天线9_缝隙.微带贴片天线
- 格式:pdf
- 大小:3.26 MB
- 文档页数:70
第一章微带天线简介1.1微带天线的发展历史与趋势微带天线是20世纪70年代以来逐渐发展起来的一种新型天线。
虽然在1953年就提出了微带天线的概念,但并没有在工程界的引起重视。
从20世纪50年代到60年代也只是做一些零星的研究,直到20世纪70年代初期,在微带传输线的理论模型及对敷铜的介质基片的光刻技术发展之后,第一批具有许多设计结构的实用的微带天线才被制造出来[3]。
为适应现代通信设备的需求,天线的研发方向主要往几个方面进行,即减小天线的尺寸、宽带和多波段工作、智能方向图控制。
随着电子设备集成度的提高,通信设备的体积也变得越来越小,这时天线尺寸就需要越来越小了。
然而,在减小天线的尺寸的同时又不明显影响天线的增益和效率是一项艰巨的工作。
电子设备集成度提高,经常需要一个天线在较宽的频率范围内来支持两个或更多的无线服务,宽带和多波段天线能满足这样的需要。
微带天线由于重量轻、体积小、成本低、制作工艺简单、易与有源器件和电路集成等诸多优点,所以得到广泛的应用和重视。
1.2 微带天线研究的背景微带天线是带有导体接地板的截止基片上贴加导体薄片而形成的天线。
微带天线通过微带线或者同轴线等馈线馈电,在导体贴片与接地板之间激励起射频电磁场,并通过贴片四周与接地板间的缝隙向外辐射。
微带天线主要是一种谐振式天线,相对带宽比较窄,一般设计的带宽只有2%到5%。
随着天线的工作频率的降低,带宽也逐渐变窄。
在这样的背景下,研究影响微带天线带宽的因素,进而找到展宽微带天线的带宽的方法,对于微带天线能否在工业、民用、国防等领域得到广泛的应用,具有重要的意义。
1.3 多频带微带天线研究的意义当今,无线通讯行业发展迅猛,掌上电脑、笔记本电脑和手机都已经成了人们生活的必需品[4]。
对于频谱资源日益紧张的现在通讯领域,迫切需要天线具有双极化功能,因为双极化可使它的通讯容量增加1倍。
对于有些系统,则要求系统工作于双频,且各个频段的极化又不同。
微带天线1微带天线简介1.1微带天线结构与分类微带天线是近30年来逐渐发展起来的一类新型天线。
早在1953年就提出了微带天线的概念,但并未引起工程界的重视。
在50年代和60年代只有一些零星的研究,真正的发展和使用是在70年代。
常用的一类微带天线是在一个薄介质基(如聚四氟乙烯玻璃纤维压层)上,一面附上金属薄层作为接地板,另一面用光刻腐蚀等方法作出一定形状的金属贴片,利用微带线和轴线探针对贴片馈电,这就构成了微带天线。
当贴片是一面积单元时,称它为微带天线;若贴片是一细长带条则称其为微带阵子天线。
图1所示为一基本矩形微带天线元。
长为L,宽为W2的矩形微带天线元可看作一般低阻传输线连接两个辐射缝组成。
L为半个微带波长即为λg/2时,在低阻传输线两端形成两个缝隙a-a和b-b,构成一二元缝阵,向外辐射。
另一类微带天线是微带缝隙天线。
它是把上述接地板刻出窗口即缝隙,而在介质基片的另一面印刷出微带线对缝隙馈电。
按结构特征把微带天线分为两大类,即微带贴片天线和微带缝隙天线;按形状分类,可分为矩形、圆形、环形微带天线等。
按工作原理分类,无论那一种天线都可分成谐振型(驻波型)和非揩振型(行波型)微带天线。
前一类天线有特定的谐振尺寸,一般只能工作在谐振频率附近;而后一类天线无谐振尺寸的限制,它的末端要加匹配负载以保证传输行波。
1.2微带天线的性能微带天线一般应用在1~50GHz频率范围,特殊的天线也可用于几十兆赫。
和常用微波天线相比,有如下优点:(1)体积小,重量轻,低剖面,能与载体(如飞行器)共形;(2)电性能多样化。
不同设计的微带元,其最大辐射方向可以从边射到端射范围内调整;易于得到各种极化;(3)易集成。
能和有源器件、电路集成为统一的组件。
1.3微带贴片形状贴片形状是多种多样的,实际应用中由于某些特殊的性能要求和安装条件的限制,必须用到其他形状的微带贴片天线。
例如,国外某型炮弹引信天线要求半球覆盖的方向图,即E面和H面方向图在端射方向()的电平也要求在半功率电平以上,而规则的矩形或圆形贴片无法满足。
微带天线的设计和阻抗匹配微带天线是一种广泛应用于无线通信领域的新型天线。
它具有体积小、重量轻、易于集成等优点,因此特别适合于现代通信系统的应用。
本文将详细介绍微带天线的原理、设计思路、阻抗匹配方法以及实验验证等方面的内容。
微带天线是在介质基板上制作的一种天线。
它主要由辐射元和传输线组成,通过在介质基板上印制金属导带,形成辐射元和传输线,利用电磁波的辐射和传播特性实现天线的功能。
由于辐射元和传输线都印制在介质基板上,因此微带天线具有体积小、重量轻、易于集成等优点。
选择合适的介质基板,根据需要选择介电常数、厚度、稳定性等参数;在介质基板上印制金属导带,形成辐射元和传输线;根据设计要求,对金属导带进行形状和尺寸的调整;为提高天线的性能,需要进行阻抗匹配等调试;选取合适的材料:根据应用场景和设计要求,选择合适的介质基板和金属材料;设计形状和尺寸:根据天线设计的原理,设计合适的辐射元和传输线形状,以及其尺寸大小;考虑天线的抗干扰能力:为提高天线的性能,需要采取措施提高天线的抗干扰能力,如设置保护区、采用滤波器等。
微带天线的阻抗匹配是实现天线高效辐射的关键环节。
通常情况下,微带天线的阻抗不是纯电阻,而是具有一定的电抗分量。
为了使天线与馈线之间实现良好的阻抗匹配,通常采用以下方法:改变馈线的特性阻抗:通过调整馈线的几何形状、材料等参数,改变馈线的特性阻抗,使其与天线的阻抗相匹配;添加电阻、电容等元件:在馈线与天线之间添加适当的电阻、电容等元件,以调整天线的阻抗,实现阻抗匹配;采用分步匹配:通过在馈线与天线之间设置适当的阶梯状阻抗,逐渐接近天线的阻抗,从而实现良好的阻抗匹配。
为了验证微带天线的性能和阻抗匹配的效果,通常需要进行实验测试。
实验测试主要包括以下步骤:搭建测试平台:根据需要搭建测试平台,包括信号源、功率放大器、接收机等;连接测试平台:将微带天线与测试平台连接,确保稳定的信号传输;调整阻抗匹配:根据实验结果,对天线的阻抗匹配进行微调,以获得最佳的性能;进行测试:在不同的频率、距离等条件下进行测试,收集数据并进行分析;结果分析与讨论:根据实验数据进行分析和讨论,评估微带天线的性能和阻抗匹配的效果。
微带天线综述摘要:微带天线具有结构紧凑、外观优美、体积小重量轻等优点,得到广泛的应用。
但是,近年来,随着个人通讯和移动通讯技术的迅速发展,在天线的设计上提出了小型化的要求。
本文除了对微带天线做了基本介绍外,还对微带天线最基本的小型化技术进行了探讨、分析和归纳。
关键词:微带天线小型化宽频带一、引言随着全球通信业务的迅速发展,作为未来个人通信主要手段的无线移动通信技术己引起了人们的极大关注,在整个无线通讯系统中,天线是将射频信号转化为无线信号的关键器件,其性能的优良对无线通信工程的成败起到重要作用。
快速发展的移动通信系统需要的是小型化、宽频带、多功能(多频段、多极化)、高性能的天线。
微带天线作为天线家祖的重要一员,经过近几十年的发展,已经取得了可喜的进步,在移动终端中采用内置微带天线,不但可以减小天线对于人体的辐射,还可使手机的外形设计多样化,因此内置微带天线将是未来手机天线技术的发展方向之一,设计出具有小型化的微带天线不但具有一定的理论价值而且具有重要的应用价值,这也成为当前国际天线界研究的热点之一。
二、微带天线2.1微带天线[1]的发展史及种类早在1953年G. A. DcDhamps教授就提出利用微带线的辐射来制成微带微波天线的概念。
但是,在接下来的近20年里,对此只有一些零星的研究。
直到1972年,由于微波集成技术的发展和空间技术对低剖面天线的迫切需求,芒森(R.E.Munson)和豪威尔(J.Q.Howell)等研究者制成了第一批实用的微带天线[1]。
随之,国际上展开了对微带天线的广泛研究和应用。
1979年在美国新墨西哥州大学举行了微带天线的专题目际会议,1981年IEEE天线与传播会刊在1月号上刊载了微带天线专辑。
至此,微带天线已形成为天线领域中的一个专门分支,两本微带天线专辑也相继问世。
80年代中,微带天线无论在理论与应用的深度上和广度上都获得了进一步的发展;今天,这一新型天线已趋于成熟,其应用正在与日俱增。
微带天线文献综述一.微带天线的研究背景1.概述微带贴片天线是微带天线中最常见的形式,它是七十年代初期研制成功的一种新型天线。
它由带导体接地板的介质基片上贴加导体薄片形成。
通常利用微带线或同轴线一类馈线馈电,使在导体贴片与接地板之间激励产生射频电磁场,并通过贴片四周与接地板之间的缝隙向外辐射。
其基片厚度与波长相比一般很小,因而它实现了一维小型化。
和常用的微波天线相比,它有如下一些优点:体积小,重量轻,低剖面,能与载体共形,制造简单, 成本低;电器上的特点是能得到单方向的宽瓣方向图,最大辐射方向在平面的法线方向,易于和微带线路集成,易于实现线极化或圆极化。
相同结构的微带天线可以组成微带天线阵,以获得更高的增益和更大的带宽。
因此微带贴片天线得到愈来愈广泛的重视。
2.微带天线的历史背景在十九世纪八十年代,赫兹用天线成功地接受到了电磁波,之后,天线技术迅猛发展,日趋成熟。
利用微带线的辐射来制成微带微波天线的概念最早由德尚(G.A.Deschamps)教授在1935 年提出,在1995 年由法国Gutton 和Baissinot 发表了专利。
微带天线是一种随系统对天线的要求而发展起来的典型的低剖面、平板结构的天线,但是因为没有较好的微波介质材料,所以在随后的近年里对此只有零星的研究,当时人们只是把微带结构作为波导元器件的一种小、薄、轻又低廉的替代品。
70 年代期间,由于获得了具有低损耗正切特性和有吸引力的热特性及机械特性的良好基片,改进的照相平板印刷技术和更好的理论模型,使微带天线取得突破性进展。
最早的微带天线是Howell 和Munson 在二十世纪七十年代初期研制成的。
之后,世界各国的研究人员对微带天线的贴片形状、馈电技术、基板构造和阵列排列等方面作了大量的研究,微带天线无论在理论与应用的深度上和广度上都获得了进一步的发展。
如今,微带天线以其重量轻、体积小、成本低、共形结构、以及与集成电路兼容等优点,成为天线家族中充满生命力的一个分支,最适宜于航空和车载应用。