聚合物的电学性质
- 格式:docx
- 大小:17.02 KB
- 文档页数:2
第九章聚合物的电性能与光性能9.1 高聚物的介电性能介电性是指高聚物在电场作用下,表现出对静电能的储存和损耗的性质,通常用介电常数和介电损耗来表示。
(1)介电极化绝大多数高聚物是优良的电绝缘体,有高的电阻率,低介电损耗、高的耐高频性和高的击穿强度。
但在外电场作用下,或多或少会引起价电子或原子核的相对位移,造成了电荷的重新分布,称为极化。
主要有以下几种极化:(1)电子极化,(2)原子极化,(3)偶极极化。
前两种产生的偶极矩称诱导偶极矩,后一种为永久偶极矩的取向极化。
极化偶极矩()的大小,与外电场强度(E)有关,比例系数称为分子极化率。
= E按照极化机理不同,有电子极化率,原子极化率(=+)和取向极化率。
=(为永因而对于极性分子=++对于非极性分子=+根据高聚物中各种基团的有效偶极矩,可以把高聚物按极性大小分为四类:非极性:PE、PP、PTFE弱极性:PS、NR极性:PVC、PA、PVAc、PMMA强极性:PVA、PET、PAN、酚醛树脂、氨基树脂高聚物的有效偶极矩与所带基团的偶极矩不完全一致,结构对称性会导致偶极矩部分或全部相互抵消。
介电常数是表示高聚物极化程度的宏观物理量,它定义为介质电容器的电容C比真空电容器C0的电容增加的倍数。
式中:为极为感介电常数的大小决定于感应电荷的大宏观物理量与微观物理量之间的关系可以用Clausius-Mosotti方程给出:摩尔极化度P=(对非极性介质)=(对极性介质)(2)介电损耗聚合物在交变电场中取向极化时,伴随着能量消耗,使介质本身发热,这种现象称为聚合物的介电损耗。
常用复数介电常数来同时表示介电常数和介电损耗两方面的性质:为实部,即通常实验测得的;为虚部,称介电损耗因素。
=+=式中:为静电介电系数;为光频介电系数;为偶极的松弛时间。
介电损耗为=,一般高聚物的介电损耗很少,=-2~10-4,与的关系可用Debye方程描述:式中:N为单位体积中的分子数。
以对作图称为Cole-Cole图,表征电介质偏离Debye松弛的程度。
聚合物介电常数和介电损耗的测定
聚合物的介电常数和介电损耗是指材料在电场作用下的电学性质。
介电常数描述了材料在电场中的响应能力,介电损耗则表示了
材料在电场中能量的耗散情况。
测定聚合物的介电常数和介电损耗
通常需要进行以下步骤和方法:
1. 介电常数的测定:
静电法,通过测量材料在不同电场下的电容来计算介电常数。
谐振法,利用谐振电路的谐振频率和电容值来计算介电常数。
微波法,利用微波在材料中的传播速度和波长来计算介电常数。
2. 介电损耗的测定:
并联谐振法,利用谐振电路的损耗因子和谐振频率来计算介
电损耗。
阻抗分析法,通过测量材料在不同频率下的阻抗来计算介电
损耗。
热量法,通过测量材料在电场中的温度变化来计算介电损耗。
3. 实验条件:
在测定介电常数和介电损耗时,需要控制温度、湿度和外界
电磁场等因素,以确保实验结果的准确性和可重复性。
4. 数据处理:
对测得的数据进行统计分析和处理,计算出介电常数和介电
损耗的平均值和误差范围。
5. 应用:
了解聚合物的介电常数和介电损耗对于材料在电子器件、电
力设备和电力系统中的应用具有重要意义,可以指导材料的选用和
性能优化。
总的来说,测定聚合物的介电常数和介电损耗需要结合多种方
法和技术,以获得准确可靠的实验结果,并且这些性质的测定对于材料的研究和应用具有重要意义。
1 聚合物的极化与介电性能1.1 介电极化①什么是高分子的极化?高分子在外电场中的极化有哪几种形式?各有什么特点?极化的机理是什么?非极性分子和极性分子在外电场作用下极化有什么不同?绝大多数聚合物是优良的电绝缘体,有高的电阻率、低介电损耗、高的耐高频性和高的击穿强度。
但在外电场作用下,或多或少会引起价电子或原子的相对位移,造成电荷的重新分布,称为极化。
高分子在外电场中的极化有电子极化 、原子极化和取向极化三种形式:(1)电子极化是分子中各原子的价电子云在外电场作用下,向正极方向偏移,发生了电子相对于分子骨架的移动,使分子的正、负电荷中心的位置发生变化引起的。
电子极化弱,但极快。
(2)原子极化是分子骨架在外电场作用下发生变形造成的。
原子极化比电子极化更弱,速度比电子极化慢。
(3)取向极化(或称偶极极化)是极性分子骨架在外电场作用下沿电场的方向排列,产生分子的取向。
取向极化较慢,但对总极化的贡献是很大的。
前两种产生的偶极矩为诱导偶极矩,后一种为永久偶极矩。
非极性分子只有电子极化和原子极化,而极性分子除电子极化和原子极化外还有取向极化。
②什么是分子极化率?极化偶极矩(μ)的大小与外电场强度(E )有关,比例系数α称为分子极化率,μ=αE 。
③如何区分极性聚合物和非极性聚合物?列举至少3个极性聚合物与3个非极性聚合物 根据聚合物中各种基团的有效偶极矩μ或介电常数ε,可以把聚合物按极性大小分为四类:非极性(μ=0,ε=2.0~2.3),如PE,PP ,PTFE,PB ;弱极性(0<μ≤0.5deb ,ε=2.3~3.0),如PS,NR ;极性(0.5deb <μ≤0.7deb ,ε=3.0~4.0),如PVC,PA,PVAc,PMMA ;强极性(μ>0.7deb ,ε=4.0~7.0),如PVA,PET,PAN,酚醛树脂,氨基树脂。
注意:聚合物的有效偶极矩与所带基团的偶极矩并不完全一致,结构对称性会导致偶极矩部分或全部抵消。
聚合物的分子结构与物理性质聚合物是由大量重复单元构成的高分子化合物。
随着科技的发展,聚合物在人类生产和生活中的应用越来越广泛。
然而,聚合物的性质和应用取决于其分子结构,因此对聚合物分子结构与物理性质的研究尤为重要。
一、聚合物的分子结构聚合物的分子结构与其化学和物理性质密切相关。
聚合物的分子结构与单体种类、聚合方法、反应条件以及控制试剂的种类和用量等有关。
聚合物的分子结构可以从宏观和微观两个层面进行描述。
从宏观上看,聚合物的分子结构可以分为线性、支化、交联和聚集态等。
线性聚合物的分子链呈直线状排列,没有分支;支化聚合物的分子链上存在分支,分支可以根据分支链的数量和长度不同分为两种:分子段分支和侧链分支;交联聚合物的分子链之间通过交联点互相连结,呈网络状结构;而聚集态分子则是由数个分子组成的复合物。
从微观上看,聚合物的分子结构是由化学键和官能团组成的。
根据化学键的性质,聚合物分子的结构可以分为三类:相邻两个重复单元之间的化学键称为主链键;主链键以外的化学键称为辅助键,辅助键决定了聚合物分子的分支情况;在分子中存在的其他化学基团称为官能团,它们通过化学反应与其他分子发生反应,改变聚合物分子的性质。
聚合物的分子结构图如下图所示:二、聚合物的物理性质聚合物的物理性质主要包括力学性质、热学性质、电学性质以及光学性质等。
力学性质是指聚合物在力的作用下发生的变形和断裂等现象。
聚合物的弹性模量、拉伸强度、抗拉伸应变、屈服强度、断裂伸长率等是衡量聚合物力学性质的重要指标。
热学性质是指聚合物在不同温度下表现出来的性质。
聚合物的热稳定性、玻璃转移温度、熔融温度、热膨胀系数等是衡量聚合物热学性质的指标。
电学性质是指聚合物在电场作用下表现出来的性质。
聚合物的电导率、介电常数、击穿场强等是衡量聚合物电学性质的指标。
光学性质是指聚合物在光的作用下表现出来的性质。
聚合物的透光性、发光性、荧光性等是衡量聚合物光学性质的指标。
三、聚合物分子结构的控制通过控制聚合物分子结构可以使聚合物具有更好的性能和更广泛的应用。
聚合物电解质的电化学性质及其在电池中的应用聚合物电解质(Polymer electrolyte)是一种电导率很高的聚合物体系,可以在电池中代替传统的无机盐电解液,具有较高的安全性、耐久性和稳定性等优点。
近年来,随着电动车市场的兴起和绿色能源的发展,聚合物电解质电池已经成为当前的热点研究领域。
一、聚合物电解质的电化学性质(一)离子传输机制传统的无机盐电解液是通过离子迁移实现电荷传输,而聚合物电解质是通过带声子谱线动力学相互作用实现离子传输。
这种传输机制的基本原理是聚合物链的空间结构对离子的合适尺寸造成筛选性渗透,可使电池中离子传输速率达到很高的水平。
(二)电解质衍生物稳定性聚合物电解质衍生物稳定性是指其在电解质和阳极、阴极反应中的稳定性。
聚合物电解质的衍生物稳定性直接影响电池的寿命和性能,因此,最新的研究已经将注意力集中在聚合物电解质衍生物的稳定性上。
(三)空气稳定性聚合物电解质的空气稳定性也是衡量其优劣的重要指标。
电化学稳定性和空气稳定性之间存在相当的联系,因为良好的电化学稳定性通常会导致较好的空气稳定性。
二、聚合物电解质在电池中的应用(一)锂离子电池目前使用最广泛的聚合物电解质就是用于锂离子电池中的聚合物电解液,由于其具有嗜水性和高点阵竞争,其导电性可与无机盐电解液相媲美。
聚合物电解质锂离子电池优点显著,首先是化学惰性和电化学稳定性好,能耐受锂电池的电化学反应;其次是其具有高离子导电性和低离子工程学阻力,能使锂离子电池的能量密度更高;此外,对于电池容量越来越大的应用需求,聚合物电解质中的离子不易聚集、不易沉积,能够满足电池高功率输出的需求。
因此,锂离子电池的发展离不开聚合物电解质。
(二)锂空气电池与锂离子电池不同,在锂空气电池中,聚合物电解质发挥的作用并不是很重要,反而是催化剂和空气电极的使用更加关键。
但是,由于聚合物电解质中的高离子导电性和空气稳定性,作为一种常见的电解质,可作为电池界面的陶瓷膜,在锂空气电池中起到了一定的加强作用。
导电聚合物的电化学性质和应用导电聚合物是一类特殊的聚合物,具有优秀的导电性能和电化学性质,因此在电子、化学和材料科学领域得到了广泛的研究和应用。
本文将从导电聚合物的基本概念、电化学性质以及应用方面进行介绍。
一、导电聚合物的基本概念导电聚合物是一种具有导电性质的高分子化合物,即通过化学结构的改变,使得聚合物分子内存在导电的π键结构。
导电聚合物可以分为有机导电聚合物和无机导电聚合物两类。
其中,有机导电聚合物多为碳材料,如聚苯胺、聚噻吩等,而无机导电聚合物则为金属氧化物、导电聚合物复合材料等。
导电聚合物具有一系列优良的性质。
首先,它们具有良好的导电性能。
通过控制聚合物的结构和组成,可以调节导电性能。
其次,导电聚合物具有良好的物理、化学和生物相容性。
这为导电聚合物在生物医学等领域的应用提供了广阔的空间。
此外,导电聚合物还具有热稳定性、化学稳定性和机械强度等优良性质。
二、导电聚合物的电化学性质导电聚合物的电化学性质主要包括电化学储能、电化学传感和电催化等方面。
1. 电化学储能导电聚合物作为一种新型的储能材料,可以被广泛应用于超级电容器、电化学电池等领域。
导电聚合物电容器具有高的功率密度、长的寿命、低的内阻和高的电化学稳定性等优点。
2. 电化学传感导电聚合物可以通过改变其导电性能,在电化学传感领域中起到重要作用。
导电聚合物传感器主要用于检测生命体征、环境污染物、药物残留等方面。
它们具有快速、灵敏、可再现和高选择性等特点。
3. 电催化导电聚合物具有良好的电催化性质,被广泛应用于电解水制氢等方面。
导电聚合物在电解水过程中可以作为高效催化剂,实现催化反应的高效率和稳定输出氢气的能力。
由此,导电聚合物对于清洁能源的发展具有重要的意义。
三、导电聚合物的应用导电聚合物在多个领域中都有广泛的应用。
下面介绍部分应用场景:1. 传感器导电聚合物传感器具有快速、灵敏、可再现和高选择性等特点。
它们可以被用于检测生命体征、环境污染物、药物残留等方面。
高分子物理知识点高分子物理是研究聚合物分子在物理场中的行为和性质的学科。
聚合物是由一些单体分子通过化学键结合而成的巨大分子,其分子量多数达到百万或以上。
高分子物理的研究范围主要包括聚合物的物理结构、热力学性质、电学性质、机械性质、输运性质、光学性质等方面。
一、聚合物的物理结构聚合物的物理结构是指聚合物高分子链的构象状态。
聚合物高分子链的构象状态受到其化学结构、聚合反应的条件、处理温度等多种因素的影响。
根据高分子链形态的不同,可将聚合物的物理结构分为直线型、支化型和交联型。
1. 直线型聚合物物理结构直线型聚合物是高分子链结构较为简单、规则的聚合物。
它通常由一根直线型链构成,其中的结构单元重复出现,链端没有分支或交联结构。
高分子的线密度、分子量和分子结构对其物理性质有很大的影响。
2. 支化型聚合物物理结构支化型聚合物指非直线型、分子链有分支结构的聚合物。
分支结构对于聚合物的物理性质有很大的影响,由于支化结构的存在,使得聚合物高分子链的平均距离更大,聚合物的分子间距离变大,导致其性能发生变化。
支化型聚合物化学结构和分支类型的不同,会对聚合物的物理性质产生巨大的影响。
3. 交联型聚合物物理结构交联型聚合物是由互相交联的高分子链构成的聚合物。
它们通常具有三维结构,分子间有交联点连接。
交联型聚合物的物理性质比支化型聚合物更为复杂。
不同交联密度、交联桥、交联方式等会对其物理性质产生很大的影响。
二、热力学性质聚合物的热力学性质主要包括相变、热力学函数、相平衡、玻璃化转变等方面。
1. 相变相变是指物质从一个物理状态到另一个物理状态的变化。
聚合物相变通常指聚合物高分子间和高分子和外界环境间的相变。
聚合物的相变通常与聚合物的物理结构、温度和压强等相关。
2. 热力学函数热力学函数是描述物质宏观性质的基本物理量,它包括熵、焓、自由能等,具体热力学函数的选择取决于所研究的问题和体系。
3. 相平衡聚合物在不同温度和压强下处于不同的相态平衡中,可以通过研究相平衡来揭示聚合物的热力学性质。
7.4 聚合物的电学性质一提起高聚物的电学性质,人们马上会想起高聚物是一种优良的电绝缘体,广泛用作电线包皮。
这的确是高聚物优良的电学性质的一个重要方面,即高的电阻率、很高的耐高频性、高的击穿强度,所以是一种理想的电绝缘材料。
其实有的高聚物还具有大的介电常数和很小的介电损耗,从而可以用作薄膜电容器的电介质。
还有其他具有特殊电功能的高聚物相继出现,比如高聚物驻极体、压电体、热电体、光导体、半导体、导体、超导体等。
研究高聚物的电学性质,除了生产上的实用价值外,它还有重要的物理意义,因为高聚物的电学性质往往最灵敏地反映高分子内部结构和分子运动之间的关系。
电学性质能在比力学性质更宽的频率范围内测定,测定精确性和灵敏性都高,因而成为研究高分子结构和分子运动的有力手段。
7.4.1 聚合物的介电性介电性是指高聚物在电场作用下,表现出对静电能的储存和损耗的性质。
通常用介电常数和介电损耗来表示。
根据高聚物中各种基团的有效偶极距μ,可以把高聚物按极性的大小分成四类:非极性(μ=0):聚乙烯、聚丙烯、聚丁二烯、聚四氟乙烯等弱极性(μ≤0.5):聚苯乙烯、天然橡胶等极性(μ>0.5):聚氯乙烯、尼龙、有机玻璃等强极性(μ>0.7):聚乙烯醇、聚酯、聚丙烯腈、酚醛树脂、氨基塑料等聚合物在电场下会发生以下几种极化:(1)电子极化,(2)原子极化,(3)偶极极化。
聚合物的极化程度用介电常数ε表示。
它定义为介质电容器的电容比真空电容器增加的倍数式中:V为直流电压;Q0、Q分别为真空电容器和介质电容器的两极板上产生的电荷;Q’为由于介质极化而在极板上感应的电荷。
介电常数的大小决定于感应电荷Q’的大小,所以它反映介质贮存电能的能力。
非极性分子只有电子和原子极化,ε较小;极性分子除有上述两种极化外,还有偶极极化,ε较大。
此外还有以下因素影响ε:(1)极性基团在分子链上的位置。
在主链上的极性基团活动性小,影响小;在柔性侧基上的极性基团活动性大,影响大。
聚合现象对物理和化学系统性质的影响聚合现象是自然界中普遍存在的一种现象,指的是分子、原子、离子之间因化学键或其它作用力而相互结合形成宏观上较大的分子、原子、离子或化合物。
这些大分子或化合物作为一种整体,对物理和化学系统性质起到重要的调控和影响作用,既有正向的作用,也有负向的作用。
1. 聚合现象对电学系统性质的影响聚合现象特别能影响电学系统的性质,如电导率、介电常数、极化等。
典型的例子是高分子聚合物,其分子间键合比较松弛,导致了其氧化还原(简称“O-R”)反应的电子传递速率较慢。
然而,加入一定的电解质可以缓解这种限制。
翻转的例子是聚合物中的高电荷密度阴离子,会产生电子互相吸引而向聚合物分子内聚的作用,从而加强聚合物的电化学性能。
另一个例子是聚合现象对固体电解质性质的影响,例如聚合物电解质。
在摩尔比为1:10反转的情况下,相比较单体电解质,聚合物电解质能带来更高的电导率、较高的阔度范围和更好的稳定性。
从宏观角度看,聚合物电解质中的分子被紧密连接,这也有助于提高整体性能。
2. 聚合现象对机械性能的影响在现代工程中,聚合物材料常用于制作薄膜、管道、管材、纤维等,这些材料的机械性能与聚合现象有密切关系。
这些材料的机械性能随着材料中聚合物分子量增加而增强。
这是因为,聚合现象导致了分子链间或分子群间的相互作用力加强,从而改变了材料的质量。
尽管聚合物材料可以具有连续弹性和柔软性,但由于聚合物链之间的相互作用力导致聚合物链的强化,因此聚合物材料也可以具有高强度、高硬度等特点。
3. 聚合现象对光学性能的影响聚合现象对光学性能的影响也十分显著。
比如,聚合物盐与光线的反射系数在于聚合物盐中的碳-氮键,该键可导致电荷在两个不同的子分子之间移动而发生缝隙。
这种缝隙改变了反射光的湾曲度,从而大大影响了电子射线自由基簇的大小和程度。
4. 聚合现象对生化系统性质的影响聚合现象还能影响生物体内的代谢过程和细胞生命活动,如血液凝固、细胞分裂等。
聚合物材料的结构和性能研究聚合物材料是指由单体经过聚合反应形成的高分子化合物,具有许多种类和广泛的应用领域。
随着科学技术的不断发展,对聚合物材料的性能和结构研究越来越深入,对于提高材料的性能和开发新材料具有重要意义。
一、聚合物的结构聚合物的结构对于材料的性能有着决定性的影响。
从宏观上来看,聚合物材料一般是由线性、支化、交联和网状四种结构组成。
其中,线性结构是指聚合物链呈直线状排列;支化结构是指聚合物链呈分支状排列;交联结构是指聚合物链之间通过交联作用连接在一起;网状结构是指聚合物链互相连接形成一个三维网状结构。
从微观结构来看,聚合物的化学结构和形态也会对材料的性能产生影响。
例如,在聚合物链的化学结构方面,聚合物可以分为有机聚合物和无机聚合物两大类。
在形态方面,可以分为均聚物和共聚物。
其中,均聚物是指由同一种单体聚合而成的聚合物,而共聚物则是由两种或两种以上不同的单体聚合而成的聚合物。
二、聚合物的性能聚合物材料的性能包括力学性质、热学性质、光学性质、电学性质、气体渗透性和水合性等方面。
其中,力学性质是指聚合物材料对力的响应能力和承受力的极限能力。
对于高分子材料而言,力学性质是其中最为重要的性质之一。
在热学性质方面,聚合物材料的热稳定性能和耐热性能对于材料的应用也具有重要的意义。
在光学性质方面,聚合物材料主要表现为透明或半透明和不同颜色的吸光特性。
在电学性质方面,聚合物材料常常用来制作电池、电容器、传感器等电子器件。
气体渗透性是聚合物材料在化学工业、环保等方面被广泛应用的领域之一,而水合性也对于有机高分子材料的制备具有重要的影响。
三、聚合物材料的研究方向随着社会科技的发展,聚合物材料的研究方向也发生了明显的变化。
目前,聚合物材料的研究重点已经从传统的结构与性能关系研究转向功能化、加工性能改善和绿色可持续发展方向。
在功能化方面,科学家们正在努力研制具有特定功能的聚合物材料,例如具有生物相容性、耐磨性、阻燃性、自修复性等特点的聚合物材料。
聚合物材料的电化学性能聚合物材料的电化学性能是指其在电化学系统中的行为以及与电子和离子的相互作用。
随着聚合物材料在能源存储和转换、传感器、生物医学和电子器件等领域的广泛应用,对其电化学性能的研究变得越来越重要。
首先,聚合物材料的电导性是其电化学性能的关键指标之一。
电导性取决于聚合物分子内的共轭结构以及材料中的离子运动能力。
共轭结构是指芳香性或共轭键的存在,能够形成电子能级的相互重叠,从而实现电子的长距离传导。
因此,多数具有良好电导性的聚合物材料都具有共轭结构,如聚噻吩、聚苯胺和聚咔唑等。
其次,聚合物材料的电化学稳定性也是考察电化学性能的重要因素之一。
在电化学过程中,聚合物材料需要承受电位变化和化学反应的影响,因此其化学结构和物理性质需要具备一定的稳定性。
一些聚合物材料在高电位或低电位下可能会发生氧化或还原反应,导致材料的破坏。
因此,为了提高聚合物材料的电化学稳定性,研究人员通常通过合成控制、材料界面的修饰以及添加稳定剂等方法来实现。
此外,聚合物材料的离子传输性能也是影响其电化学性能的重要因素之一。
在能源领域的应用中,聚合物材料通常被用作电解质或电极材料,因此其内部需要具备良好的离子传输通道,以确保充电和放电反应的顺利进行。
为了提高聚合物材料的离子传输性能,研究人员通常采用导电添加剂、离子液体等方法来提高材料的电导率,以及通过适当控制孔隙结构和表面改性来提高离子扩散速率。
此外,聚合物材料的电化学性能还与其溶液阻抗、表面活性以及电化学反应的动力学等参数密切相关。
溶液阻抗是指在电化学系统中,聚合物材料与电解质溶液之间的阻抗大小,直接影响材料的电荷传递速率。
表面活性是指聚合物材料表面的化学性质,如亲水性、疏水性等,对材料在电化学界面上的行为以及与电解质溶液之间的相互作用有着重要影响。
动力学参数则与电化学反应的速率有关,包括反应的起始电位、电化学反应的速率常数等。
综上所述,聚合物材料的电化学性能涉及多个方面的研究内容,包括电导性、电化学稳定性、离子传输性能、溶液阻抗、表面活性以及电化学反应的动力学等。
聚合物材料的性能分析及其应用聚合物材料,又称为高分子材料,是由大量分子单元通过化学键结合而成的材料。
相较于传统的金属和陶瓷材料,聚合物材料具有重量轻、强度高、耐腐蚀、绝缘等优点,已经广泛地应用在电子、汽车、航空航天等领域中。
本文将对聚合物材料的性能进行分析,并探讨其应用。
一、聚合物材料的分类及性能聚合物材料按照结构分类可以分为线性聚合物、支化聚合物、交联聚合物和共聚物等。
在这些不同的结构中,会对聚合物的性能产生巨大影响。
1.力学性能聚合物材料具有较高的力学性能,例如抗拉强度和硬度等。
其中,线性聚合物的强度较高,但是弹性低;支化聚合物则相对较柔软,但是承受力较强;交联聚合物弹性极高,但承受压力不大;而共聚物则具有较好的抗磨损性能。
2.热性能由于聚合物材料通常具有大量振动自由度,因此热性能是聚合物材料的重要性能之一。
聚合物通常具有较低的热传导率,因此在绝缘、温控等方面具有优点。
另外,聚合物材料还具有显著的玻璃化转变现象和热膨胀率,这些值也在聚合物材料的使用时需要考虑。
3.化学稳定性聚合物材料通常具有较好的化学稳定性,能够承受多种化学环境的腐蚀。
但是,在某些条件下,例如高温下、暴露在强酸、强碱等很强的化学环境下,聚合物材料还是会发生部分分解而失去原有的性能。
4.光学性能聚合物材料的光学性能包括透明度、折射率等,这些性能是在光学仪器、光学器件等领域中具有重要应用的性能。
聚合物材料的光学性能通常由聚合物的定义、复杂程序和合成方法等因素确定。
二、聚合物材料的应用1.电子领域聚合物材料在电子领域中已经得到广泛应用。
由于聚合物的电学性质良好,天然的绝缘性能,因此聚合物被应用在电子器件、电子元件、集成电路封装、电缆等领域中。
2.汽车领域汽车领域是目前聚合物材料应用的主要领域之一。
聚合物材料在汽车领域中被用于汽车内饰、汽车外壳、轮胎、气囊、燃油系统、悬挂系统等部位中。
这些材料的应用可以大大减轻汽车的重量,提高安全性能、可靠性和舒适性能,同时还能减少环境污染。
NVP的电学性能评测NVP是近年来备受关注的新型半导体材料,它不仅具有高电子迁移率和高光电转换效率,在材料制备工艺上也具有很大的优势。
因此,NVP在光电子学、太阳能电池、生物传感器等领域都具有广泛的应用前景。
但是,在应用过程中,了解材料的电学性能是至关重要的。
本文将探讨如何对NVP的电学性能进行评测。
1. NVP材料的基本电学性质在进行NVP电学性能评测之前,我们首先需要了解NVP材料的基本电学性质。
NVP是一种桥式三线态聚合物,其导电机理主要是通过共轭结构中的π电子传导来实现的。
因此,NVP的电学性能主要取决于其导电性和电学稳定性。
导电性是指材料在外电场作用下,电子迁移的速度和导电性能力。
在实验中,我们通常采用四探针法对NVP材料的电导率进行测试。
四探针法是一种严格按照欧姆定律测试电导率的方法,因而测量结果可靠性高。
同时,四探针法还可以确定NVP材料的导电型式,为P型还是N型,这对于后续应用有着重要的指导意义。
电学稳定性是指材料在外界电场作用下的稳定耐久性。
在NVP材料的电学评测中,我们通常采用稳态电压法和多台恒流法来测试其电学稳定性。
通过对NVP材料在稳定电流或电压下的电阻变化情况进行监测,可以判断材料的电学稳定性和耐久性。
2. NVP材料的光电转换性能评测NVP材料的电学性能评测关乎到其在实际应用中的效果,因此除了基础性质的测试外,我们还需对其光电转换性能进行评测。
光电转换性能是指在光照射下,NVP材料能够转化为电能的性能。
在测试NVP光电转换性能时,我们通常采用光致发光和光致电流测试方法。
光致发光测试可以直接观测到NVP材料在光照射下的发光情况,从而间接了解材料的电子传输过程。
而光致电流测试则可以直接测量NVP材料在光照射下的电流输出情况,用其值除以光照下的输入光强度即可得到NVP的光电转换效率。
3. NVP材料的电性能与温度关系对于材料的应用而言,电性能与温度关系也是一个十分重要的指标。
聚合物的静电现象
任何两个固体,不论其化学组成是否相同,只要它们的物理状态不同,其内部结构中电荷载体能量的分布也就不同。
这样两个固体接触时,在固-固表面就会发生电荷的再分配。
在它们重新分离之后,每一固体将带有比接触或摩擦前更多的正(或负)电荷。
这种现象称为静电现象。
高聚物在生产、加工和使用过程中会与其他材料、器件发生接触或摩擦,会有静电发生。
由于高聚物的高绝缘性而使静电难以漏导,吸水性低的聚丙烯腈纤维加工时的静电可达15千伏以上。
电子从材料的表面逸出,需要克服原子核的吸引作用,它所需的最小能量可用功函数(即逸出功)来表征。
摩擦时电子从功函数小的一方转移到功函数大的一方,使两种材料分别带上不同的静电荷。
一些主要高分子的功函数及起电次序(tribo-electric series)见表10-1。
表10-1高聚物的摩擦起电序
物质在上述序列中的差距越大,摩擦产生的电量也越多。
一般认为摩擦起电序与有一定关系,大的带正电,小的带负电。
静电一般有害,主要是:
(1)静电妨碍正常的加工工艺;
(2)静电作用损坏产品质量;
(3)可能危及人身及设备安全。
因而需要消除静电。
目前较广泛采取的措施是将抗静电剂加到高分子材料中或涂布在表面。
抗静电剂是一些表面活化剂,如阴离子型(烷基磺酸钠、芳基磺酸酯等)、阳离子型(季胺盐、胺盐等)以及非离子型(聚乙二醇等)。
纤维纺丝工序中采取“上油”的办法,给纤维表面涂上一层吸湿性的油剂,增加导电性。
静电现象有时也能加以利用。
如静电复印、静电记录、静电印刷、静电涂敷、静电分离与混合、静电医疗等,都成功地利用了高分子材料的静电作用。
聚合物的其他电学性质
(1)力-电性
在机械力的作用下,高聚物的电学性质反映主要是压电效应。
将高聚物的试样置于两电极之间,在机械力的作用下,因发生形变(伸长线缩短)而发生极化,同时产生电场,这种现象称正压电效应。
反之,在高聚物试样上加上电场,试样发生相应的形变,同时产生应力,这个现象称为逆压电效应。
产生压电效应的高聚物主要结晶高聚物(单轴取向)和高分子驻极体。
如PVC、PC、PTFE 和HDPE等。
利用高聚物的压电效应,可做成话筒、传感器等转换元件。
(2)热-电性
在热的作用下,高聚物材料具有热释电性,这是非常重要的电学性质。
驻极体:将电介质置于高压电场中极化,随即冻结极化电荷,可获得静电持久极化,这种长寿命的非平衡电矩的电介质称驻极体。
高聚物驻极体研究从上世纪四十年代开始,现已投入使用优点聚偏氟乙烯、PET、PP、PC等高聚物超薄薄膜驻极体,广泛用作电容器传声隔膜,计算机储存器、爆炸起爆器、血液凝固加速作用等方面。
高聚物驻极体的制备方法是:将高聚物薄膜夹在两个电极中,加热到聚合物的主转变温度以
上,然后施加电场,使薄膜极化一段时间。
在电场作用下以一定速度缓慢冷却至室温(或低温),最后撤去外电场。
热释电流:将上述高聚物驻极体夹在两电极之间,接上微电流计再程序升温,在热的作用下,激发了分子链偶极的运动而发生解取向极化,释放出退极化电荷,在电流计上记录到退极化电流,测得的放电电流随温度的变化称为热释电流谱(TSC),又称为去极化介电谱或热刺激电流谱。
(3)光-电性
光电导性:光照射下高聚物的导电性能发生变化的现象。
如聚乙烯基咔唑、聚萘酯等吸收光能而放出光电子,使电导率增大。
在信息传递方面得到了一些应用。
本章还包括高分子的热性能、光学性能以及表面与界面性能。