构,具有广泛的应用场景。
通过构建最优的编码方式,可以实现高效的数据压缩和编码。
掌握哈夫曼树的定义、构建方法以及应用场景,对于数据结构课程的学习和实践具有重要意义。
哈夫曼树hufferman构成原理应用及其数学证明哈夫曼树(Huffman Tree),又称最优树,它是一种常用的编码技术,它是一种十分高效的字符编码技术, 它主要是通过对字符按照出现频率高低进行分组,从而构成一颗树;每个字符的编码由树的层次顺序确定,字符越靠近根节点,编码越短,且编码长度与概率成正比,最后得出最优(最短)编码。
哈夫曼树构成原理:哈夫曼树构成原理是通过将信源字符重新按照概率顺序构成一棵有序树来实现的,即带有权值的叶子节点的树。
例如,某信源由四种字符A,B,C,D组成,出现的概率分别为p1,p2,p3,p4。
则可以构成一棵哈夫曼树。
首先,将四个字符依据概率从大到小重新排列,得到ABCD,依据概率大小选择A和B两个字符,以他们为叶子节点构成根节点,这样就分出了两颗子树。
接着将C和D两个字符以此作为叶子节点构成另外两棵子树,将他们与上面的根节点联接在一起,当初始树建立完毕,就得到了一棵哈夫曼树。
哈夫曼树数学证明:证明哈夫曼树是最优树:假设一棵信源树的叶子节点有n个,则此树的权重之和为:w1+w2+…+wn,其中wi是叶子节点i的权重,建立该信源树的目标是将其权重之和最小化,而在没有违反信源编码原理的前提下,树的最小权重之和也就是最优树的权重之和。
假设w1~wn分别为叶子节点1~n的权重,从大到小排列为w1,w2,…,wn,一棵以w1,w2,…,wn为叶子节点的最优树的权重之和为:T(w1,w2,…,wn)=w1+w2+…+wn+2(w1+w2)+2(w1+w2+w3)+……+2(w1+w2+…+wn-1)=2(w1+w2+…+wn-1)+wn =2T(w1,w2,…,wn-1)+wn由上式可知,最优树的权重之和T(w1,w2,…,wn)是由T (w1,w2,…,wn-1)和wn组成的,也就是说,每次取出w1,w2,…,wn中的最大者wn作为树的一个节点,其余的作为树的另一个节点,而每一次节点的选取都是满足最优化条件的,因此一棵满足最优树条件的树就是哈夫曼树,而此树的权重之和也就是最优树的权重之和.从上述可以看出,哈夫曼树构成原理和哈夫曼树数学证明都支持哈夫曼树是最优树的观点,因此哈夫曼树是一种有效的编码技术。
哈夫曼树加权平均长度全称缩写哈夫曼树(Huffman Tree)是一种经典的树形数据结构,常用于编码和解码过程中的最优算法。
它是由一系列权重不同的叶子节点构建而成的,以此来实现对数据进行有效压缩和解压。
在信息论和通信领域,哈夫曼树被广泛应用于数据压缩算法中,通过构建一棵最优的哈夫曼树来实现数据的高效编码和解码。
在哈夫曼树中,每个叶子节点都代表一个字符,并且具有一个权重值,该权重值通常是该字符在待压缩数据中出现的频率。
通过构建哈夫曼树,并以不同的路径编码每个字符,使得出现频率高的字符拥有较短的编码,从而实现对数据的高效压缩。
哈夫曼树的构建过程也可以用于实现最优的前缀编码,从而避免编码歧义,提高了数据的传输效率。
在实际应用中,哈夫曼树的加权平均长度(Weighted Average Length)是评估数据压缩效果的重要指标之一。
通过计算每个字符的编码长度与其出现概率的乘积,并将所有字符的乘积之和作为数据的平均编码长度,可以评估哈夫曼编码的效率。
在理想情况下,哈夫曼树的加权平均长度应该尽可能接近信息熵,以达到最优的压缩效果。
哈夫曼树是一种重要且高效的数据结构,它在数据压缩和编码领域发挥着重要作用。
通过构建最优的哈夫曼树,并实现对数据的高效编码和解码,可以有效地提高数据的传输效率和存储空间利用率。
加权平均长度作为评估数据压缩效果的指标,对于优化哈夫曼编码方案具有重要意义。
在个人观点上,我认为哈夫曼树的应用不仅局限于数据压缩领域,还可以在其他领域发挥重要作用。
在网络通信中,通过使用哈夫曼编码来优化数据传输过程,可以提高网络传输效率,减少数据传输的时间和成本。
在大数据分析和存储领域,哈夫曼编码也可以用于优化数据的存储和处理,从而实现对数据的高效管理和利用。
总结而言,哈夫曼树作为一种重要的数据结构,在信息论和通信领域发挥着重要作用。
通过构建最优的哈夫曼树,并实现数据的高效编码和解码,可以实现对数据的高效压缩和传输。
哈夫曼树的广义表哈夫曼树是一种特殊的二叉树结构,常用于数据压缩算法中。
它是一种带权路径长度最小的树结构,也称最优二叉树。
哈夫曼树的结构可以用广义表来表示,下面我们就来介绍一下哈夫曼树的广义表表示。
1. 定义广义表广义表,也称广义表达式,是一种类似于树结构的数据结构。
它是由原子和子表构成的有序序列,用逗号隔开,放在圆括号内。
广义表可以表示任意的递归结构,因此被广泛应用于数据结构和算法的表示和实现中。
2. 哈夫曼树的定义哈夫曼树是一种特殊的二叉树,它满足以下两个条件:1) 叶节点的权值就是符号集中每个符号的出现频率;2) 带权路径长度最小。
3. 哈夫曼树的构建过程构建哈夫曼树的过程可以用贪心算法来描述。
首先,将所有叶节点按照权值从小到大进行排序,然后将权值最小的两个节点合并成一个新的节点,新节点的权值等于两个叶子节点的权值之和。
以此类推,不断合并新的节点,直到最后只剩下一个根节点为止。
这个根节点就是哈夫曼树的根节点。
4. 哈夫曼树的广义表表示哈夫曼树可以用广义表来表示,具体格式如下所示:1) 如果哈夫曼树只有一个节点,那么它的广义表表示就是该节点的权值;2) 如果哈夫曼树有左右子树,则它的广义表表示就是左右子树的广义表分别用逗号隔开,然后再用圆括号括起来。
括号内依次表示根节点的权值、左子树、右子树。
例如,假设有一个符号集合{A,B,C,D,E,F},它们的出现频率分别为{10,15,12,3,4,13}。
对于这个符号集合,可以构建出如下的哈夫曼树:51/ \25 26/ \ / \12 13 13 13/ \ / \5 76 7这棵哈夫曼树的广义表表示为:(51, (25, (12, 5, 7), (13, 6, 7)), (26, 13, 13))。
5. 总结哈夫曼树可以用广义表来表示,其格式清晰简单,便于理解和操作。
利用哈夫曼树的广义表表示可以方便地进行数据压缩和解压缩等操作。
不仅如此,广义表的应用还不局限于哈夫曼树,它还可以用于描述其他各种递归结构的数据结构和算法。
*******************实践教学*******************兰州理工大学计算机与通信学院2007年春季学期算法与数据结构课程设计题目:赫夫曼编译码器设计专业班级:软件工程05-1班姓名:张龙学号:05350507指导教师:王燕成绩:目录摘要 (1)前言 (2)正文 (3)1.采用类C语言定义相关的数据类型 (3)2.各模块的伪码算法 (7)3.函数的调用关系图 (13)4.调试分析 (13)5.测试结果 (14)6.源程序(带注释) (14)总结 (20)参考文献 (20)附件Ⅰ部分源程序代码 (21)摘要哈夫曼编译码器主要用于通信领域,能够实现数据的快速,有效的传输。
它利用哈夫曼树对数据进行编码,形成前缀编码,实现数据的有效压缩存放。
然后又通过某种遍历实现译码,从而达到快速远距离通信的目的。
关键词:哈夫曼树;前缀编码;译码前言利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。
但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码(复原)。
对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。
试为这样的信息收发站写一个哈夫曼码的编/译码系统。
通过该题目的设计过程,可以加深理解树及二叉树的逻辑结构、存储结构,掌握树及二叉树上基本运算的实现。
进一步理解和熟练掌握课本中所学的各种数据结构,学会如何把学到的知识用于解决实际问题,培养学生的动手能力。
正文1.采用类c语言定义相关的数据类型(1)结构体定义typedef struct{ int weight;char ch;int parent,lchild,rchild;}HTNode,*HuffmanTree; //动态分配数组存贮哈夫曼树。
typedef struct{char ch;char *chs;}HuffmanCode;typedef struct{char ch;int weight;}sw;typedef struct{HuffmanTree HT;HuffmanCode *HC;}huf;//哈夫曼树结构体。
从HT[i-1]选择parent为零且weight最小的两个节点,分别编号为n1,n2. (2)调用函数1)在给定权值中选择权值最小的两个节点。
void select(HTNode * HT,int n,int *n1,int *n2){int i=1; int n3;while(HT[i].parent!=0)i++;*n1=i;i++;while(HT[i].parent!=0) i++;*n2=i;if(HT[*n1].weight<HT[*n2].weight){ n3=*n1;*n1=*n2;*n2=n3;}for(i++;i<=n;i++){if(HT[i].parent==0){ if(HT[i].weight<HT[*n1].weight)*n1=i;else if(HT[i].weight<HT[*n2].weight)*n2=i;}}}2)进行哈夫曼编码。
huf * HuffmanCoding(HuffmanTree HT,HuffmanCode *HC,sw *w,int n,huf *HUF)//w存放n个字符的权值(均>0),构造哈夫曼树HT,并求出n个字符的哈夫曼编码HC.{int m,i,s1,s2,start,c,f;HuffmanTree p;char *cd;if(n<=1) return 0;m=2*n-1;HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));//零号单元未用。
for(p=HT+1,i=1;i<=n;i++,p++,w++){p->weight=w->weight;p->ch=w->ch;p->parent=0;p->lchild=0;p->rchild=0;} for(;i<=m;i++,p++){p->weight=0;p->ch='^';p->parent=0;p->lchild=0;p->rchild=0;}for(i=n+1;i<=m;i++)//建立哈夫曼树。
{select(HT,i-1,&s1,&s2);HT[s1].parent=i;HT[s2].parent=i;HT[i].lchild=s1;HT[i].rchild=s2;HT[i].weight=HT[s1].weight+HT[s2].weight;}//为哈夫曼编码审请空间。
HC=(HuffmanCode *)malloc((n+1)*sizeof(char));cd=(char *)malloc(n*sizeof(char));cd[n-1]='\0';for(i=1;i<=n;i++){ start=n-1;for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent)if(HT[f].lchild==c)cd[--start]='0';else cd[--start]='1';HC[i].ch=HT[i].ch;HC[i].chs=(char*)malloc((n-start)*sizeof(char));strcpy(HC[i].chs,&cd[start]);printf("%c %-10s\n",HC[i].ch,HC[i].chs);}HUF->HT=HT;HUF->HC=HC;return HUF;}char * convert(char *chars,char *chars1,HuffmanCode *hc,int n) {char *p=chars; int i;strcpy(chars1,"");while(*p){i=1; while(hc[i].ch!=*p&&i<=n) i++;strcat(chars1,hc[i].chs); p++;}printf("the chars translate are:%s\n",chars1);return chars1;}3)译码。
void transcode(HuffmanTree ht,char *chars2,char*chars3) {int i=1,p; char *q=chars2;char *r=chars3;while(ht[i].parent!=0) i++;p=i;while(*q){while(ht[p].lchild!=0 && *q){if(*q=='0')p=ht[p].lchild;else p=ht[p].rchild;q++;}if(ht[p].lchild==0){*r=ht[p].ch;r++;}p=i;}*r='\0';printf("the chars are:");puts(chars3);}}void input(int *n,sw *w){int i;printf("input the mount of char:");scanf("%d",n);for(i=1;i<=*n;i++,w++){printf("input the %dth char and weight:",i);fflush(stdin);scanf("%c%d",&w->ch,&w->weight);4)主函数。
void main(){HTNode HT;HuffmanCode HC,*hc;HuffmanTree ht;huf *HUF,huf2;int n;sw w[40];char ch,inchar[500],outchar[1000];char *abc;char *p=inchar;input(&n,w);HUF=HuffmanCoding(&HT,&HC,w,n,&huf2);printf("input chars to translate:");fflush(stdin);//清除流,解决输入干扰ch=getchar();while(ch!='#'){*p=ch;p++;ch=getchar();}*p='\0';hc=HUF->HC;ht=HUF->HT;abc=convert(inchar,outchar,hc,n);transcode(ht,abc,outchar);}2.各模块的伪码算法1)节点结构体定义typedef structint weight;char ch;int parent,lchild,rchild;}HTNode,*HuffmanTree; //动态分配数组存贮哈夫曼树。
2)哈夫曼编码结构体定义。
typedef struct{char ch;char *chs;}HuffmanCode;3)根节点结构体定义。
typedef struct{char ch;int weight;}sw;4)哈夫曼树结构体定义。
typedef struct{HuffmanTree HT;HuffmanCode *HC;}huf;4)从HT[i-1]选择parent为零且weight最小的两个节点,分别编号为n1,n2. void select(HTNode * HT,int n,int *n1,int *n2){int i=1; int n3;while(HT[i].parent!=0)i++;*n1=i;i++;while(HT[i].parent!=0) i++;*n2=i;if(HT[*n1].weight<HT[*n2].weight){ n3=*n1;*n1=*n2;*n2=n3;}for(i++;i<=n;i++){if(HT[i].parent==0){ if(HT[i].weight<HT[*n1].weight)*n1=i;else if(HT[i].weight<HT[*n2].weight)*n2=i;}}}5)w存放n个字符的权值(均>0),构造哈夫曼树HT,并求出n个字符的哈夫曼编码HC.huf * HuffmanCoding(HuffmanTree HT,HuffmanCode *HC,sw *w,int n,huf *HUF){int m,i,s1,s2,start,c,f;HuffmanTree p;char *cd;if(n<=1) return 0;m=2*n-1;HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));//零号单元未用。