12套高考数学小题限时专题训练+4套综合练习
- 格式:doc
- 大小:4.21 MB
- 文档页数:74
2020版考前小题练 高考数学理科(全国通用)总复习文档:12+4满分练七一、选择题1.已知集合M={x|y=x 2+1},N={y|y=x +1},则M ∩N 等于( ) A.{(0,1)} B.{x|x ≥-1} C.{x|x ≥0} D.{x|x ≥1}2.复数z=(1-i)2+21+i (i 为虚数单位)在复平面内对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限3.如图,在平面直角坐标系xOy 中,直线y=2x +1与圆x 2+y 2=4相交于A ,B 两点,则cos ∠AOB 等于( )A.510B.-510C.910D.-9104.已知四棱锥P -ABCD 的底面ABCD 是边长为6的正方形,且PA=PB=PC=PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( )A.6B.5C.4.5D.2.255.如图, 网格纸上小正方形的边长为1, 粗线画出的是某几何体的正(主)视图和侧(左)视图,且该几何体的体积为83,则该几何体的俯视图可以是( )6.在半径为1的圆O 内任取一点M ,过点M 且垂直于OM 作直线l 与圆O 交于圆A ,B 两点,则AB 长度大于3的概率为( )A.14B.13C.33D.127.执行如图所示的程序框图,若x ∈[a ,b],y ∈[0,4],则b -a 的最小值为( )A.2B.3C.4D.58.函数f(x)=cos π2xx +1x的图象大致是( )9.将函数f(x)=sin ωx(ω是正整数)的图象向右平移π6个单位长度,所得曲线在区间内单调递增,则ω的最大值为( )A.3B.4C.5D.610.已知椭圆x 29+y 25=1的右焦点为F ,P 是椭圆上一点,点A(0,23),当△APF 的周长最大时,直线AP 的方程为( )A.y=-33x +2 3B.y=33x +2 3 C.y=-3x +2 3 D.y=3x +2 311.已知在正四棱柱ABCD -A 1B 1C 1D 1中,AB=BC ,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23D.1312.已知函数f(x)=⎩⎪⎨⎪⎧ e x ,x ≤0,x 2+ax +1,x >0,F(x)=f(x)-x -1,且函数F(x)有2个零点,则实数a 的取值范围为( )A.(-∞,0]B.(-∞,1)C.[1,+∞)D.(0,+∞)二、填空题13.已知平面向量a ,b 满足(a +b )·(2a -b )=-4,且|a |=2,|b |=4,则a 与b 夹角为_____.14.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧ x +y -4≤0,2x -3y -8≤0,x ≥1,目标函数z=kx -y 的最大值为12,最小值为0,则实数k=________.15.已知抛物线C :y 2=4x ,过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的投影分别为M ,N 两点,则S △MFN =________.MN的取值16.在正方形ABCD中,AB=AD=2,M,N分别是边BC,CD上的动点,当AM→·AN→=4时,||范围为________.。
广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)一.命题的真假判断与应用(共1小题)(多选)1.(2023•茂名二模)如图所示,有一个棱长为4的正四面体P﹣ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是( )A.若E是CD的中点,则直线AE与PB所成角为B.△ABE的周长最小值为C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为D.如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为二.函数的最值及其几何意义(共1小题)2.(2023•茂名二模)黎曼函数R(x)是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R(x)在[0,1]上的定义为:当(p>q,且p,q为互质的正整数)时,;当x=0或x=1或x为(0,1)内的无理数时,R(x)=0,则下列说法错误的是( )A.R(x)在[0,1]上的最大值为B.若a,b∈[0,1],则R(a•b)≥R(a)•R(b)C.存在大于1的实数m,使方程有实数根D.∀x∈[0,1],R(1﹣x)=R(x)三.抽象函数及其应用(共1小题)(多选)3.(2023•高州市二模)已知定义在R上的函数f(x)满足f(﹣1﹣x)=f(7+x),函数f(x+2)﹣1为奇函数,且对∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af(b)+bf(a).函数与函数f(x)的图象交于点(x1,y1),(x2,y2),…,(x m,y m),给出以下结论,其中正确的是( )A.f(2022)=2022B.函数f(x+1)为偶函数C.函数f(x)在区间[4,5]上单调递减D.四.对数值大小的比较(共1小题)4.(2023•广东二模)已知,,,则(参考数据:ln2≈0.7)( )A.a>b>c B.b>a>c C.b>c>a D.c>a>b五.三角函数的周期性(共1小题)(多选)5.(2023•广东二模)已知f(x)=cos x+tan x,则下列说法正确的是( )A.f(x)是周期函数B.f(x)有对称轴C.f(x)有对称中心D.f(x)在上单调递增六.正弦函数的图象(共1小题)6.(2023•佛山二模)已知函数f(x)=sin(2x+φ)(|φ|<),若存在x1,x2,x3∈(0,),且x3﹣x2=2(x2﹣x1)=4x1,使f(x1)=f(x2)=f(x3)>0,则φ的值为( )A.B.C.D.七.函数的零点与方程根的关系(共1小题)(多选)7.(2023•茂名二模)已知f(x)=,若关于x的方程4ef2(x)﹣af(x)+=0恰好有6个不同的实数解,则a的取值可以是( )A.B.C.D.八.函数与方程的综合运用(共2小题)8.(2023•韶关二模)定义||x ||(x ∈R )为与x 距离最近的整数(当x 为两相邻整数算术平均数时,||x ||取较大整数),令函数f (x )=||x ||,如:,,,,则=( )A .17B .C .19D .9.(2023•潮州二模)已知函数f (x )=|sin x |,g (x )=kx (k >0),若f (x )与g (x )图像的公共点个数为n ,且这些公共点的横坐标从小到大依次为x 1,x 2,…,x n ,则下列说法正确的是( )A .若n =1,则k >1B .若n =3,则C .若n =4,则x 1+x 4>x 2+x 3D .若,则n =2023九.数列递推式(共1小题)(多选)10.(2023•高州市二模)已知数列{p n }和{q n }满足:p 1=1,q 1=2,p n +1=p n +3q n ,q n +1=2p n +q n ,n ∈N *,则下列结论错误的是( )A .数列是公比为的等比数列B .仅有有限项使得C .数列是递增数列D .数列是递减数列一十.利用导数研究函数的单调性(共3小题)11.(2023•广州二模)已知偶函数f (x )与其导函数f '(x )的定义域均为R ,且f '(x )+e ﹣x +x也是偶函数,若f (2a ﹣1)<f (a +1),则实数a 的取值范围是( )A .(﹣∞,2)B .(0,2)C .(2,+∞)D .(﹣∞,0)∪(2,+∞)12.(2023•深圳二模)已知ε>0,,且e x +εsin y =e y sin x ,则下列关系式恒成立的为( )A .cos x ≤cos yB .cos x ≥cos yC .sin x ≤sin yD .sin x ≥sin y(多选)13.(2023•佛山二模)已知函数f(x)=e x﹣﹣1,对于任意的实数a,b,下列结论一定成立的有( )A.若a+b>0,则f(a)+f(b)>0B.若a+b>0,则f(a)﹣f(﹣b)>0C.若f(a)+f(b)>0,则a+b>0D.若f(a)+f(b)<0,则a+b<0一十一.利用导数研究函数的最值(共1小题)14.(2023•湛江二模)对于两个函数与,若这两个函数值相等时对应的自变量分别为t1,t2,则t2﹣t1的最小值为( )A.﹣1B.﹣ln2C.1﹣ln3D.1﹣2ln2一十二.平面向量数量积的性质及其运算(共1小题)(多选)15.(2023•潮州二模)设向量,则( )A.B.C.D.在上的投影向量为(1,0)一十三.三角形中的几何计算(共1小题)(多选)16.(2023•汕头二模)在△ABC中,已知AB=2,AC=5,∠BAC=60°,BC,AC 边上的两条中线AM,BN相交于点P,下列结论正确的是( )A.B.C.∠MPN的余弦值为D.一十四.棱柱、棱锥、棱台的体积(共1小题)(多选)17.(2023•汕头二模)已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为r(0<r<2),设圆台的体积为V,则下列选项中说法正确的是( )A.当r=1时,B.V存在最大值C.当r在区间(0,2)内变化时,V逐渐减小D.当r在区间(0,2)内变化时,V先增大后减小一十五.空间中直线与平面之间的位置关系(共1小题)(多选)18.(2023•广东二模)已知直线m与平面α有公共点,则下列结论一定正确的是( )A.平面α内存在直线l与直线m平行B.平面α内存在直线l与直线m垂直C.存在平面γ与直线m和平面α都平行D.存在过直线m的平面β与平面α垂直一十六.直线与平面所成的角(共1小题)(多选)19.(2023•潮州二模)在正方体ABCD﹣A1B1C1D1中,AB=1,点P满足,其中λ∈[0,1],μ∈[0,1],则下列结论正确的是( )A.当B1P∥平面A1BD时,B1P与CD1可能为B.当λ=μ时,的最小值为C.若B1P与平面CC1D1D所成角为,则点P的轨迹长度为D.当λ=1时,正方体经过点A1、P、C的截面面积的取值范围为一十七.二面角的平面角及求法(共1小题)(多选)20.(2023•佛山二模)四面体ABCD中,AB⊥BD,CD⊥BD,AB=3,BD=2,CD =4,平面ABD与平面BCD的夹角为,则AC的值可能为( )A.B.C.D.一十八.点、线、面间的距离计算(共2小题)(多选)21.(2023•梅州二模)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为边AD 的中点,点P为线段D1B上的动点,设D1P=λD1B,则( )A.当时,EP∥平面AB1CB.当时,|PE|取得最小值,其值为C.|PA|+|PC|的最小值为D.当C1∈平面CEP时,(多选)22.(2023•广州二模)已知正四面体A﹣BCD的长为2,点M,N分别为△ABC和△ABD的重心,P为线段CN上一点,则下列结论正确的是( )A.若AP+BP取得最小值,则CP=PNB.若CP=3PN,则DP⊥平面ABCC.若DP⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为D.直线MN到平面ACD的距离为一十九.直线与圆的位置关系(共1小题)23.(2023•潮州二模)已知圆M:x2+y2﹣4x+3=0,则下列说法正确的是( )A.点(4,0)在圆M内B.若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则a=9C.直线与圆M相离D.圆M关于4x+3y﹣2=0对称二十.椭圆的性质(共3小题)24.(2023•高州市二模)若椭圆的离心率为,两个焦点分别为F1(﹣c,0),F2(c,0)(c>0),M为椭圆C上异于顶点的任意一点,点P是△MF1F2的内心,连接MP并延长交F1F2于点Q,则=( )A.2B.C.4D.25.(2023•韶关二模)韶州大桥是一座独塔双索面钢砼混合梁斜拉桥,具有桩深,塔高、梁重、跨大的特点,它打通了曲江区、浈江区、武江区交通道路的瓶颈,成为连接曲江区与芙蓉新城的重要交通桥梁,大桥承担着实现韶关“三区融合”的重要使命,韶州大桥的桥塔外形近似椭圆,若桥塔所在平面截桥面为线段AB,且AB过椭圆的下焦点,AB=44米,桥塔最高点P距桥面110米,则此椭圆的离心率为( )A.B.C.D.26.(2023•深圳二模)设椭圆C:)的左、右焦点分别为F1,F2,直线l过点F1.若点F2关于l的对称点P恰好在椭圆C上,且,则C 的离心率为( )A.B.C.D.二十一.抛物线的性质(共1小题)(多选)27.(2023•深圳二模)设抛物线C:y=x2的焦点为F,过抛物线C上不同的两点A,B分别作C的切线,两条切线的交点为P,AB的中点为Q,则( )A.PQ⊥x轴B.PF⊥AB C.∠PFA=∠PFB D.|AF|+|BF|=2|PF|二十二.直线与抛物线的综合(共1小题)(多选)28.(2023•高州市二模)阿波罗尼奥斯是古希腊著名的数学家,与欧几里得、阿基米德齐名,他的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.其中给出了抛物线一条经典的光学性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.此性质可以解决线段和的最值问题,已知抛物线C:y2=2px(p>0),M是抛物线C上的动点,焦点,N(4,2),下列说法正确的是( )A.C的方程为y2=x B.C的方程为y2=2xC.|MF|+|MN|的最小值为D.|MF|+|MN|的最小值为二十三.直线与双曲线的综合(共1小题)(多选)29.(2023•广州二模)已知双曲线Γ:x2﹣y2=a2(a>0)的左,右焦点分别为F1,F2,过F2的直线l与双曲线Γ的右支交于点B,C,与双曲线Γ的渐近线交于点A,D(A,B在第一象限,C,D在第四象限),O为坐标原点,则下列结论正确的是( )A.若BC⊥x轴,则△BCF1的周长为6aB.若直线OB交双曲线Γ的左支于点E,则BC∥EF1C.△AOD面积的最小值为4a2D.|AB|+|BF1|的取值范围为(3a,+∞)二十四.正态分布曲线的特点及曲线所表示的意义(共1小题)(多选)30.(2023•湛江二模)廉江红橙是广东省廉江市特产、中国国家地理标志产品.设廉江地区某种植园成熟的红橙单果质量M(单位:g)服从正态分布N(165,σ2),且P (M<162)=0.15,P(165<M<167)=0.3.下列说法正确的是( )A.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量小于167g的概率为0.7 B.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量在167g~168g的概率为0.05C.若从种植园成熟的红橙中随机选取600个,则质量大于163g的个数的数学期望为480D.若从种植园成熟的红橙中随机选取600个,则质量在163g~168g的个数的方差为136.5广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)参考答案与试题解析一.命题的真假判断与应用(共1小题)(多选)1.(2023•茂名二模)如图所示,有一个棱长为4的正四面体P﹣ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是( )A.若E是CD的中点,则直线AE与PB所成角为B.△ABE的周长最小值为C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为D.如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为【答案】ACD【解答】A选项,连接AD,如图所示:在正四面体P﹣ABC中,D是PD的中点,所以PB⊥AD,PB⊥CD,因为AD⊂平面ACD,CD⊂平面ACD,AD∩CD=D,所以直线PB⊥平面ACD,因为AE⊆平面ACD,所以PB⊥AE,所以直线AE与PB所成角为;故A选项正确;B选项,把△ACD沿着CD展开与面BCD同一平面内,由AD=CD=,AC=4,,所以cos∠ADB=cos()=﹣sin∠ADC=﹣,所以×,所以△ABC的周长最小值为不正确,故B选项错误;C选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,设半径为r,由等体积法可知,,所以半径r=,故C选项正确;D选项,10个小球分三层,(1个,3个,6个)放进去,要使小球半径最大,则外层小球与四个面相切,设小球半径为r,四个角小球球心连线M﹣NGF是棱长为4r的正四面体,其高为,由正四面体内切球的半径为高的得,如图正四面体P﹣HIJ,则MP=3r,正四面体P﹣ABC的高为3r+r+r=,得r=,故D选项正确.故选:ACD.二.函数的最值及其几何意义(共1小题)2.(2023•茂名二模)黎曼函数R(x)是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R(x)在[0,1]上的定义为:当(p>q,且p,q为互质的正整数)时,;当x=0或x=1或x为(0,1)内的无理数时,R(x)=0,则下列说法错误的是( )A.R(x)在[0,1]上的最大值为B.若a,b∈[0,1],则R(a•b)≥R(a)•R(b)C.存在大于1的实数m,使方程有实数根D.∀x∈[0,1],R(1﹣x)=R(x)【答案】C【解答】解:对于A,由题意,R(x)的值域为,其中p是大于等于2的正整数,选项A正确;对于B,①若a,b∈(0,1],设(p,q互质,m,n互质),,则R(a•b)≥R(a)•R(b),②若a,b有一个为0,则R(a•b)≥R(a)•R(b)=0,选项B正确;对于C,若n为大于1的正数,则,而R(x)的最大值为,所以该方程不可能有实根,选项C错误;对于D,x=0,1或(0,1)内的无理数,则R(x)=0,R(1﹣x)=0,R(x)=R(1﹣x),若x为(0,1)内的有理数,设(p,q为正整数,为最简真分数),则,选项D正确.故选:C.三.抽象函数及其应用(共1小题)(多选)3.(2023•高州市二模)已知定义在R上的函数f(x)满足f(﹣1﹣x)=f(7+x),函数f(x+2)﹣1为奇函数,且对∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af (b)+bf(a).函数与函数f(x)的图象交于点(x1,y1),(x2,y2),…,(x m,y m),给出以下结论,其中正确的是( )A.f(2022)=2022B.函数f(x+1)为偶函数C.函数f(x)在区间[4,5]上单调递减D.【答案】BCD【解答】解:因为f(﹣1﹣x)=f(7+x),所以f(x)=f(6﹣x),f(x)的图象关于x=3对称,因为函数f(x+2)﹣1为奇函数,所以f(x)的图象关于点(2,1)对称,且f(0+2)﹣1=0⇒f(2)=1,又f(﹣x+2)﹣1=1﹣f(x+2)⇒f(x+2)=2﹣f(2﹣x),所以f(x)=2﹣f(4﹣x)=2﹣f[6﹣(2+x)]=2﹣f(2+x)=2﹣[2﹣f(2﹣x)]=f(2﹣x)=f[6﹣(2﹣x)]=f(x+4),即f(x)=f(x+4),所以f(x)的周期为4,所以f(2022)=f(2)=1,故A错误;由上可知,f(x)=f(2﹣x),f(x+1)=f[2﹣(x+1)]=f(1﹣x),故B正确;因为∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af(b)+bf(a),即(a﹣b)[f(a)﹣f(b)]>0,所以f(x)在区间[2,3]单调递增,因为f(x)的图象关于点(2,1)对称,所以f(x)在区间[1,2]单调递增,又f(x)的图象关于x=3对称,所以f(x)在区间[4,5]单调递减,C正确;因为,所以g(x)的图象关于点(2,1)对称,所以f(x)与g(x)的交点关于点(2,1)对称,不妨设x1<x2<x3<•<x m,则x1+x m=x2+x m﹣1=x3+x m﹣2=⋅⋅⋅=4,y1+y m=y2+y m﹣1=y3+y m﹣2=⋅⋅⋅=2,所以x1+x2+⋯+x m=2m,y1+y2+⋯+y m=m,所以,D正确.故选:BCD.四.对数值大小的比较(共1小题)4.(2023•广东二模)已知,,,则(参考数据:ln2≈0.7)( )A.a>b>c B.b>a>c C.b>c>a D.c>a>b【答案】B【解答】解:因为,,考虑构造函数,则,当0<x<e时,f′(x)>0,函数f(x)在(0,e)上单调递增,当x>e时,f′(x)<0,函数f(x)在(e,+∞)上单调递减,因为ln2≈0.7,所以e0.7≈2,即,所以,所以,即,又,所以,故b>a>c.故选:B.五.三角函数的周期性(共1小题)(多选)5.(2023•广东二模)已知f(x)=cos x+tan x,则下列说法正确的是( )A.f(x)是周期函数B.f(x)有对称轴C.f(x)有对称中心D.f(x)在上单调递增【答案】ACD【解答】解:因为f(x)=cos x+tan x,所以f(x+2π)=cos(x+2π)+tan(x+2π)=cos x+tan x=f(x),所以函数f(x)为周期函数,A正确;因为,,所以,所以函数为奇函数,故函数的图象关于原点对称,所以为函数f(x)的中心对称,C正确;当时,,因为0<cos x<1,0<sin x<1,所以f′(x)>0,所以函数f(x)在上单调递增,D正确;由可得,当时,由0<cos x≤1,﹣1<sin x<1,可得f′(x)>0,函数f(x)在上单调递增,当,由﹣1≤cos x<0,﹣1<sin x<1,可得f′(x)>0,函数f(x)在上单调递增,又f(0)=1,f(π)=﹣1,作出函数f(x)在的大致图象可得:结合函数f(x)是一个周期为2π的函数可得函数f(x)没有对称轴,B错误.故选:ACD.六.正弦函数的图象(共1小题)6.(2023•佛山二模)已知函数f(x)=sin(2x+φ)(|φ|<),若存在x1,x2,x3∈(0,),且x3﹣x2=2(x2﹣x1)=4x1,使f(x1)=f(x2)=f(x3)>0,则φ的值为( )A.B.C.D.【答案】A【解答】解:∵x3﹣x2=2(x2﹣x1)=4x1,∴x2=3x1,x3=7x1,又f(x1)=f(x2)=f(x3)>0,且x1,x2,x3∈(0,),∴x3﹣x1=6x1=π,,,∴π﹣2x1﹣φ=2x2+φ,即,∴.故选:A.七.函数的零点与方程根的关系(共1小题)(多选)7.(2023•茂名二模)已知f(x)=,若关于x的方程4ef2(x)﹣af(x)+=0恰好有6个不同的实数解,则a的取值可以是( )A.B.C.D.【答案】AB【解答】解:令g(x)=,则g'(x)=,所以g(x)在[0,1)上单调增,在(1,+∞)上单调减,所以f(x)的大致图像如下所示:令t=f(x),所以关于x的方程4ef2(x)﹣af(x)+=0有6个不同实根等价于关于t方程4et2﹣at+=0在t∈(0,)内有2个不等实根,即h(t)=4et+与y=a在t∈(0,)内有2个不同交点,又因为h′(t)=4e﹣=,令h′(t)=0,则t=±,所以当t∈(0,)时,h′(t)<0,h(t)单调递减;当t∈(,+∞)时,h′(t)>0,h(t)单调递增;所以h(t)=4et+的大致图像如下所示:又h()=4,h()=5,所以a∈(4,5).对照四个选项,AB符合题意.故选:AB.八.函数与方程的综合运用(共2小题)8.(2023•韶关二模)定义||x||(x∈R)为与x距离最近的整数(当x为两相邻整数算术平均数时,||x||取较大整数),令函数f(x)=||x||,如:,,,,则=( )A.17B.C.19D.【答案】C【解答】解:根据题意,函数f(x)=||x||,当1≤n≤2时,有0.5<<1.5,则f()=1,则有=1,当3≤n≤6,有1.5<<2.5,则f()=2,则有=,当7≤n≤12,有2.5<<3.5,则f()=3,则有=,……,由此可以将重新分组,各组依次为(1,1)、(、、、)、(、、、、、)、……,第n组为2n个,则每组中各个数之和为2n×=1,前9组共有=90个数,则是第10组的第10个数,则=2×9+10×=19.故选:C.9.(2023•潮州二模)已知函数f(x)=|sin x|,g(x)=kx(k>0),若f(x)与g(x)图像的公共点个数为n,且这些公共点的横坐标从小到大依次为x1,x2,…,x n,则下列说法正确的是( )A.若n=1,则k>1B.若n=3,则C.若n=4,则x1+x4>x2+x3D.若,则n=2023【答案】B【解答】解:对于A:当k=1时,令y=sin x﹣x,则y′=cos x﹣1<0,即函数y=sin x﹣x在定义域上单调递减,又当x=0时,y=0,所以函数y=sin x﹣x有且仅有一个零点为0,同理易知函数y=﹣sin x﹣x有且仅有一个零点为0,即f(x)与g(x)也恰有一个公共点,故A错误;对于B:当n=3时,如下图:2易知在x=x3,且x3∈(π,2π),f(x)与g(x)图象相切,由当x∈(π,2π)时,f(x)=﹣sin x,则f′(x)=﹣cos x,g′(x)=k,故,从而x3=tan x3,所以+x3=tan x3+===,故B 正确;对于C:当n=4时,如下图:则x1=0,π<x4<2π,所以x1+x4<2π,又f(x)图象关于x=π对称,结合图象有x3﹣π>π﹣x2,即有x2+x3>2π>x1+x4,故C错误;对于D:当时,由f()=g()=1可得,f(x)与g(x)的图象在y轴右侧的前1012个周期中,每个周期均有2个公共点,共有2024个公共点,故D错误.故选:B.九.数列递推式(共1小题)(多选)10.(2023•高州市二模)已知数列{p n}和{q n}满足:p1=1,q1=2,p n+1=p n+3q n,q n+1=2p n+q n,n∈N*,则下列结论错误的是( )A.数列是公比为的等比数列B.仅有有限项使得C.数列是递增数列D.数列是递减数列【答案】ABD【解答】解:由题意可知,第二个式子乘以λ后与第一和式子相加可得,令,解得,取可得,因为p1=1,q1=2,所以,所以,所以数列是公比为的等比数列,选项A说法错误;因为p1=1,q1=2,所以,所以当n为正奇数时,,即,当n为正偶数时,,即,选项B说法错误;由p1=1,q1=2,p n+1=p n+3q n,q n+1=2p n+q n,可知p n>0,q n>0,且数列{p n}和{q n}均为递增数列,而,所以数列是递增数列,选项C说法正确;因为,所以数列是递增数列,选项D说法错误.故选:ABD.一十.利用导数研究函数的单调性(共3小题)11.(2023•广州二模)已知偶函数f(x)与其导函数f'(x)的定义域均为R,且f'(x)+e﹣x+x也是偶函数,若f(2a﹣1)<f(a+1),则实数a的取值范围是( )A.(﹣∞,2)B.(0,2)C.(2,+∞)D.(﹣∞,0)∪(2,+∞)【答案】B【解答】解:因为f(x)为偶函数,则f(x)=f(﹣x),等式两边求导可得f′(x)=﹣f′(﹣x),①因为函数f'(x)+e﹣x+x为偶函数,则f′(x)+e﹣x+x=f′(﹣x)+e x﹣x,②联立①②可得f′(x)=﹣x,令g(x)=f′(x),则g′(x)=﹣1≥﹣1=0,且g′(x)不恒为零,所以函数g(x)在R上为增函数,即函数f′(x)在R上为增函数,故当x>0时,f′(x)>f′(0)=0,所以函数f(x)在[0,+∞)上为增函数,由f(2a﹣1)<f(a+1),可得f(|2a﹣1|)<f(|a+1|),所以|2a﹣l|<|a+1|,整理可得a2﹣2a<0,解得0<a<2.故选:B.12.(2023•深圳二模)已知ε>0,,且e x+εsin y=e y sin x,则下列关系式恒成立的为( )A.cos x≤cos y B.cos x≥cos y C.sin x≤sin y D.sin x≥sin y【答案】A【解答】解:构造函数f(x)=,x∈,则f′(x)=,当x∈时,cos x>sin x,f′(x)=>0,因为0<e x,0<e y,当=,eɛ>1,0<sin x<sin y时,则>>0,所以>x>y>0,y=cos x,x∈(0,)单调递增,所以cos x<cos y,当=<0,eɛ>1,sin x<sin y<0时,则<<0,所以﹣<x<y<0,y=cos x,x∈(﹣,0)单调递减,所以cos x<cos y.当=,eɛ>1,sin x=sin y=0时,则x=y=0,此时cos x=cos y,综上,cos x≤cos y.故选:A.(多选)13.(2023•佛山二模)已知函数f(x)=e x﹣﹣1,对于任意的实数a,b,下列结论一定成立的有( )A.若a+b>0,则f(a)+f(b)>0B.若a+b>0,则f(a)﹣f(﹣b)>0C.若f(a)+f(b)>0,则a+b>0D.若f(a)+f(b)<0,则a+b<0【答案】ABD【解答】解:f(x)=e x﹣﹣1,则f′(x)=e x﹣x,f″(x)=e x﹣1,当x∈(0,+∞)时,f″(x)>0,f′(x)单调递增,当x∈(﹣∞,0)时,f″(x)<0,f′(x)单调递减,所以f′(x)≥f′(0)=1,所以f(x)在R上单调递增,且f(0)=0,若a+b>0,则a>﹣b,所以f(a)>f(﹣b),则f(a)﹣f(﹣b)>0,故B正确;f(b)+f(﹣b)=e b﹣b2﹣1+(e﹣b﹣b2﹣1)=e b+e﹣b﹣b2﹣2,令h(b)=e b+e﹣b﹣b2﹣2,h′(b)=e b﹣e﹣b﹣2b,令h′(b)=u(b),u′(b)=e b+e﹣b﹣2≥0,u(b)在R上单调递增,而h′(0)=u(0)=0,故h(b)在(0,+∞)上单调递增,在(﹣∞,0)上单调递减,故h(b)≥h(0)=0,所以f(b)+f(﹣b)≥0⇒f(a)+f(b)≥f(a)﹣f(﹣b)>0,故A正确;对于D,若f(a)+f(b)<0⇒f(a)<﹣f(b)≤f(﹣b)⇒a<﹣b,即a+b<0,故D 正确;设f(c)=﹣f(b),若c<a<﹣b,则f(c)=﹣f(b)<f(a),满足f(a)+f(b)>0,但a+b<0,故C错误.故选:ABD.一十一.利用导数研究函数的最值(共1小题)14.(2023•湛江二模)对于两个函数与,若这两个函数值相等时对应的自变量分别为t1,t2,则t2﹣t1的最小值为( )A.﹣1B.﹣ln2C.1﹣ln3D.1﹣2ln2【答案】B【解答】解:由题意可得=ln(2t2﹣1)+2,∴t1=1+ln(ln(2t2﹣1)+2),t1,t2>,∴t2﹣t1=t2﹣1﹣ln(ln(2t2﹣1)+2)=ln(),令h(x)=,x∈(,+∞),h′(x)=,令u(x)=ln(2x﹣1)+2﹣在x∈(,+∞)上单调递增,且u(1)=0,∴x∈(,1)时,h′(x)<0,函数h(x)单调递减;x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增.∴x=1时,函数h(x)取得极小值即最小值,h(1)=,∴函数y=ln()取得最小值ln,即﹣ln2.即t2﹣t1的最小值为﹣ln2,故选:B.一十二.平面向量数量积的性质及其运算(共1小题)(多选)15.(2023•潮州二模)设向量,则( )A.B.C.D.在上的投影向量为(1,0)【答案】ACD【解答】解:因为,所以=(﹣1,﹣1),对A:||=,||=,所以||=||,故A正确;对B:因为1×(﹣1)﹣(﹣1)×(﹣1)=﹣2≠0,所以与不平行,故B错误;对C:()•=﹣1+1=0,所以()⊥,故C正确;对D:在上的投影为==1,则在上的投影向量为(1,0),故D正确;故选:ACD.一十三.三角形中的几何计算(共1小题)(多选)16.(2023•汕头二模)在△ABC中,已知AB=2,AC=5,∠BAC=60°,BC,AC 边上的两条中线AM,BN相交于点P,下列结论正确的是( )A.B.C.∠MPN的余弦值为D.【答案】ABD【解答】解:连接PC,并延长交AB于Q,△ABC中,AB=2,AC=5,∠BAC=60°,BC,AC边上的两条中线AM,BN相交于点P,则,,,,,,,====,故A正确;===,故B正确;===.故C错误;,故D正确.故选:ABD.一十四.棱柱、棱锥、棱台的体积(共1小题)(多选)17.(2023•汕头二模)已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为r(0<r<2),设圆台的体积为V,则下列选项中说法正确的是( )A.当r=1时,B.V存在最大值C.当r在区间(0,2)内变化时,V逐渐减小D.当r在区间(0,2)内变化时,V先增大后减小【答案】BD【解答】解:设圆台的上底面的圆心为O1,下底面的圆心为O,点A为上底面圆周上任意一点,圆台的高为h,球的半径为R,如图所示,则=,对选项不正确;,设f(r)=﹣3r3﹣4r2+4r+8,则f'(r)=﹣9r2﹣8r+4,令f'(r)=0可得9r2+8r﹣4=0,解得,,易知r2∈(0,2),且当r∈(0,r2),f'(r)>0;r∈(r2,2),f'(r)<0,f(r)在(0,r2)单调递增,在(r2,2)单调递减,由f(0)=8,f(1)=5,f(2)=﹣24,∃r0∈(1,2),使得f(r0)=0,当r∈(0,r0),f(r)>0,即V'>0;当r∈(r0,2),f(r)<0,即V'<0,所以V在(0,r0)单调递增,在(r0,2)单调递减,则B,D正确,C错误.故选:BD.一十五.空间中直线与平面之间的位置关系(共1小题)(多选)18.(2023•广东二模)已知直线m与平面α有公共点,则下列结论一定正确的是( )A.平面α内存在直线l与直线m平行B.平面α内存在直线l与直线m垂直C.存在平面γ与直线m和平面α都平行D.存在过直线m的平面β与平面α垂直【答案】BD【解答】解:对于A选项,若直线m与α相交,且平面α内存在直线l与直线m平行,由于m⊄α,则m∥α,这与直线m与α相交矛盾,假设不成立,A错;对于B选项,若m⊂α,则在平面α内必存在l与直线m垂直,若直线m与α相交,设m⋂α=A,如下图所示:若m⊥α,且l⊂α,则m⊥l,若m与α斜交,过直线m上一点P(异于点A)作PB⊥α,垂足点为B,过点A作直线l,使得l⊥AB,因为PB⊥α,l⊂α,则l⊥PB,又因为l⊥AB,PB∩AB=B,PB、AB⊂平面PAB,所以l⊥平面PAB,因为m⊂平面PAB,所以l⊥m,综上所述,平面α内存在直线l与直线m垂直,B正确;对于C选项,设直线l与平面α的一个公共点为点A,假设存在平面γ,使得α∥β且m∥β,过直线m作平面γ,使得γ⋂β=l,因为m∥γ,m⊂β,γ⋂β=l,则l∥m,因为γ∥α,记β⋂α=n,又因为γ⋂β=l,则n∥l,因为在平面β内有且只有一条直线与直线l平行,且A∈n,故m、n重合,所以,m⊂α,但m不一定在平面α内,当m与α相交时,则m与γ也相交,C错误;对于D选项,若m⊥α,则过直线m的任意一个平面都与平面α垂直,若m与α不垂直,设直线m与平面的一个公共点为点A,则过点A有且只有一条直线l与平面α垂直,记直线l、m所确定的平面为γ,则α⊥β,D正确.故选:BD.一十六.直线与平面所成的角(共1小题)(多选)19.(2023•潮州二模)在正方体ABCD﹣A1B1C1D1中,AB=1,点P满足,其中λ∈[0,1],μ∈[0,1],则下列结论正确的是( )A.当B1P∥平面A1BD时,B1P与CD1可能为B.当λ=μ时,的最小值为C.若B1P与平面CC1D1D所成角为,则点P的轨迹长度为D.当λ=1时,正方体经过点A1、P、C的截面面积的取值范围为【答案】AC【解答】解:建立如图所示的空间直角坐标系A﹣xyz,则根据题意可得:A(0,0,0),B(1,0,0),D(0,1,0),C(1,1,0),A1(0,0,1),C1(1,1,1),D1(0,1,1),B1(1,0,1),∴,,设平面A1BD的一个法向量为,则,取,若B1P∥平面A1BD,则,∴(﹣λ,1,μ﹣1)⋅(1,1,1)=﹣λ+1+μ﹣1=0,∴λ=μ,故,其中,令,解得λ=0或1,∴B1P与CD1可能是,∴A正确;对B选项,∵λ=μ,∴P点在棱CD1上,将平面CDD1与平面A1BCD1沿着CD1展成平面图形,如图所示,线段A1D=≥A1D,由余弦定理可得:,∴,∴B错误;对C选项,∵B1C1⊥平面CC1D1D,连接C1P,则∠B1PC1即为B1P与平面CC1D1D所成角,若B1P与平面CC1D1D所成角为,则,所以C1P=B1C1=1,即点P的轨迹是以C1为圆心,以1为半径的个圆,于是点P的轨迹长度为,C正确;D选项,当λ=1时,P点在DD1上,过点A1作A1H∥CP交BB1于点H,连接CH,则CH∥A1P,所以平行四边形CHA1P即为正方体过点A1、P、C的截面,设P(0,1,t),∴,∴,,∴点P到直线A1C的距离为,∴当时,,△PA1C的面积取得最小值,此时截面面积最小为,当t=0或1时,,△PA1C的面积取得最大值,此时截面面积最大为,故截面面积的取值范围为,D错误.故选:AC.一十七.二面角的平面角及求法(共1小题)(多选)20.(2023•佛山二模)四面体ABCD中,AB⊥BD,CD⊥BD,AB=3,BD=2,CD =4,平面ABD与平面BCD的夹角为,则AC的值可能为( )A.B.C.D.【答案】AD【解答】解:由AB⊥BD,CD⊥BD,平面ABD与平面BCD的夹角为,∴与所成角为或,=++,∴2=2+2+2+2•+2•+2•,当与所成角为,∴2=2+2+2+2•+2•+2•=9+4+16﹣2×3×4×cos=17,∴AC=,当与所成角为,∴2=2+2+2+2•+2•+2•=9+4+16﹣2×3×4×cos=41,∴AC=,综上所述:AC=或.故选:AD.一十八.点、线、面间的距离计算(共2小题)(多选)21.(2023•梅州二模)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为边AD 的中点,点P为线段D1B上的动点,设D1P=λD1B,则( )A.当时,EP∥平面AB1CB.当时,|PE|取得最小值,其值为C.|PA|+|PC|的最小值为D.当C1∈平面CEP时,【答案】BC【解答】解:在棱长为2的正方体ABCD﹣A1B1C1D1中,建立如图所示的空间直角坐标系,则A(2,0,0),B(2,2,0),C(0,2,0),D1(0,0,2),B1(2,2,2),E(1,0,0),所以,则点P(2λ,2λ,2﹣2λ),对于A,,,,而,显然,即是平面AB1C 的一个法向量,而,因此不平行于平面AB1C,即直线EP 与平面AB1C不平行,A错误;对于B,,则,因此当时,|PE|取得最小值,B正确;对于C,,于是,当且仅当时取等号,C正确;对于D,取A1D1的中点F,连接EF,C1F,CE,如图,因为E为边AD的中点,则EF∥DD1∥CC1,当C1∈平面CEP时,P∈平面CEFC1,连接B1D1∩C1F=Q,连接BD∩CE=M,连接MQ,显然平面CEFC1∩平面BDD1B1=MQ,因此MQ∩D1B=P,BB1∥CC1,CC1⊂平面CEFC1,BB1⊄平面CEFC1,则BB1∥平面CEFC1,即有MQ∥BB1,而,所以,D错误.故选:BC.(多选)22.(2023•广州二模)已知正四面体A﹣BCD的长为2,点M,N分别为△ABC和△ABD的重心,P为线段CN上一点,则下列结论正确的是( )A.若AP+BP取得最小值,则CP=PNB.若CP=3PN,则DP⊥平面ABCC.若DP⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为D.直线MN到平面ACD的距离为【答案】BCD【解答】解:易得DE⊥AB,CE⊥AB,又DE∩CE=E,则AB⊥面CDE,又CN⊂面CDE,则AB⊥CN,同理可得CN⊥BD,AB∩BD=B,则CN⊥平面ABD,又AN,BN⊂平面ABD,所以CN⊥BN,CN⊥AN,则当点P与点N重合时,AP+BP取得最小值,又AN=BN=DN=DE=×=,则最小值为AN+BN=,故A错误;在正四面体ABCD中,因为DP⊥平面ABC,易得P在DM上,所以DM∩CN=P,又点M,N也是△ABC和△ABD的内心,则点P为正四面体ABCD内切球的球心,CM=CE=,DM==,设正四面体ABCD内切球的半径为r,因为V D﹣ABC=V P﹣ABC+V P﹣ABD+V P﹣BCD+V P﹣ACD,所以S△ABC•DM=S△ABC•r+S△ABD•r+S△BCD•r+S△ACD•r,解得r=MP=DM=,即DP=DM,故CP=3PN,故B正确;设三棱锥P﹣ABC外接球的球心为O,半径为R,易得球心O在直线DN上,且ON⊥NC,则R2=OC2=CN2+(OP﹣NP)2,解得R=,故三棱锥P﹣ABC外接球的表面积为4πR2=,故C正确;∵DM==,即D到平面ABC的距离为,则B到平面ACD的距离为,∵E是AB的中点,∴E到平面ACD的距离为×,∵CM=CE,∴M到平面ACD的距离为××=,∴直线MN到平面ACD的距离为,故D正确.故选:BCD.一十九.直线与圆的位置关系(共1小题)23.(2023•潮州二模)已知圆M:x2+y2﹣4x+3=0,则下列说法正确的是( )A.点(4,0)在圆M内B.若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则a=9C.直线与圆M相离D.圆M关于4x+3y﹣2=0对称【答案】B【解答】解:∵圆M:x2+y2﹣4x+3=0可化为:(x﹣2)2+y2=1,∴圆心为O1(2,0),半径为r1=1,对于A:因为(4﹣2)2+02>1,所以点(4,0)在圆M外,故A错误;对于B:若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则两圆外切,圆x2+y2﹣4x﹣6y+a=0可化为(x﹣2)2+(y﹣3)2=13﹣a,圆心为O2(2,3),半径为,因为|O1O2|=r1+r2,所以,解得a=9,故B正确;对于C:∵O1(2,0)到直线的距离为,∴直线与圆M相切,故C错误;对于D:显然圆心O1(2,0)不在直线4x+3y﹣2=0上,则圆M不关于4x+3y﹣2=0对称,故D错误;故选:B.二十.椭圆的性质(共3小题)24.(2023•高州市二模)若椭圆的离心率为,两个焦点分别为F1(﹣c,0),F2(c,0)(c>0),M为椭圆C上异于顶点的任意一点,点P是△MF1F2的内心,连接MP并延长交F1F2于点Q,则=( )A.2B.C.4D.【答案】A【解答】解:如图,连接PF1,PF2,设P到x轴距离为d P,M到x轴距离为d M,则设△PF1F2内切圆的半径为r,则,===(c+a)r∴不妨设|PQ|=cm,则|MQ|=(c+a)m(m>0),∴|PM|=|MQ|﹣|PQ|=am(m>0),因为椭圆的离心率为,∴,故选:A.25.(2023•韶关二模)韶州大桥是一座独塔双索面钢砼混合梁斜拉桥,具有桩深,塔高、梁重、跨大的特点,它打通了曲江区、浈江区、武江区交通道路的瓶颈,成为连接曲江区与芙蓉新城的重要交通桥梁,大桥承担着实现韶关“三区融合”的重要使命,韶州大桥的桥塔外形近似椭圆,若桥塔所在平面截桥面为线段AB,且AB过椭圆的下焦点,AB=44米,桥塔最高点P距桥面110米,则此椭圆的离心率为( )A.B.C.D.【答案】D【解答】解:按椭圆对称轴所在直线建立直角坐标系,则椭圆方程为,令y=﹣c,有一个,所以有,所以,所以=,所以e==.故选:D.。
广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-03解答题(提升题)2目录一.数列的求和(共1小题) (1)二.利用导数研究函数的最值(共1小题) (1)三.解三角形(共4小题) (1)四.直线与平面所成的角(共2小题) (2)五.二面角的平面角及求法(共1小题) (3)六.点、线、面间的距离计算(共1小题) (3)七.直线与抛物线的综合(共1小题) (4)八.直线与双曲线的综合(共2小题) (4)九.离散型随机变量的期望与方差(共2小题) (4)一.数列的求和(共1小题)1.(2023•佛山二模)已知各项均为正数的等比数列{a n},其前n项和为S n,满足2S n=a n+2﹣6.(1)求数列{a n}的通项公式;(2)记b m为数列{S n}在区间(a m,a m+2)中最大的项,求数列{b n}的前n项和T n.二.利用导数研究函数的最值(共1小题)2.(2023•广州二模)已知定义在(0,+∞)上的函数.(1)若a∈R,讨论f(x)的单调性;(2)若a>0,且当x∈(0,+∞)时,不等式恒成立,求实数a的取值范围.三.解三角形(共4小题)3.(2023•广州二模)记△ABC的内角A,B,C的对边分别为a,b,c,已知b cos A﹣a cos B =b﹣c.(1)求A;(2)若点D在BC边上,且CD=2BD,cos B=,求tan∠BAD.4.(2023•梅州二模)如图,在平面四边形ABCD中,∠BAC=∠ADC=90°,,AC =2,设∠CAD=θ.(1)当θ=45°时,求BD的长;(2)求BD的最大值.5.(2023•佛山二模)已知△ABC为锐角三角形,且cos A+sin B=(sin A+cos B).(1)若C=,求A;(2)已知点D在边AC上,且AD=BD=2,求CD的取值范围.6.(2023•广州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若角A的平分线交BC于D且AD=2,求a的最小值.四.直线与平面所成的角(共2小题)7.(2023•广州二模)如图,在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=3,点D是BC 的中点,点E在AA1上,AD∥平面BC1E.(1)求证:平面BC1E⊥平面BB1C1C;(2)当三棱锥B1﹣BC1E的体积最大时,求直线AC与平面BC1E所成角的正弦值.8.(2023•广州二模)在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,底面ABCD是菱形,E是PD的中点,PA=PD,AB=2,∠ABC=60°.(1)证明:PB∥平面EAC.(2)若四棱锥P﹣ABCD的体积为,求直线EC与平面PAB所成角的正弦值.五.二面角的平面角及求法(共1小题)9.(2023•深圳二模)在三棱柱ABC﹣A1B1C1中,AB=BC=2,∠ABC=,A1C1⊥A1B.(1)证明:A1A=A1C;(2)若A1A=2,BC1=,求平面A1CB1与平面BCC1B1夹角的余弦值.六.点、线、面间的距离计算(共1小题)10.(2023•梅州二模)如图,正三棱柱ABC﹣A1B1C1中,AB==2,点M为A1B1的中点.(1)在棱BB1上是否存在点Q,使得AQ⊥平面BC1M?若存在,求出的值;若不存在,请说明理由;(2)求点C到平面BC1M的距离.七.直线与抛物线的综合(共1小题)11.(2023•广州二模)已知直线l与抛物线C:y2=4x交于A,B两点,且与x轴交于点M (a,0)(a>0),过点A,B分别作直线l1:x=﹣a的垂线,垂足依次为A1,B1,动点N 在l1上.(1)当a=1,且N为线段A1B1的中点时,证明:AN⊥BN;(2)记直线NA,NB,NM的斜率分别为k1,k2,k3,是否存在实数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,请说明理由.八.直线与双曲线的综合(共2小题)12.(2023•梅州二模)已知双曲线E:的左、右焦点分别为F1,F2,|F1F2|=2且双曲线E经过点.(1)求双曲线E的方程;(2)过点P(2,1)作动直线l,与双曲线的左、右支分别交于点M,N,在线段MN上取异于点M,N的点H,满足,求证:点H恒在一条定直线上.13.(2023•佛山二模)双曲线C:的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)M、N是C右支上的两动点,设直线AM、AN的斜率分别为k1、k2,若k1k2=﹣2,求点A到直线MN的距离d的取值范围.九.离散型随机变量的期望与方差(共2小题)14.(2023•梅州二模)元宵佳节,是民间最重要的民俗节日之一,我们梅州多地都会举行各种各样的民俗活动,如五华县河东镇的“迎灯”、丰顺县埔寨镇的“火龙”、大埔县百侯镇的“迎龙珠灯”等系列活动.在某庆祝活动现场,为了解观众对该活动的观感情况(“一般”或“激动”),现从该活动现场的观众中随机抽取200名,得到下表:一般激动总计男性90120女性25总计200(1)填补上面的2×2列联表,并依据小概率值α=0.1的独立性检验,能否认为性别与对该活动的观感程度有关?(2)该活动现场还举行了有奖促销活动,凡当天消费每满300元,可抽奖一次.抽奖方案是:从装有3个红球和3个白球(形状、大小、质地完全相同)的抽奖箱里一次性摸出2个球,若摸出2个红球,则可获得100元现金的返现;若摸出1个红球,则可获得50元现金的返现;若没摸出红球,则不能获得任何现金返现.若某观众当天消费600元,记该观众参加抽奖获得的返现金额为X,求随机变量X的分布列和数学期望.附:,其中n=a+b+c+d.α0.1000.0500.0100.001xα 2.706 3.841 6.63510.828 15.(2023•广州二模)某创业者计划在某旅游景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向此创业者对该景区附近五家“农家乐”跟踪调查了100天,这五家“农家乐的收费标准互不相同得到的统计数据如表,x为收费标准(单位:元/日),t 为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图x100150200300450t9065453020(1)若从以上五家“农家乐”中随机抽取两家深入调查,记ξ为“住率超过0.6的农家乐的个数,求ξ的概率分布列(2)z=lnx,由散点图判断=x+a与=z+哪个更合适于此模型(给出判断即可不必说明理由)?并根据你的判断结果求回归方程(,的结果精确到0.1)(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L=100×入住率收费标准x)=,=x,=240,=365000,x i y i=457,≈5.35,2≈28.57,≈144.24,zi y i≈12.72,e5≈150,e5.4≈220.广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-03解答题(提升题)2参考答案与试题解析一.数列的求和(共1小题)1.(2023•佛山二模)已知各项均为正数的等比数列{a n},其前n项和为S n,满足2S n=a n+2﹣6.(1)求数列{a n}的通项公式;(2)记b m为数列{S n}在区间(a m,a m+2)中最大的项,求数列{b n}的前n项和T n.【答案】(1)a n=3•2n﹣1;(2)T n=3•2n+2﹣12﹣3n.【解答】解:(1)设数列{a n}的公比为q,则q>0,当n=1时,有2S1=a3﹣6,当n=2时,有2S2=a4﹣6,两式相减得,2a2=a4﹣a3,即2=q2﹣q,解得q=2或﹣1(舍负),又2S1=a3﹣6,所以2a1=4a1﹣6,即a1=3,所以a n=3•2n﹣1.(2)由(1)知,S n==3•(2n﹣1),所以S n﹣a n=3•(2n﹣1)﹣3•2n﹣1=3•(2n﹣1﹣1)≥0,即S n≥a n,当且仅当n=1时,等号成立,S n﹣a n+1=3•(2n﹣1)﹣3•2n=﹣3<0,即S n<a n+1,所以a n≤S n<S n+1<a n+2<S n+2,即a m≤S m<S m+1<a m+2<S m+2,记b m为数列{S n}在区间(a m,a m+2)中最大的项,则b m=S m+1=3•(2m+1﹣1),所以b n=3•(2n+1﹣1)=3•2n+1﹣3,所以T n=3•(22+23+…+2n+1)﹣3n=3•﹣3n=3•2n+2﹣12﹣3n.二.利用导数研究函数的最值(共1小题)2.(2023•广州二模)已知定义在(0,+∞)上的函数.(1)若a∈R,讨论f(x)的单调性;(2)若a>0,且当x∈(0,+∞)时,不等式恒成立,求实数a的取值范围.【答案】(1)分类讨论,答案见解析;(2).【解答】解:(1)函数,x>0,求导得:,当a≥0时,f'(x)>0,函数f(x)在(0,+∞)上单调递增,当a<0时,由f'(x)>0得,由f'(x)<0得,则f(x)在上递增,在上递减,所以当a≥0时,函数f(x)的递增区间是(0,+∞);当a<0时,函数f(x)的递增区间是,递减区间是.(2)因为a>0,且当x∈(0,+∞)时,不等式恒成立,当0<x≤1时,∀a>0,恒成立,因此a>0,当x>1时,⇔2alne ax+ln (lne ax)≥2alnx+ln(lnx),令g(x)=2ax+lnx,原不等式等价于g(lne ax)≥g(lnx)恒成立,而,即函数g(x)在(1,+∞)上单调递增,因此∀x>1,lne ax≥lnx,即,令,,当1<x<e时,h'(x)>0,当x>e时,h'(x)<0,函数h(x)在(1,e)上单调递增,在(e,+∞)上单调递减,,因此,综上得,所以实数a的取值范围是.三.解三角形(共4小题)3.(2023•广州二模)记△ABC的内角A,B,C的对边分别为a,b,c,已知b cos A﹣a cos B =b﹣c.(1)求A;(2)若点D在BC边上,且CD=2BD,cos B=,求tan∠BAD.【答案】(1)A=;(2).【解答】解:(1)∵b cos A﹣a cos B=b﹣c,∴根据正弦定理可得sin B cos A﹣sin A cos B=sin B﹣sin C,∴sin B(cos A﹣1)=sin A cos B﹣sin(A+B),∴sin B(cos A﹣1)=﹣cos A sin B,又sin B>0,∴cos A﹣1=﹣cos A,∴2cos A=1,又A∈(0,π),∴A=;(2)设∠BAD=θ,又A=,则∠CAD=﹣θ,∵D在BC边上,且CD=2BD,∴S△ACD=2S△ABD,设|AD|=t,则,∴==,又A=,cos B=,∴sin B=,∴===,∴=,∴=,即tan∠BAD=.4.(2023•梅州二模)如图,在平面四边形ABCD中,∠BAC=∠ADC=90°,,AC =2,设∠CAD=θ.(1)当θ=45°时,求BD的长;(2)求BD的最大值.【答案】(1);(2)3.【解答】解:(1)在Rt△ACD中,.在△ABD中,因为,由余弦定理得,因此;(2)在Rt△ACD中,AD=AC cosθ=2cosθ,在△ABD中,因为,由余弦定理得:==,所以,所以当,即θ=时,BD最长,BD的最大值为.5.(2023•佛山二模)已知△ABC为锐角三角形,且cos A+sin B=(sin A+cos B).(1)若C=,求A;(2)已知点D在边AC上,且AD=BD=2,求CD的取值范围.【答案】(1)A=;(2)(1,2).【解答】解:(1)∵C=,又cos A+sin B=(sin A+cos B),∴cos A+sin(﹣A)=sin A+cos(﹣A),∴cos A+cos A+sin A=sin A+(cos A+sin A),∴,∴tan A=1,又A∈(0,π),∴A=;(2)∵cos A+sin B=(sin A+cos B),∴sin A﹣cos A=sin B﹣cos B,∴2sin(A﹣)=2sin(B﹣),∴A﹣=B﹣或A﹣+B﹣=π,∴A=B﹣或A+B=(舍),又AD=BD=2,∴∠A=∠ABD,∴∠CBD=,在△BCD中,由正弦定理可得,∴,∴|CD|=,又sin C=sin(﹣2B),又△ABC为锐角三角形,'∴,∴B∈(,),∴∈(,),∴sin C=sin(﹣2B)∈(,1),∴|CD|=∈(1,2).6.(2023•广州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若角A的平分线交BC于D且AD=2,求a的最小值.【答案】(1);(2).【解答】解:(1),即,即,由正弦定理得,B∈(0,π),sin B≠0,故,,,故,又,故,故;(2),设,,根据向量的平行四边形法则:,即,,又a2=b2+c2﹣bc=b2(1﹣x+x2),故,当且仅当x=1时等号成立,故a的最小值为.四.直线与平面所成的角(共2小题)7.(2023•广州二模)如图,在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=3,点D是BC 的中点,点E在AA1上,AD∥平面BC1E.(1)求证:平面BC1E⊥平面BB1C1C;(2)当三棱锥B1﹣BC1E的体积最大时,求直线AC与平面BC1E所成角的正弦值.【答案】(1)证明见解答;(2).【解答】解:(1)证明:可取CC1的中点M,连接DM,AM,又D为BC的中点,可得DM∥BC1,DM⊄平面BC1E,可得DM∥平面BC1E,又AD∥平面BC1E,AD∩DM=D,可得平面ADM∥平面BC1E,所以AM∥平面BC1E,又平面BC1E∩平面A1ACC1=C1E,可得AM∥C1E,即有E为AA1的中点,因为AB=AC,D为BC的中点,可得AD⊥BC,由直三棱柱ABC﹣A1B1C1中,B1B⊥底面ABC,可得B1B⊥AD,由BC∩B1B=B,可得AD⊥平面BB1C1C,取BC1的中点H,连接EH,可得EH∥AD,即有EH⊥平面BB1C1C,而EH⊂平面BC1E,可得平面BC1E⊥平面BB1C1C;(2)设BC=2a,可得AD=,三棱锥B1﹣BC1E的体积V=EH•=•×3×2a=a≤(a2+9﹣a2)=(当且仅当a=取得等号),可得当AB⊥AC时,三棱锥B1﹣BC1E的体积取得最大值.由于A1C1∥AC,可得直线AC与平面BC1E所成角即为直线A1C1与平面BC1E所成角.设A1到平面BC1E的距离为h,由BE=C1E==,BC1==3,可得=×3×=,所以=h•=h,又=×3××3×=,又=,解得h=,又A1C1=3,可得直线A1C1与平面BC1E所成角的正弦值为=,即有直线AC与平面BC1E所成角的正弦值为.8.(2023•广州二模)在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,底面ABCD是菱形,E是PD的中点,PA=PD,AB=2,∠ABC=60°.(1)证明:PB∥平面EAC.(2)若四棱锥P﹣ABCD的体积为,求直线EC与平面PAB所成角的正弦值.【答案】(1)证明详见解析,(2).【解答】解:(1)连接BD交AC于F,连接EF,因为四边形ABCD是菱形,所以F是BD的中点,又E是PD的中点,所以EF∥PB,因为EF⊂平面EAC,PB⊄平面EAC,所以PB∥平面EAC.(2)取AD的中点O,连接PO,则PO⊥AD,因为平面PAD⊥平面ABCD且交线为AD,PO⊂平面PAD,所以PO⊥平面ABCD.设PD=a,则,解得a=3.因为底面ABCD是菱形,∠ABC=60°,所以OC⊥AD,且.以O为坐标原点,以OC,OD,OP所在直线分别为x轴,轴,z轴建立空间直角坐标系,则,,,设平面的法向量为,则,故可设,则,所以直线EC与平面PAB所成角的正弦值为.五.二面角的平面角及求法(共1小题)9.(2023•深圳二模)在三棱柱ABC﹣A1B1C1中,AB=BC=2,∠ABC=,A1C1⊥A1B.(1)证明:A1A=A1C;(2)若A1A=2,BC1=,求平面A1CB1与平面BCC1B1夹角的余弦值.【答案】(1)证明过程请看解答;(2).【解答】(1)证明:取AC的中点O,连接OA1,OB,因为AB=BC,所以OB⊥AC,因为A1C1⊥A1B,A1C1∥AC,所以AC⊥A1B,又OB∩A1B=B,OB、A1B⊂平面A1BO,所以AC⊥平面A1BO,因为A1O⊂平面A1BO,所以AC⊥A1O,因为O为AC的中点,所以A1A=A1C.(2)解:因为AB=BC=2,∠ABC=,所以AC=A1C1=2,又A1C1⊥A1B,BC1=,所以A1B==,而OA1=OB=1,所以,即OA1⊥OB,所以OA1,OB,OC两两垂直,故以O为坐标原点,建立如图所示的空间直角坐标系,则A1(0,0,1),B1(1,,1),C(0,,0),B(1,0,0),所以=(1,,0),=(1,0,1),=(0,,1),设平面A 1CB 1的法向量为=(x ,y ,z ),则,即,令y =1,则x =﹣,z =,所以=(﹣,1,),同理可得,平面BCC 1B 1的法向量=(,1,﹣),设平面A 1CB 1与平面BCC 1B 1夹角为θ,则cos θ=|cos <,>|===,故平面A 1CB 1与平面BCC 1B 1夹角的余弦值为.六.点、线、面间的距离计算(共1小题)10.(2023•梅州二模)如图,正三棱柱ABC ﹣A 1B 1C 1中,AB ==2,点M 为A 1B 1的中点.(1)在棱BB 1上是否存在点Q ,使得AQ ⊥平面BC 1M ?若存在,求出的值;若不存在,请说明理由;(2)求点C 到平面BC 1M 的距离.【答案】(1)=7;(2).【解答】解:(1)在正三棱柱ABC ﹣A 1B 1C 1中,∵点M 为A 1B 1的中点.∴C1M⊥A1B1,又∵A1A⊥平面A1B1C1,∴A1A⊥C1M,面A1A∩A1B1=A1,∴C1M⊥平面AA1B1B,过点A作AQ⊥BM,AQ⊥C1M,且BM∩C1M=M,∴AQ⊥平面BC1M,即点Q为所要找的点,易得:△ABQ∽△BB1M,∴=,即有=,于是BQ=,∴B1Q=B1B﹣BQ=4﹣=,∴=7;(2)连接C与AB的中点N,易知CN∥平面BC1M,点C到平面BC1M的距离h C等于点N到平面BC1M的距离h N,又N为AB的中点,点N到平面BC1M的距离h N等于点A到平面BC1M的距离h A的一半,而由(1)知,当BQ=时,AQ⊥平面BC1M,设AQ∩BM=H,则h A=AH=AB cos∠BAQ=2×=,∴h C=h N=h A=.七.直线与抛物线的综合(共1小题)11.(2023•广州二模)已知直线l与抛物线C:y2=4x交于A,B两点,且与x轴交于点M (a,0)(a>0),过点A,B分别作直线l1:x=﹣a的垂线,垂足依次为A1,B1,动点N 在l1上.(1)当a=1,且N为线段A1B1的中点时,证明:AN⊥BN;(2)记直线NA,NB,NM的斜率分别为k1,k2,k3,是否存在实数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)λ=2.【解答】(1)证明:如图所示:当a=1时,M(1,0)恰为抛物线C:y2=4x的焦点.由抛物线的定义可得:|AM|=|AA1|,|BM|=|BB1|.取AB的中点D,连接DN,则DN为梯形ABB1A1的中位线,所以.因为D为AB的中点,所以,所以|DA|=|DN|.在△ADN中,由|DA|=|DN|可得:∠AND=∠NAD.因为DN为梯形ABB1A1的中位线,所以DN∥AA1,所以∠AND=∠A1AN,所以∠NAD=∠A1AN,同理可证:∠NBD=∠B1BN.在梯形ABB1A1中,∠A1AB+∠B1BA=180°,所以∠A1AN+∠NAD+∠DBN+∠NBB1=180°,所以,所以∠ANB=90°,即AN⊥BN.(2)解:假设存在实数λ,使得k1+k2=λk3.由直线l与抛物线C:y2=4x交于A,B两点,可设l:x=my+a.设A(x1,y1),B(x2,y2),则,消去x可得:y2﹣4my﹣4a=0,所以y1+y2=4m,y1y2=﹣4a.则=.而,所以,解得:λ=2.八.直线与双曲线的综合(共2小题)12.(2023•梅州二模)已知双曲线E:的左、右焦点分别为F1,F2,|F1F2|=2且双曲线E经过点.(1)求双曲线E的方程;(2)过点P(2,1)作动直线l,与双曲线的左、右支分别交于点M,N,在线段MN上取异于点M,N的点H,满足,求证:点H恒在一条定直线上.【答案】(1);(2)证明详见解析.【解答】解:(1)|F1F2|=2,则c=,,2a=|AF1|﹣|AF2|=,解得a =1,b2=c2﹣a2=2,故双曲线E的方程为;(2)证明:设H(x,y),M(x1,y1),N(x2,y2),则,,即①,,设=λ,则(λ≠1),即,故,④,将①②代入④,则⑤,将③代入⑤,则2[(1﹣λ2)2x﹣(1﹣λ2)]=(1﹣λ2)y,即4x﹣2=y,故点H恒在定直线4x﹣y﹣2=0.13.(2023•佛山二模)双曲线C:的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)M、N是C右支上的两动点,设直线AM、AN的斜率分别为k1、k2,若k1k2=﹣2,求点A到直线MN的距离d的取值范围.【答案】(1);(2)(,6].【解答】解:(1)根据题意可得∠BAD=90°,半焦距c=2,由AF=BF,可得a+c=,∴a2+2a=22﹣a2,解得a=1,∴b2=c2﹣a2=4﹣1=3,∴双曲线C的方程的方程为;(2)显然直线MN不可能与坐标轴平行,∴设直线MN的方程为x=my+n,联立,可得(3m2﹣1)y2+6mny+3(n2﹣1)=0,设M(x1,y1),N(x2,y2),则根据题意可得:,且,①,由k1k2=﹣2,可得y1y2+2(x1+1)(x2+1)=0,即y1y2+2(my1+n+1)(my2+n+1)=0,整理得②,将①代入②中可得3(n2﹣1)(2m2+1)﹣12m2n(n+1)+2(n+1)2(3m2﹣1)=0,化简可消去所有的含m的项,从而解得n=5或n=﹣1(舍去),∴直线MN的方程为x﹣my﹣5=0,∴d=,又MN都在双曲线的右支上,∴3m2﹣1<0,∴,∴,∴d=∈(,6],∴点A到直线MN的距离d的取值范围为(,6].九.离散型随机变量的期望与方差(共2小题)14.(2023•梅州二模)元宵佳节,是民间最重要的民俗节日之一,我们梅州多地都会举行各种各样的民俗活动,如五华县河东镇的“迎灯”、丰顺县埔寨镇的“火龙”、大埔县百侯镇的“迎龙珠灯”等系列活动.在某庆祝活动现场,为了解观众对该活动的观感情况(“一般”或“激动”),现从该活动现场的观众中随机抽取200名,得到下表:一般激动总计男性90120女性25总计200(1)填补上面的2×2列联表,并依据小概率值α=0.1的独立性检验,能否认为性别与对该活动的观感程度有关?(2)该活动现场还举行了有奖促销活动,凡当天消费每满300元,可抽奖一次.抽奖方案是:从装有3个红球和3个白球(形状、大小、质地完全相同)的抽奖箱里一次性摸出2个球,若摸出2个红球,则可获得100元现金的返现;若摸出1个红球,则可获得50元现金的返现;若没摸出红球,则不能获得任何现金返现.若某观众当天消费600元,记该观众参加抽奖获得的返现金额为X,求随机变量X的分布列和数学期望.附:,其中n=a+b+c+d.α0.1000.0500.0100.001xα 2.706 3.841 6.63510.828【答案】(1)2×2列联表见解析,该场活动活动的观感程度与性别无关;(2)分布列见解析,E(X)=100.【解答】解:(1)补全的2×2列联表如下:一般激动总计男性3090120女性255580总计55145200零假设为H0:性别与对活动的观感程度相互独立.根据表中数据,计算得到χ2==<1<2.706,根据小概率值α=0.1的独立性检验,没有充分证据推断H0不成立,因此我们可以认为H0成立,即认为对该场活动活动的观感程度与性别无关.(2)设一次摸球摸出2个红球的事件为A,摸出1个红球的事件为B,没摸出红球的事件为C,则P(A)==,P(B)==,P(C)==,由题意,X可取200,150,100,50,0,P(X=200)=×=,P(X=150)=2××=,P(X=100)=×+2××=,P(X=50)=2××=,P(X=0)=×=,所以X的分布列为:X200150100500P所以E(X)=200×+150×+100×+50×+0×=100.15.(2023•广州二模)某创业者计划在某旅游景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向此创业者对该景区附近五家“农家乐”跟踪调查了100天,这五家“农家乐的收费标准互不相同得到的统计数据如表,x为收费标准(单位:元/日),t 为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图x100150200300450t9065453020(1)若从以上五家“农家乐”中随机抽取两家深入调查,记ξ为“住率超过0.6的农家乐的个数,求ξ的概率分布列(2)z=lnx,由散点图判断=x+a与=z+哪个更合适于此模型(给出判断即可不必说明理由)?并根据你的判断结果求回归方程(,的结果精确到0.1)(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L=100×入住率收费标准x)=,=x,=240,=365000,x i y i=457,≈5.35,2≈28.57,≈144.24,zi y i≈12.72,e5≈150,e5.4≈220.【答案】见试题解答内容【解答】解:(1)ξ的所有可能取值为0,1,2则P(ξ=0)=∴ξ的分布列是ξ012P(2)由散点图可知=z+a更适合于此模型依题意,则==≈﹣0.47≈﹣0.5,==0.5+0.47×5.35≈3.0,∴所求的回归方程为==﹣0.5lnx+3.0.(3)依题意,L(x)=100(﹣0.5lnx+3.0)x=﹣50xlnx+300x,则L′(x)=﹣50lnx+250由L′(x)>0.得lnx<5,x<e5,由L′(x)<0,得lnx>5,x>e5∴L(x)在(0,e5)上递增:在(e5,+∞)上递减当x=e5≈150时,L(x)取到最大值∴当收费标准约为150(元/日)时,100天销售额L最大.。
广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-02填空题(提升题)一.抽象函数及其应用(共1小题)1.(2023•深圳二模)已知函数f(x)的定义域为R,若f(x+1)﹣2为奇函数,且f(1﹣x)=f(3+x),则f(2023)= .二.正弦函数的单调性(共1小题)2.(2023•湛江二模)若函数在上具有单调性,且为f(x)的一个零点,则f(x)在上单调递 (填增或减),函数y=f(x)﹣lgx的零点个数为 .三.函数的零点与方程根的关系(共1小题)3.(2023•高州市二模)已知函数,若存在实数k,使得方程f(x)=k有6个不同实根x1,x2,x3,x4,x5,x6,且x1<x2<x3<x4<x5<x6,则a的取值范围是 ;的值为 .四.根据实际问题选择函数类型(共1小题)4.(2023•茂名二模)修建栈道是提升旅游观光效果的一种常见手段.如图,某水库有一个半径为1百米的半圆形小岛,其圆心为C且直径MN平行坝面.坝面上点A满足AC⊥MN,且AC长度为3百米,为便于游客到小岛观光,打算从点A到小岛建三段栈道AB、BD与BE,水面上的点B在线段AC上,且BD、BE均与圆C相切,切点分别为D、E,其中栈道AB、BD、BE和小岛在同一个平面上.此外在半圆小岛上再修建栈道、以及MN,则需要修建的栈道总长度的最小值为 百米.五.利用导数研究曲线上某点切线方程(共2小题)5.(2023•梅州二模)已知函数f(x)=x2+alnx的图象在x=1处的切线在y轴上的截距为2,则实数a= .6.(2023•广东二模)已知f(x)=x3﹣x,若过点P(m,n)恰能作两条直线与曲线y=f (x)相切,且这两条切线关于直线x=m对称,则m的一个可能值为 .六.平面向量的基本定理(共1小题)7.(2023•广州二模)在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和DC上,且,当λ= 时,则有最小值为 .七.解三角形(共1小题)8.(2023•深圳二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的B底线宽AB =72码,球门宽EF=8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P,使得∠EPF最大,这时候点P就是最佳射门位置.当攻方球员甲位于边线上的点O处(OA=AB,OA⊥AB)时,根据场上形势判断,有、两条进攻线路可供选择.若选择线路,则甲带球 码时,APO到达最佳射门位置;若选择线路,则甲带球 码时,到达最佳射门位置.八.棱柱、棱锥、棱台的体积(共1小题)9.(2023•广东二模)已知直四棱柱ABCD﹣A1B1C1D1的棱长均为2,∠BAD=60°,除面ABCD外,该四棱柱其余各个面的中心分别为点E,F,G,H,Ⅰ,则由点E,F,G,H,Ⅰ构成的四棱锥的体积为 .九.球的体积和表面积(共1小题)10.(2023•韶关二模)将一个圆心角为、面积为2π的扇形卷成一个圆锥,则此圆锥内半径最大的球的表面积为 .一十.点、线、面间的距离计算(共1小题)11.(2023•高州市二模)已知球O与正四面体A﹣BCD各棱相切,且与平面α相切,若AB =1,则正四面体A﹣BCD表面上的点到平面α距离的最大值为 .一十一.轨迹方程(共1小题)12.(2023•广州二模)在平面直角坐标系xOy中,定义d(A,B)=|x1﹣x2|+|y1﹣y2|为A (x1,y1),B(x2,y2)两点之间的“折线距离”.已知点Q(1,0),动点P满足d(Q,P)=,点M是曲线y=上任意一点,则点P的轨迹所围成图形的面积为 ,d(P,M)的最小值为 .一十二.椭圆的性质(共3小题)13.(2023•梅州二模)如图,一个装有某种液体的圆柱形容器固定在墙面和地面的角落内,容器与地面所成的角为30°,液面呈椭圆形状,则该椭圆的离心率为 .14.(2023•汕头二模)阿波罗尼奥斯在其著作《圆锥曲线论》中提出:过椭圆上任意一点P(x0,y0)的切线方程为.若已知△ABC内接于椭圆E:,且坐标原点O为△ABC的重心,过A,B,C分别作椭圆E的切线,切线分别相交于点D,E,F,则= .15.(2023•佛山二模)已知F1、F2分别为椭圆的左、右焦点,P是过椭圆右顶点且与长轴垂直的直线上的动点,则sin∠F1PF2的最大值为 .一十三.抛物线的性质(共1小题)16.(2023•韶关二模)已知抛物线C:y2=4x的焦点为F,过F且斜率为﹣1的直线l交抛物线C于A,B两点,则以线段AB为直径的圆D的方程为 ;若圆D上存在两点P,Q,在圆T:(x+2)2+(y+7)2=a2(a>0)上存在一点M,使得∠PMQ =90°,则实数a的取值范围为 .一十四.古典概型及其概率计算公式(共1小题)17.(2023•佛山二模)有n个编号分别为1,2,…,n的盒子,第1个盒子中有2个白球1个黑球,其余盒子中均为1个白球1个黑球,现从第1个盒子中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第n个盒子中取到白球的概率是 .一十五.离散型随机变量的期望与方差(共1小题)18.(2023•汕头二模)某单位有10000名职工,想通过验血的方法筛查乙肝病毒携带者,假设携带病毒的人占5%,如果对每个人的血样逐一化验,就需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验,如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.按照这种化验方法,平均每个人需要化验 次.(结果保留四位有效数字)(0.955≈0.7738,0.956≈0.735,0.957≈0.6983).一十六.正态分布曲线的特点及曲线所表示的意义(共1小题)19.(2023•佛山二模)佛山被誉为“南国陶都”,拥有上千年的制陶史,佛山瓷砖享誉海内外.某企业瓷砖生产线上生产的瓷砖某项指标X~N(800,σ2),且P(X<801)=0.6,现从该生产线上随机抽取10片瓷砖,记Y表示800≤X<801的瓷砖片数,则E(Y)= .一十七.归纳推理(共1小题)20.(2023•广州二模)如图是瑞典数学家科赫在1904年构造的能够描述雪花形状的图案.图形的作法为:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图①)的边长为1,将图①,图②,图③,图④中的图形周长依次记为C1,C2,C3,C4,则= .广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-02填空题(提升题)参考答案与试题解析一.抽象函数及其应用(共1小题)1.(2023•深圳二模)已知函数f(x)的定义域为R,若f(x+1)﹣2为奇函数,且f(1﹣x)=f(3+x),则f(2023)= 2 .【答案】2.【解答】解:由于f(x+1)﹣2为奇函数,则f(x+1)﹣2=﹣[f(﹣x+1)﹣2],即f(x+1)+f(1﹣x)=4,所以函数f(x)关于点(1,2)对称,则f(1)=2,又f(1﹣x)=f(3+x),则f(x+1)+f(x+3)=4,则f(x)+f(x+2)=4,则f(x+2)+f(x+4)=4,所以f(x)=f(x+4),则函数f(x)的周期为4,所以f(2023)=f(505×4+3)=f(3)=f(1)=2.故答案为:2.二.正弦函数的单调性(共1小题)2.(2023•湛江二模)若函数在上具有单调性,且为f(x)的一个零点,则f(x)在上单调递 增 (填增或减),函数y=f(x)﹣lgx的零点个数为 9个 .【答案】增;9个.【解答】解:∵函数在上具有单调性,∴﹣(﹣)≤T,即≤,∴0<ω≤,又∵f()=sin(ω+)=0,∴ω+=kπ(k∈Z),即ω=﹣,k∈Z,只有k=1时,ω=3符合要求,此时f(x)=sin(3x+),当x∈时,3x+∈(﹣,),∴f(x)在上单调递增,作出函数y=f(x)与y=lgx的图象,由图可知,这两个函数的图象共有9个交点,∴函数y=f(x)﹣lgx的零点个数为9个.故答案为:增;9个.三.函数的零点与方程根的关系(共1小题)3.(2023•高州市二模)已知函数,若存在实数k,使得方程f(x)=k有6个不同实根x1,x2,x3,x4,x5,x6,且x1<x2<x3<x4<x5<x6,则a的取值范围是 (2,+∞) ;的值为 2 .【答案】(2,+∞);2.【解答】解:当x∈(﹣∞,0)时,,当且仅当即x=﹣1时取等号,且根据对勾函数可得f(x)在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,当x∈(0,e﹣a]时,lnx∈(﹣∞,﹣a],|lnx|=﹣lnx∈[a,+∞),则|lnx|﹣a=﹣lnx﹣a∈[0,+∞),所以f(x)=﹣lnx﹣a∈[0,+∞);当x∈(e﹣a,1]时,lnx∈(﹣a,0],|lnx|=﹣lnx∈[0,a),则|lnx|﹣a=﹣lnx﹣a∈[﹣a,0),所以f(x)=lnx+a∈(0,a];当x∈(1,e a]时,lnx∈(0,a],|lnx|=lnx∈(0,a],则|lnx|﹣a=lnx﹣a∈(﹣a,0],所以f(x)=a﹣lnx∈[0,a);当x∈(e a,+∞)时,lnx∈(a,+∞),|lnx|=lnx∈(a,+∞),则|lnx|﹣a=lnx﹣a∈(0,+∞),所以f(x)=lnx﹣a∈(0,+∞),所以f(x)的大致图象如图所示,当a>2时,存在实数k,使得方程f(x)=k有6个不同实根,故a的取值范围是(2,+∞),由题意得x1,x2是方程的两个根,即方程x2+kx+1=0的两个根,所以x1x2=1,x1x2=1,﹣lnx3﹣a=lnx6﹣a=k,所以lnx3+lnx6=ln(x3x6)=0,解得x3x6=1,lnx4+a=a﹣lnx5=k,lnx4+lnx5=ln(x4x5)=0,解得x4x5=1所以,故答案为:(2,+∞);2.四.根据实际问题选择函数类型(共1小题)4.(2023•茂名二模)修建栈道是提升旅游观光效果的一种常见手段.如图,某水库有一个半径为1百米的半圆形小岛,其圆心为C且直径MN平行坝面.坝面上点A满足AC⊥MN,且AC长度为3百米,为便于游客到小岛观光,打算从点A到小岛建三段栈道AB、BD与BE,水面上的点B在线段AC上,且BD、BE均与圆C相切,切点分别为D、E,其中栈道AB、BD、BE和小岛在同一个平面上.此外在半圆小岛上再修建栈道、以及MN,则需要修建的栈道总长度的最小值为 +5 百米.【答案】+5.【解答】解:连接CD,CE,由半圆半径为1得:CD=CE=1,由对称性,设∠CBE=∠CBD=θ,又CD⊥BD,CE⊥BE,所以BE=BD==,BC==,易知∠MCE=∠NCD=θ,所以,的长为θ,又AC=3,故AB=AC﹣BC=3﹣∈(0,2),故sinθ∈(,1),令sinθ0=,且θ0∈(0,),则f(θ)=5﹣++2θ,θ∈(θ0,),所以f′(θ)=,θ(θ0,)(,)f′(θ)﹣0+f(θ)单调递减极小值单调递增所以栈道总长度最小值f(θ)min=f()=+5.故答案为:+5.五.利用导数研究曲线上某点切线方程(共2小题)5.(2023•梅州二模)已知函数f(x)=x2+alnx的图象在x=1处的切线在y轴上的截距为2,则实数a= ﹣3 .【答案】﹣3.【解答】解:由f(x)=x2+alnx,得f′(x)=2x+,则f′(1)=2+a,又f(1)=1,∴函数f(x)=x2+alnx的图象在x=1处的切线方程为y﹣1=(2+a)(x﹣1),取x=0,可得y=﹣2﹣a+1=﹣a﹣1=2,可得a=﹣3.故答案为:﹣3.6.(2023•广东二模)已知f(x)=x3﹣x,若过点P(m,n)恰能作两条直线与曲线y=f (x)相切,且这两条切线关于直线x=m对称,则m的一个可能值为 (或或或) .【答案】(或或或).【解答】解:设切点坐标为(t,t3﹣t),因为f(x)=x3﹣x,则f'(x)=3x2﹣1,切线斜率为f'(t)=3t2﹣1,所以,曲线y=f(x)在x=t处的切线方程为y﹣(t3﹣t)=(3t2﹣1)(x﹣t),将点P的坐标代入切线方程可得2t3﹣3mt2+m+n=0,设过点P且与曲线y=f(x)相切的切线的切点的横坐标分别为x1、x2,且x1≠x2,因为这两条切线关于直线x=m对称,则,所以,易知x1、x2关于t的方程2t3﹣3mt2+m+n=0的两个根,设该方程的第三个根为x3,则2t3﹣3mt2+m+n=2(t﹣x1)(t﹣x2)(t﹣x3),则,所以,因为过点P(m,n)恰能作两条直线与曲线y=f(x)相切,则关于t的方程2t3﹣3mt2+m+n=0只有两个不等的实根,不妨设x3=x1,则,若x1=0,则,可得,解得;若2x2+x1=0,则x1=﹣2x2,所以,,可得,x1=m,所以,解得.综上所述,或.故答案为:(或或或).六.平面向量的基本定理(共1小题)7.(2023•广州二模)在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和DC上,且,当λ= 时,则有最小值为 .【答案】;.【解答】解:在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,则,又,则===(1﹣),,则=+4λ+4()=,又=,当且仅当,即时取等号,即当λ=时,则有最小值为,故答案为:;.七.解三角形(共1小题)8.(2023•深圳二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的B底线宽AB =72码,球门宽EF=8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P,使得∠EPF最大,这时候点P就是最佳射门位置.当攻方球员甲位于边线上的点O处(OA=AB,OA⊥AB)时,根据场上形势判断,有、两条进攻线路可供选择.若选择线路,则甲带球 72﹣16 码时,APO到达最佳射门位置;若选择线路,则甲带球 72﹣16 码时,到达最佳射门位置.【答案】72﹣16;72﹣16.【解答】解:若选择线路,设AP=t,其中0<t≤72,AE=32,AF=32+8=40,则tan∠APE==,tan∠APF==,所以,tan∠EPF=tan(∠APF﹣∠APE)====≤=,当且仅当t=时,即当t=16时,等号成立,此时OP=OA﹣AP=72﹣16,所以,若选择线路,则甲带球72﹣16码时,APO到达最佳射门位置;若选择线路,以线段EF的中点N为坐标原点,、的方向分别为x、y轴的正方向建立如下图所示的空间直角坐标系,则B(﹣36,0)、O(36,72)、F(﹣4,0)、E(4,0),k OB==1,直线OB的方程为y=x+36,设点P(x,x+36),其中﹣36<x≤36,tan∠AFP=k PF=,tan∠AEP=k PE=,所以,tan∠EPF=tan(∠AEP﹣∠AFP)====,令m=x+36∈(0,72],则x=m﹣36,所以x+36+=m+=2m+﹣72≥2﹣72=32﹣72,当且仅当2m=时,即当m=8,即当x=8﹣36时,等号成立,所以,tan∠EPF=≤=,当且仅当x=8﹣36时,等号成立,此时,|OP|=|36﹣(8﹣36)|=72﹣16,所以,若选择线路,则甲带球72﹣16码时,到达最佳射门位置,故答案为:72﹣16;72﹣16.八.棱柱、棱锥、棱台的体积(共1小题)9.(2023•广东二模)已知直四棱柱ABCD﹣A1B1C1D1的棱长均为2,∠BAD=60°,除面ABCD外,该四棱柱其余各个面的中心分别为点E,F,G,H,Ⅰ,则由点E,F,G,H,Ⅰ构成的四棱锥的体积为 .【答案】.【解答】解:连接AC,BD,由题意可得,分别过E,F,G,H作底面ABCD的垂线,垂足分别为E1,F1,G1,H1,可得E1,F1,G1,H1分别为AB,BC,CD,AD的中点,连接E1F1,F1G1,G1H1,H1E1,可得,由题意可得:EFGH﹣E1F1G1H1为四棱柱,则,四棱锥的高为直四棱柱ABCD﹣A1B1C1D1的高的一半,即为1,所以四棱锥的体积.故答案为:.九.球的体积和表面积(共1小题)10.(2023•韶关二模)将一个圆心角为、面积为2π的扇形卷成一个圆锥,则此圆锥内半径最大的球的表面积为 π .【答案】π.【解答】解:设圆锥底面半径为R,母线长为L,则,解得R=,L=,易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中,,且点M为BC边上的中点,设内切圆的圆心为O,由于,故S△ABC=××=,设内切圆半径为r,则:S△ABC=S△AOB+S△BOC+S△AOC=AB•r×2+BC•r,解得:,其表面积:.故答案为:π.一十.点、线、面间的距离计算(共1小题)11.(2023•高州市二模)已知球O与正四面体A﹣BCD各棱相切,且与平面α相切,若AB =1,则正四面体A﹣BCD表面上的点到平面α距离的最大值为 .【答案】.【解答】解:将正四面体A﹣BCD补形成正方体,因为球O与正四面体A﹣BCD各棱相切,所以球O即为正方体的内切球,易知,球心O为正方体体对角线的中点,记正四面体A﹣BCD表面上的点到球心O的距离为d,球的半径为r,则正四面体A﹣BCD表面上的点到平面α距离的最大值即为d+r的最大值,设正方体棱长为a,则a2+a2=1,解得,所以,易知,,所以正四面体A﹣BCD表面上的点到平面α距离的最大值为.故答案为:.一十一.轨迹方程(共1小题)12.(2023•广州二模)在平面直角坐标系xOy中,定义d(A,B)=|x1﹣x2|+|y1﹣y2|为A (x1,y1),B(x2,y2)两点之间的“折线距离”.已知点Q(1,0),动点P满足d(Q,P)=,点M是曲线y=上任意一点,则点P的轨迹所围成图形的面积为 ,d(P,M)的最小值为 (﹣1) .【答案】;(﹣1).【解答】解:设P(x,y),d(Q,P)=|x﹣1|+|y|=,当x≥1,y≥0时,则x﹣1+y=,即x+y﹣=0,当x≥1,y<0时,则x﹣1﹣y=,即x﹣y﹣=0,当x<1,y<0时,则1﹣x﹣y=,即x+y﹣=0,当x<1,y≥0时,则1﹣x+y=,即x﹣y﹣=0,故点P的轨迹所围成图形如下图阴影部分四边形ABCD的面积:则S=×××4=,如下图,设P(x0,y0),M(x1,y1),又求d(P,M)的最小值,显然x1>x0,y1>y0,d(P,M)=|x1﹣x0|+|y1﹣y0|=x1﹣x0+y1﹣y0=x1+y1﹣(x0+y0),求d(P,M)的最小值,即x1+y1的最小值,x0+y0的最大值,又(x0+y0)=,下面求x1+y1的最小值,令y=x1+y1=x1+,y'=1﹣=0,即x1=,令y'>0,解得:x1>,令y'<0,解得:x1<,所以y在(﹣∞,)上单调递减,在(,+∞)上单调递增,所以x1=时,y有最小值,且y min=,所以d(P,M)min=﹣=(﹣1).故答案为:;(﹣1).一十二.椭圆的性质(共3小题)13.(2023•梅州二模)如图,一个装有某种液体的圆柱形容器固定在墙面和地面的角落内,容器与地面所成的角为30°,液面呈椭圆形状,则该椭圆的离心率为 .【答案】.【解答】解:设圆柱的底面半径为r,因为一个装有某种液体的圆柱形容器固定在墙面和地面的角落内,容器与地面所成的角为30°,液面呈椭圆形状,则2b=2r,,即,因此该椭圆的离心率为.故答案为:.14.(2023•汕头二模)阿波罗尼奥斯在其著作《圆锥曲线论》中提出:过椭圆上任意一点P(x0,y0)的切线方程为.若已知△ABC内接于椭圆E:,且坐标原点O为△ABC的重心,过A,B,C分别作椭圆E的切线,切线分别相交于点D,E,F,则= 4 .【答案】4.【解答】解:设A(x1,y1)、B(x2,y2)、C(x3,y3),由中点坐标公式可得、、,∵O为△ABC的重心,∴,,,∴x1y3﹣x3y1=x3y2﹣x2y3=x2y1﹣x1y2,由题意可知,过A,B,C切线分别为,,,∴,,,∴,同理,即O也是△DEF的重心,又∵,,,∴,,,∴,同理可得k OE=k OB,k OF=k OA,∴D,O,C、E,O,B、F,O,A共线,综上,C,B,A分别是EF,DF,DE的中点,则.故答案为:4.15.(2023•佛山二模)已知F1、F2分别为椭圆的左、右焦点,P是过椭圆右顶点且与长轴垂直的直线上的动点,则sin∠F1PF2的最大值为 .【答案】.【解答】解:由椭圆的方程可知右顶点为M(2,0),左右焦点F1、F2的坐标为(﹣1,0),(1,0),设P(2,t)为过椭圆右顶点且与长轴垂直的直线上的动点,(不妨设t>0),tan∠F1PF2=tan(∠F1PM﹣∠F2PM)====≤=,当且仅当t=,即t=时取等号,∵0≤∠F1PF2<,∴0≤∠F1PF2≤,∴sin∠F1PF2的最大值为.故答案为:.一十三.抛物线的性质(共1小题)16.(2023•韶关二模)已知抛物线C:y2=4x的焦点为F,过F且斜率为﹣1的直线l交抛物线C于A,B两点,则以线段AB为直径的圆D的方程为 (x﹣3)2+(y+2)2=16 ;若圆D上存在两点P,Q,在圆T:(x+2)2+(y+7)2=a2(a>0)上存在一点M,使得∠PMQ=90°,则实数a的取值范围为 [,9] .【答案】(x﹣3)²+(y+2)²=16,[,9].【解答】解:过抛物线C:y2=4x的焦点为F(1,0)且斜率为﹣1的直线l为y=﹣x+1,由消去x,得x2﹣6x+1=0,所以AB的中点为D(3,﹣2),|AB|=x1+x2+p,所以以线段AB为直径的圆D的半径r=4,方程为(x﹣3)²+(y+2)²=16,对圆D内任意一点M,必可作相互垂直的两直线相交,故存在圆D上两点P,Q,使∠PMQ=90°;对圆D外任意一点M,P,Q是圆D上两点.当MP,MQ与圆D相切时,∠PMQ最大,此时DPMQ为柜形,T:(x﹣a)2+y2=1上存在一点M,使得∠PMQ=90°,等价于以D为因心以为半径的圆与圆T:(x+2)2+(y+7)2=a2(a>0)在公共点,所以,解得,所以实数a的取值范围为[,9].故答案为:(x﹣3)²+(y+2)²=16,[,9].一十四.古典概型及其概率计算公式(共1小题)17.(2023•佛山二模)有n个编号分别为1,2,…,n的盒子,第1个盒子中有2个白球1个黑球,其余盒子中均为1个白球1个黑球,现从第1个盒子中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第n个盒子中取到白球的概率是 .【答案】;.【解答】解:记事件A i表示从第i(i=1,2,•,n)个盒子里取出白球,则P(A1)=,P()=,P(A2)=P(A1A2)+P()=P(A1)P(A2|A1)+P()P(A2|)==,P(A 3)=P(A2)P(A3|A2)+P()P(A3|)==,P(A 4)=P(A3)P(A4|A3)+P()P(A4|)=,进而得P(A n)=,P(A n)﹣=[P(A n﹣1)﹣],又P(A1)﹣=,P(A2)﹣=,P(A2)﹣=[P(A1)﹣],∴{P(A n)﹣}是首项为,公比为的等比数列,∴P(A n)﹣==,∴P(A n)=.故答案为:;.一十五.离散型随机变量的期望与方差(共1小题)18.(2023•汕头二模)某单位有10000名职工,想通过验血的方法筛查乙肝病毒携带者,假设携带病毒的人占5%,如果对每个人的血样逐一化验,就需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验,如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.按照这种化验方法,平均每个人需要化验 0.4262 次.(结果保留四位有效数字)(0.955≈0.7738,0.956≈0.735,0.957≈0.6983).【答案】0.4262.【解答】解:设每个人需要的化验次数为X,若混合血样呈阴性,则X=;若混合血样呈阳性,则X=;因此,X的分布列为P(X=)=0.955,P(X=)=1﹣0.955,所以E(X)=≈0.4262,说明每5个人一组,平均每个人需要化验0.4262次.故答案为:0.4262.一十六.正态分布曲线的特点及曲线所表示的意义(共1小题)19.(2023•佛山二模)佛山被誉为“南国陶都”,拥有上千年的制陶史,佛山瓷砖享誉海内外.某企业瓷砖生产线上生产的瓷砖某项指标X~N(800,σ2),且P(X<801)=0.6,现从该生产线上随机抽取10片瓷砖,记Y表示800≤X<801的瓷砖片数,则E(Y)= 1 .【答案】1.【解答】解:由题意,X~N(800,σ2),所以正态曲线关于直线X=800对称,所以P(X<800)=0.5,因为P(X<801)=P(X<800)+P(800≤X<801)=0.6,所以P(800≤X<801)=0.6﹣0.5=0.1,由题意,Y~B(10,0.1),所以E(Y)=10×0.1=1.故答案为:1.一十七.归纳推理(共1小题)20.(2023•广州二模)如图是瑞典数学家科赫在1904年构造的能够描述雪花形状的图案.图形的作法为:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图①)的边长为1,将图①,图②,图③,图④中的图形周长依次记为C1,C2,C3,C4,则= .【答案】.【解答】解:观察图形知,各个图形的周长依次排成一列构成数列{∁n},从第二个图形开始,每一个图形的边数是相邻前一个图形的4倍,边长是相邻前一个图形的,因此从第二个图形开始,每一个图形的周长是相邻前一个图形周长的,即有,因此数列{∁n}是首项C1=3,公比为的等比数列,所以,,故答案为:.。
新课改高三高考数学小题专项仿真模拟训练一(含答案)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数y =2x +1的图象是( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556 B.-6556 C.-6516 D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( )A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B 二、13.(21,1) 14.6 15. 21新课改高考数学小题专项仿真模拟训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量外,与向量共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2-312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203 B . 103C .201 D . 101EFDOC BA5.抛物线y2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a,b),向量n⊥m,且|n|=|m|,则n的坐标可以为()A.(a,-b)B.(-a,b)C.(b,-a)D.(-b,-a)7. 如果S={x|x=2n+1,n∈Z},T={x|x=4n±1,n∈Z},那么A.S TB.T SC.S=TD.S≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种 B.48种 C.72种 D.96种9.已知直线l、m,平面α、β,且l⊥α,m β.给出四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上递增,则实数a的取值范围是()A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)。
高考数学小题专项训练(共40套)高考小题训练集 三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. △ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556B.-6556C.-6516D. 65162. 函数y =2x +1的图象是 ( )3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21 三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种EF DOC BA9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
“12+4”综合限时练3对应学生用书P133(满分80分,限时45分钟)一、选择题:本大题共12小题,每个小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4},若A={1,3},B={3},则(∁U A)∩(∁U B)等于() A.{1,2} B.{1,4}C.{2,3} D.{2,4}解析根据题意得∁U A={2,4},∁U B={1,2,4},故(∁U A)∩(∁U B)={2,4}.答案 D2.(2018·陕西质检二)已知数列{a n}是等差数列,a1=2,其中公差d≠0.若a5是a3和a8的等比中项,则S18=()A.398 B.388C.189 D.199解析由于a1=2,则a3=2+2d,a5=2+4d,a8=2+7d,依题意有a25=a3·a8,即(2+4d)2=(2+2d)·(2+7d),且d≠0,所以d=1,所以S18=18a1+18×172d=18×2+18×172×1=189.答案 C3.设复数z=1-2i(i是虚数单位),则|z·z+z|的值为()A.3 2 B.2 3C.2 2 D.4 2解析z·z+z=(1-2i)(1+2i)+1+2i=4+2i,|z·z+z|=3 2. 答案 A4.(2019·安徽江淮名校联考)已知函数f(x)=1e x+1-12,则f(x)是()A.奇函数,且在R上是增函数B.偶函数,且在(0,+∞)上是增函数C.奇函数,且在R上是减函数D.偶函数,且在(0,+∞)上是减函数解析本题考查函数奇偶性和单调性的判断.由函数解析式可知函数的定义域为R,关于原点对称,f(-x)=1e-x+1-12=e xe x+1-12=e x+1-1e x+1-12=12-1e x+1=-f(x),所以f(x)是奇函数.又函数y=e x+1是增函数,可知函数f(x)=1e x+1-1 2是减函数.故选C.答案 C5.2018年3月7日《科学网》刊登“动物可以自我驯化”的文章表明:关于野生小鼠的最新研究,它们在几乎没有任何人类影响的情况下也能表现出进化的迹象——皮毛上白色的斑块以及短鼻子.为了观察野生小鼠的这种表征,从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为()A.14 B.13C.23 D.34解析分别设一对白色斑块的野生小鼠为A,a,另一对短鼻子野生小鼠为B,b,从2对野生小鼠中不放回地随机拿出2只,所求基本事件总数为4×3=12,拿出的野生小鼠是同一表征的事件为(A,a),(a,A),(B,b),(b,B),共4种.所以拿出的野生小鼠不是同一表征的概率为1-412=2 3.答案 C6.如图是一个程序框图,若输入n的值是13,输出S的值是46,则a的取值范围是()A.9≤a<10B.9<a≤10C.10<a≤11 D.8<a≤9解析依次运行程序框图,结果如下:S=13,n=12;S=25,n=11;S=36,n=10;S=46,n=9,此时退出循环,所以a的取值范围是9<a≤10.答案 B7.设双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为() A.2 B. 2C.2 2 D.4解析因为双曲线C:x2a2-y2b2=1的两条渐近线互相垂直,所以渐近线方程为y=±x,所以a=b.因为顶点到一条渐近线的距离为1,所以a12+12=1,即22a=1,所以a=b=2,双曲线C的方程为x22-y22=1,所以双曲线的一个焦点到一条渐近线的距离为b= 2.答案 B8.(2018·洛阳联考)已知函数f(x)=sin(sin x)+cos(sin x),x∈R,则下列说法正确的是( )A .函数f (x )是周期函数且最小正周期为πB .函数f (x )是奇函数C .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为[1,2]D .函数f (x )在⎣⎢⎡⎦⎥⎤π4,π2上是增函数解析 f (x )=sin(sin x )+cos(sin x )=2sin ⎝ ⎛⎭⎪⎫sin x +π4,因为f (π+x )=2sin ⎣⎢⎡⎦⎥⎤sin (x +π)+π4=2sin ⎝ ⎛⎭⎪⎫-sin x +π4≠f (x ), 所以π不是函数f (x )的最小正周期,故A 错误; f (-x )=2sin ⎣⎢⎡⎦⎥⎤sin (-x )+π4=2sin ⎝ ⎛⎭⎪⎫-sin x +π4≠-f (x ),故B 错误;当x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x ∈[0,1],sin x +π4∈⎣⎢⎡⎦⎥⎤π4,π4+1,所以sin ⎝ ⎛⎭⎪⎫sin x +π4∈⎣⎢⎡⎦⎥⎤22,1,则2sin ⎝ ⎛⎭⎪⎫sin x +π4∈[1,2],故C 正确;当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,sin x ∈⎣⎢⎡⎦⎥⎤22,1,sin x +π4∈⎝ ⎛⎭⎪⎫22+π4,1+π4,而π2∈⎝ ⎛⎭⎪⎫22+π4,1+π4,所以函数f (x )在⎣⎢⎡⎦⎥⎤π4,π2上不是单调函数,故D 错误.故选C.答案 C9.如图,在△ABC 中,AN →=14NC →,P 是直线BN 上的一点,若AP →=mAB →+25AC →,则实数m 的值为( )A .-4 B.-1 C .1D.4解析 由题意,设BP →=nBN →,则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+n ⎝ ⎛⎭⎪⎫14NC →-AB →=AB →+n ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-n )AB →+n 5AC →,又∵AP →=mAB →+25AC →,∴m =1-n ,n 5=25. 解得n =2,m =-1. 答案 B10.已知曲线y =x 4+ax 2+1在点(-1,f (-1))处切线的斜率为8,则f (-1)等于( )A .7 B.-4 C .-7D.4解析 ∵y ′=4x 3+2ax ,∴-4-2a =8, ∴a =-6,∴f (-1)=1+a +1=-4. 答案 B11.(2018·山西六校联考四)已知倾斜角为135°的直线l 交双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)于A ,B 两点.若线段AB 的中点为P (2,-1),则C 的离心率是( )A. 3B. 2C.62D.52解析 设A (x 1,y 1),B (x 2,y 2),∵AB 的中点为P (2,-1), ∴⎩⎪⎨⎪⎧x 1+x 2=4,y 1+y 2=-2,又⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,两式相减得1a 2(x 1+x 2)(x 1-x 2)-1b 2(y 1+y 2)(y 1-y 2)=0,即4a 2(x 1-x 2)+2b 2(y 1-y 2)=0,∴k =y 1-y 2x 1-x 2=-2b 2a 2=-1,解得a =2b ,∴e =ca =c 2a 2=a 2+b 2a 2=62,故选C.答案 C12.已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2,sin ⎝ ⎛⎭⎪⎫π4x ,2≤x ≤10,若存在实数x 1,x 2,x 3,x 4满足x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则(x 3-2)(x 4-2)x 1x 2的取值范围是( )A .(0,12) B.(0,16) C .(9,21)D.(15,25)解析 函数的图像如图所示,∵f (x 1)=f (x 2),∴-log 2x 1=log 2x 2, ∴log 2(x 1x 2)=0,∴x 1x 2=1, ∵f (x 3)=f (x 4),由函数对称性可知, x 3+x 4=12,2<x 3<x 4<10, ∴(x 3-2)(x 4-2)x 1x2=x 3x 4-2(x 3+x 4)+4=x 3x 4-20=x 3(12-x 3)-20=-(x 3-6)2+16, ∵2<x 3<4,∴(x 3-2)(x 4-2)x 1x2的取值范围是(0,12).答案 A二、填空题:本大题共4小题,每个小题5分,共20分.13.已知a =(1,2m -1),b =(2-m ,-2),若向量a ∥b ,则实数m 的值为________.解析 因为向量a ∥b ,所以(2m -1)(2-m )=-2,所以m =0或m =52. 答案 0或5214.已知函数f (x )=x 3+sin x ,若α∈[0,π],β∈⎣⎢⎡⎦⎥⎤-π4,π4,且f ⎝ ⎛⎭⎪⎫π2-α=f (2β),则cos ⎝ ⎛⎭⎪⎫α2+β=________.解析 α∈[0,π],π2-α∈⎣⎢⎡⎦⎥⎤-π2,π2,β∈⎣⎢⎡⎦⎥⎤-π4,π4,2β∈⎣⎢⎡⎦⎥⎤-π2,π2,f (x )=x 3+sin x 为奇函数,又f ′(x )=3x 2+cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,f ′(x )=3x 2+cos x ≥0,故x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,f (x )=x 3+sin x 单调递增.由于f ⎝ ⎛⎭⎪⎫π2-α=f (2β),从而π2-α=2β,即α+2β=π2,因此cos ⎝ ⎛⎭⎪⎫α2+β=cos π4=22.答案 2215.已知一个三棱柱,其底面是正三角形,且侧棱与底面垂直,一个体积为4π3的球体与棱柱的所有面均相切,那么这个三棱柱的表面积是________.解析 根据已知可得球的半径等于1,故三棱柱的高等于2,底面三角形内切圆的半径等于1,即底面三角形的高等于3,边长等于23,所以这个三棱柱的表面积等于3×23×2+2×12×23×3=18 3.答案 18 316.设数列{a n }的前n 项和为S n ,a n +1+a n =2n +1,且S n =1 350.若a 2<2,则n 的最大值为________.解析 因为a n +1+a n =2n +1,所以a n +1-(n +1)=-(a n -n ),所以数列{a n -n }是以-1为公比的等比数列,所以a n -n =(a 1-1)·(-1)n -1,S n -n (n +1)2=(a 1-1)·1-(-1)n 2,所以S n =n (n +1)2+(a 1-1)·1-(-1)n 2. 当n 为偶数时,n (n +1)2=1 350,无解. 当n 为奇数时,n (n +1)2+(a 1-1)=1 350, 所以a 1=1 351-n (n +1)2,因为a 2<2,所以3-a 1<2,所以a 1>1.所以1 351-n (n +1)2>1,所以n (n +1)<2 700,又n ∈N *,所以n ≤51,故n 的最大值为51.答案 51。
三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。
4套“12+4”限时提速练“12+4”限时提速练(一) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.已知N 是自然数集,设集合A =⎩⎨⎧⎭⎬⎫x |6x +1∈N ,B ={0,1,2,3,4},则A ∩B =( )A .{0,2}B .{0,1,2}C .{2,3}D .{0,2,4}解析:选B ∵6x +1∈N ,∴x +1应为6的正约数,∴x +1=1或x +1=2或x +1=3或x +1=6,解得x =0或x =1或x =2或x =5,∴集合A ={0,1,2,5},又B ={0,1,2,3,4},∴A ∩B ={0,1,2}.故选B.2.若复数z 满足(1+i)z =2i ,则z =( ) A .-1+i B .-1-i C .1+iD .1-i解析:选C 因为(1+i)z =2i , 所以z =2i1+i =2i (1-i )(1+i )(1-i )=1+i.3.设向量a =(1,2),b =(m ,m +1),若a ∥b ,则实数m 的值为( ) A .1 B .-1 C .-13D .-3 解析:选A 因为a =(1,2),b =(m ,m +1),a ∥b , 所以2m =m +1,解得m =1.4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:选B 由题意可得,数列{a n }的通项公式为a n =2n ,又a m =a 41q 6=210,所以m =10.5.已知圆C 的圆心在坐标轴上,且经过点(6,0)及椭圆x 216+y 24=1的两个顶点,则该圆的标准方程为( )A .(x -2)2+y 2=16B .x 2+(y -6)2=72 C.⎝⎛⎭⎫x -832+y 2=1009D.⎝⎛⎭⎫x +832+y 2=1009解析:选C 由题意得圆C 经过点(0,±2), 设圆C 的标准方程为(x -a )2+y 2=r 2, 由a 2+4=r 2,(6-a )2=r 2, 解得a =83,r 2=1009,所以该圆的标准方程为⎝⎛⎭⎫x -832+y 2=1009.6.据统计,2018年春节期间,甲、乙两个抢红包群抢红包的金额(单位:元)的茎叶图如图所示,其中甲群抢得红包金额的平均数是88元,乙群抢得红包金额的中位数是89元,则m ,n 的等差中项为( )A .5B .6C .7D .8解析:选B 因为甲群抢得红包金额的平均数是88, 所以78+86+84+88+95+(90+m )+927=88,解得m =3.因为乙群抢得红包金额的中位数是89,所以n =9. 所以m ,n 的等差中项为m +n 2=3+92=6.7.某几何体的三视图如图所示,俯视图是一个圆,其内有一个边长为2的正方形,正视图和侧视图是两个全等的等腰直角三角形,它们的底边长和圆的直径相等,它们的内接矩形的长和圆内正方形的对角线长相等,宽和正方形的边长相等,则俯视图中圆的半径是( )A .2B .2 2C .3D.2+1解析:选D 因为正方形的边长为2,所以正方形的对角线长为2, 设俯视图中圆的半径为R , 如图,可得R =2+1.8.我国古代数学著作《孙子算经》中有如下问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为a ,如图是解决该问题的程序框图,则输出的结果为( )A .121B .81C .74D .49解析:选B 第一次循环:S =1,n =2,a =8;第二次循环:S =9,n =3,a =16; 第三次循环:S =25,n =4,a =24;第四次循环:S =49,n =5,a =32; 第五次循环:S =81,n =6,a =40,不满足a ≤32,退出循环,输出S 的值为81. 9.函数f (x )=A sin(2x +θ)A >0,|θ|≤π2的部分图象如图所示,且f (a )=f (b )=0,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝⎛⎭⎫-5π12,π12上是减函数 B .f (x )在⎝⎛⎭⎫-5π12,π12上是增函数 C .f (x )在⎝⎛⎭⎫π3,5π6上是减函数 D .f (x )在⎝⎛⎭⎫π3,5π6上是增函数解析:选B 由题图知A =2,设m ∈[a ,b ],且f (0)=f (m ),则f (0+m )=f (m )=f (0)=3,∴2sin θ=3,sin θ=32,又|θ|≤π2,∴θ=π3,∴f (x )=2sin ⎝⎛⎭⎫2x +π3,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,此时f (x )单调递增,所以选项B 正确.10.已知正四棱柱ABCD -A 1B 1C 1D 1的体积为36,点E ,F 分别为棱B 1B ,C 1C 上的点(异于端点),且EF ∥BC ,则四棱锥A 1-AEFD 的体积为( )A .2B .4C .6D .12解析:选D 连接AF ,易知四棱锥A 1-AEFD 的体积为三棱锥F -A 1AD 和三棱锥F -A 1AE 的体积之和.设正四棱柱的底面边长为a ,高为h ,则V F -A 1AD =13×12×a ×h ×a =16a 2h ,V F -A 1AE =13×12×a ×h ×a =16a 2h ,所以四棱锥A 1-AEFD 的体积为13a 2h ,又a 2h =36,所以四棱锥A 1-AEFD 的体积为12.11.函数f (x )=(2x 2+3x )e x 的图象大致是( )解析:选A 由f (x )的解析式知,f (x )只有两个零点x =-32与x =0,排除B 、D ;又f ′(x )=(2x 2+7x +3)e x ,由f ′(x )=0知函数有两个极值点,排除C ,故选A. 12.已知函数f (x )=ln x +x 与g (x )=12ax 2+ax -1(a >0)的图象有且只有一个公共点,则a 所在的区间为( )A.⎝⎛⎭⎫12,23B.⎝⎛⎭⎫23,1 C.⎝⎛⎭⎫32,2D.⎝⎛⎭⎫1,32 解析:选D 设T (x )=f (x )-g (x )=ln x +x -12ax 2-ax +1,由题意知,当x >0时,T (x )有且仅有1个零点.T ′(x )=1x +1-ax -a =x +1x -a (x +1)=(x +1)·⎝⎛⎭⎫1x -a =(x +1)·1x ·(1-ax ). 因为a >0,x >0,所以T (x )在⎝⎛⎭⎫0,1a 上单调递增, 在⎝⎛⎭⎫1a ,+∞上单调递减,如图,当x →0时,T (x )→-∞,x →+∞时,T (x )→-∞, 所以T ⎝⎛⎭⎫1a =0,即ln 1a +1a -12a -1+1=0, 所以ln 1a +12a=0.因为y =ln 1x +12x 在x >0上单调递减,所以ln 1a +12a =0在a >0上最多有1个零点.当a =12时,ln 1a +12a >0,当a =1时,ln 1a +12a =12>0,当a =32时,ln 1a +12a<0,当a =2时,ln 1a +12a <0,所以a ∈⎝⎛⎭⎫1,32. 二、填空题(本大题共4小题,每小题5分,共20分) 13.若函数f (x )=x 2+axx 3是奇函数,则常数a =______.解析:函数f (x )的定义域为(-∞,0)∪(0,+∞), 则由f (x )+f (-x )=0, 得x 2+ax x 3+x 2-ax -x 3=0,即ax =0,则a =0. 答案:014.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤-1,3x -5y +25≥0,x +4y -3≥0,则目标函数z =3x +y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示, 作出直线3x +y =0,平移该直线,当直线经过点A 时,z 取得最大值.联立⎩⎪⎨⎪⎧x =-1,3x -5y +25=0,解得⎩⎪⎨⎪⎧x =-1,y =225,所以z max =3×(-1)+225=75.答案:7515.在平面直角坐标系xOy 中,与双曲线x 23-y 2=1有相同渐近线,焦点位于x 轴上,且焦点到渐近线距离为2的双曲线的标准方程为________.解析:与双曲线x 23-y 2=1有相同渐近线的双曲线的标准方程可设为x 23-y 2=λ,因为双曲线焦点在x 轴上,故λ>0,又焦点到渐近线的距离为2, 所以λ=4,所求方程为x 212-y 24=1.答案:x 212-y 24=116.如图所示,在△ABC 中,∠ABC 为锐角,AB =2,AC =8,sin ∠ACB =26,若BE =2DE ,S △ADE =423,则sin ∠BAE sin ∠DAE=________.解析:因为在△ABC 中,AB =2,AC =8,sin ∠ACB =26, 由正弦定理得AB sin ∠ACB =ACsin ∠ABC ,所以sin ∠ABC =223.又∠ABC 为锐角,所以cos ∠ABC =13.因为BE =2DE ,所以S △ABE =2S △ADE . 又因为S △ADE =423,所以S △ABD =4 2. 因为S △ABD =12×BD ×AB ×sin ∠ABC ,所以BD =6.由余弦定理AD 2=AB 2+BD 2-2AB ×BD ×cos ∠ABD ,可得AD =4 2. 因为S △ABE =12×AB ×AE ×sin ∠BAE ,S △DAE =12×AD ×AE ×sin ∠DAE ,所以sin ∠BAE sin ∠DAE=2×ADAB =4 2.答案:4 2“12+4”限时提速练(二) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.若复数z =a1+i+1为纯虚数,则实数a =( ) A .-2 B .-1 C .1D .2解析:选A 因为复数z =a 1+i +1=a (1-i )(1+i )(1-i )+1=a 2+1-a2i 为纯虚数,所以a 2+1=0,且-a2≠0,解得a =-2.故选A.2.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x < 2,B ={x |ln x ≤0},则A ∩B =( ) A.⎝⎛⎭⎫0,12 B .[-1,0) C.⎣⎡⎭⎫12,1D .[-1,1]解析:选A ∵12≤2x < 2,∴-1≤x <12,∴A =⎩⎨⎧⎭⎬⎫x |-1≤x <12.∵ln x ≤0,∴0<x ≤1,∴B ={x |0<x ≤1}, ∴A ∩B =⎩⎨⎧⎭⎬⎫x |0<x <12.3.已知函数f (x )=2x (x <0),其值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是( )A.12B.13C.14D.23解析:选B 因为函数y =2x 是R 上的增函数, 所以函数f (x )的值域是(0,1),由几何概型的概率公式得,所求概率P =1-02-(-1)=13.4.已知B 是以线段AC 为直径的圆上的一点(异于点A ,C ),其中|AB |=2,则 AC ―→·AB ―→=( )A .1B .2C .3D .4解析:选D 连接BC ,∵AC 为直径,∴∠ABC =90°,∴AB ⊥BC ,AC ―→在AB ―→上的投影|AC ―→|cos 〈AC ―→,AB ―→〉=|AB ―→|=2, ∴AC ―→·AB ―→=|AC ―→||AB ―→|cos 〈AC ―→,AB ―→〉=4. 5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为( )A .-3 B.32C .3D .4解析:选C 作出不等式组所表示的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线过点B 时,z =2x +y 取得最大值.由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,所以B (2,-1),故z max =2×2-1=3.6.执行如图所示的程序框图,若输出的s =25,则判断框中可填入的条件是( )A .i ≤4?B .i ≥4?C .i ≤5?D .i ≥5?解析:选C 执行程序框图,i =1,s =100-5=95;i =2,s =95-10=85;i =3,s =85-15=70;i =4,s =70-20=50;i =5,s =50-25=25;i =6,退出循环.此时输出的s =25.结合选项知,选C.7.将函数y =2sin ⎝⎛⎭⎫x +π3cos ⎝⎛⎭⎫x +π3的图象向左平移φ(φ>0)个单位长度,所得图象对应的函数为奇函数,则φ的最小值为( )A.π12 B.π6C.π4D.π3解析:选B 根据题意可得y =sin ⎝⎛⎭⎫2x +2π3,将其图象向左平移φ个单位长度,可得y =sin ⎝⎛⎭⎫2x +2π3+2φ的图象,因为该图象所对应的函数恰为奇函数,所以2π3+2φ=k π(k ∈Z),φ=k π2-π3(k ∈Z),又φ>0,所以当k =1时,φ取得最小值,且φmin =π6,故选B.8.南宋数学家秦九韶早在《数书九章》中就提出了已知三角形的三边求其面积的公式:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂,减上,余四约之,为实.一为从隅,开平方,得积.”即△ABC 的面积S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,其中△ABC 的三边分别为a ,b ,c ,且a >b >c ,并举例“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步.欲知为田几何?”则该三角形沙田的面积为( )A .82平方里B .83平方里C .84平方里D .85平方里解析:选C 由题意知三角形沙田的三边长分别为15里、14里、13里,代入三角形的面积公式可得三角形沙田的面积S =14×⎣⎡⎦⎤132×152-⎝⎛⎭⎫132+152-14222=84(平方里).故选C.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6解析:选C 由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6.10.已知f (x )是定义在[-2b,1+b ]上的偶函数,且在[-2b ,0]上为增函数,则f (x -1)≤f (2x )的解集为( )A.⎣⎡⎦⎤-1,23 B.⎣⎡⎦⎤-1,13 C .[-1,1]D.⎣⎡⎦⎤13,1解析:选B ∵函数f (x )是定义在[-2b,1+b ]上的偶函数, ∴-2b +1+b =0,∴b =1,函数f (x )的定义域为[-2,2], 又函数f (x )在[-2,0]上单调递增,∴函数f (x )在[0,2]上单调递减,∵f (x -1)≤f (2x ),∴f (|x -1|)≤f (|2x |),∴⎩⎪⎨⎪⎧-2≤x -1≤2,-2≤2x ≤2,|x -1|≥|2x |,解得-1≤x ≤13.11.在各项均为正数的等比数列{a n }中,a 1a 11+2a 5a 9+a 4a 12=81,则1a 6+4a 8的最小值是( )A.73 B .9 C .1D .3解析:选C 因为{a n }为等比数列,所以a 1a 11+2a 5a 9+a 4a 12=a 26+2a 6a 8+a 28=(a 6+a 8)2=81,又因为等比数列{a n }的各项均为正数,所以a 6+a 8=9, 所以1a 6+4a 8=19(a 6+a 8)⎝⎛⎭⎫1a 6+4a 8=195+a 8a 6+4a 6a 8≥19⎝⎛⎭⎫5+2a 8a 6×4a 6a 8=1, 当且仅当a 8a 6=4a 6a 8,a 6+a 8=9,即a 6=3,a 8=6时等号成立,所以1a 6+4a 8的最小值是1.12.过抛物线y =14x 2的焦点F 的直线交抛物线于A ,B 两点,点C 在直线y =-1上,若 △ABC 为正三角形,则其边长为( ) A .11 B .12 C .13D .14解析:选B 由题意可知,焦点F (0,1),易知过焦点F 的直线的斜率存在且不为零,则设该直线方程为y =kx +1(k ≠0), 联立⎩⎪⎨⎪⎧y =14x 2,y =kx +1,消去y ,得x 2-4kx -4=0,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=4k ,x 1x 2=-4, 设线段AB 的中点为M ,则M (2k,2k 2+1), |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)(16k 2+16)=4(1+k 2). 设C (m ,-1),连接MC , ∵△ABC 为等边三角形,∴k MC =2k 2+22k -m=-1k ,m =2k 3+4k ,点C (m ,-1)到直线y =kx +1的距离|MC |=|km +2|1+k 2=32|AB |, ∴|km +2|1+k 2=32×4(1+k 2), 即2k 4+4k 2+21+k 2=23(1+k 2), 解得k =±2, ∴|AB |=4(1+k 2)=12.二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =2x +1,则f (1)+f ′(1)=________.解析:因为f (x )的图象在点M (1,f (1))处的切线方程为y =2x +1,所以f ′(1)=2,又因为点M (1,f (1))也在直线y =2x +1上,所以f (1)=2×1+1=3,所以f (1)+f ′(1)=3+2=5.答案:514.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙比学习委员的年龄大,甲与体育委员的年龄不同,体育委员比乙的年龄小,据此推断班长是________.解析:若甲是班长,由于体育委员比乙的年龄小,故丙是体育委员,乙是学习委员,但这与丙比学习委员的年龄大矛盾,故甲不是班长;若丙是班长,由于体育委员比乙的年龄小,故甲是体育委员,这和甲与体育委员的年龄不同矛盾,故丙不是班长;若乙是班长,由于甲与体育委员的年龄不同,故甲是学习委员,丙是体育委员,此时其他条件均成立,故乙是班长.答案:乙15.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若AB ―→=3FA ―→,则此双曲线的离心率为________.解析:由F (-c,0),A (0,b ), 得直线AF 的方程为y =bc x +b .根据题意知,直线AF 与渐近线y =ba x 相交,联立得⎩⎨⎧y =bcx +b ,y =ba x ,消去x 得,y B =bc c -a. 由AB ―→=3FA ―→,得y B =4b ,所以bcc -a=4b ,化简得3c =4a , 所以离心率e =43.答案:4316.一个直角三角形的三个顶点分别在底面边长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为________.解析:记该直角三角形为△ABC ,且AC 为斜边. 法一:如图,不妨令点A 与正三棱柱的一个顶点重合, 取AC 的中点O ,连接BO , ∴BO =12AC ,∴AC 取得最小值即BO 取得最小值,即点B 到平面ADEF 的距离. ∵△AHD 是边长为2的正三角形, ∴点B 到平面ADEF 的距离为3, ∴AC 的最小值为2 3.法二:如图,不妨令点A 与正三棱柱的一个顶点重合,设BH =m (m ≥0),CD =n (n ≥0),∴AB 2=4+m 2,BC 2=4+(n -m )2,AC 2=4+n 2. ∵AC 为Rt △ABC 的斜边, ∴AB 2+BC 2=AC 2,即4+m 2+4+(n -m )2=4+n 2, ∴m 2-nm +2=0,∴m ≠0,n =m 2+2m =m +2m,∴AC 2=4+⎝⎛⎭⎫m +2m 2≥4+8=12,当且仅当m =2m ,即m =2时等号成立, ∴AC ≥23,故AC 的最小值为2 3. 答案:2 3“12+4”限时提速练(三) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知a ,b ∈R ,复数a +b i =2i1-i,则a +b =( ) A .2 B .1 C .0 D .-2解析:选C 因为a +b i =2i 1-i =2i (1+i )(1-i )(1+i )=2i (1+i )2=-1+i ,所以a =-1,b =1,a +b =0.2.设集合A ={x |1<x <2},B ={x |x <a },若A ∩B =A ,则a 的取值范围是( ) A .(-∞,2] B .(-∞,1] C .[1,+∞)D .[2,+∞)解析:选D 由A ∩B =A ,可得A ⊆B ,又A ={x |1<x <2},B ={x |x <a },所以a ≥2. 3.若点⎝⎛⎭⎫sin 5π6,cos 5π6在角α的终边上,则sin α=( ) A.32B.12C .-32D .-12解析:选C 因为sin 5π6=sin ⎝⎛⎭⎫π-π6=sin π6=12,cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6= -32, 所以点⎝⎛⎭⎫12,-32在角α的终边上,且该点到角α顶点的距离r =⎝⎛⎭⎫122+⎝⎛⎭⎫-322=1, 所以sin α=-32. 4.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.搜索指数越大,表示网民搜索该关键词的次数越多,对该关键词相关的信息关注度也越高.如图是2017年9月到2018年2月这半年来,某个关键词的搜索指数变化的统计图.根据该统计图判断,下列结论正确的是( )A .这半年来,网民对该关键词相关的信息关注度呈周期性变化B .这半年来,网民对该关键词相关的信息关注度不断减弱C .从该关键词的搜索指数来看,2017年10月的方差小于11月的方差D .从该关键词的搜索指数来看,2017年12月的平均值大于2018年1月的平均值 解析:选D 由统计图可知,这半年来,该关键词的搜索指数变化的周期性并不显著,排除A ;由统计图可知,这半年来,该关键词的搜索指数的整体减弱趋势不显著,排除B ;由统计图可知,2017年10月该关键词的搜索指数波动较大,11月的波动较小,所以2017年10月的方差大于11月的方差,排除C ;由统计图可知,2017年12月该关键词的搜索指数大多高于10 000,该月平均值大于10 000,2018年1月该关键词的搜索指数大多低于10 000,该月平均值小于10 000,故选D.5.某几何体的三视图如图所示,其中正视图是等腰直角三角形,侧视图是边长为2的等边三角形,则该几何体的体积等于( )A.33B.233C. 3D .2解析:选D 由三视图知,该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图,该四棱锥的高h =3,底面ABCD 是边长分别为2,3的矩形,所以该四棱锥的体积V =13S 四边形ABCD ×h =13×2×3×3=2.故选D.6.在如图所示的程序框图中,如果输入a =1,b =1,则输出的S =( )A .7B .20C .22D .54解析:选B 执行程序,a =1,b =1,S =0,k =0,k ≤4,S =2,a =2,b =3;k =2,k ≤4,S =7,a =5,b =8;k =4,k ≤4,S =20,a =13,b =21;k =6,不满足k ≤4,退出循环.则输出的S =20.7.已知直线l :y =3x +m 与圆C :x 2+(y -3)2=6相交于A ,B 两点,若∠ACB =120°,则实数m 的值为( )A .3+6或3- 6B .3+26或3-2 6C .9或-3D .8或-2解析:选A 由题知圆C 的圆心为C (0,3),半径为6,取AB 的中点为D ,连接CD ,则CD ⊥AB ,在△ACD 中,|AC |=6,∠ACD =60°,所以|CD |=62,由点到直线的距离公式得|-3+m |(3)2+1=62,解得m =3±6. 8.若直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,则不等式tan x ≥2a 的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x <k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π4≤x <k π+π2,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x <k π+π2,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π-π4≤x ≤k π+π4,k ∈Z 解析:选B 由正切函数的图象知,直线x =a π(0<a <1)与函数y =tan x 的图象没有公共点时,a =12,所以tan x ≥2a ,即tan x ≥1,其解集是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π4≤x <k π+π2,k ∈Z. 9.已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 017b 2 018的值是( )A.4 0352 018B.4 0332 017C.2 0172 018D.2 0162 017解析:选B 由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n =2n .当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,所以b n =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2.当n ≥2时,1b n b n +1=1(n -1)n =1n -1-1n , 所以1b 1b 2+1b 2b 3+…+1b 2 017b 2 018=1+1-12+12-13+…+12 016-12 017=2-12 017=4 0332 017.10.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +a ,x <1,ln x +1,x ≥1,若方程f (x )=2有两个解,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-∞,5)D .(-∞,5]解析:选C 法一:当x ≥1时,由ln x +1=2,得x =e.由方程f (x )=2有两个解知,当x <1时,方程x 2-4x +a =2有唯一解.令g (x )=x 2-4x +a -2=(x -2)2+a -6,则g (x )在(-∞,1)上单调递减,所以当x <1时,g (x )=0有唯一解,则g (1)<0,得a <5,故选C.法二:随着a 的变化引起y =f (x )(x <1)的图象上下平移,作出函数y =f (x )的大致图象如图所示,由图象知,要使f (x )=2有两个解,则 a -3<2,得a <5.11.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若|PF |=2|Q F |,且∠PF Q =120°,则椭圆E 的离心率为( )A.13 B.12C.33D.22解析:选C 设F 1是椭圆E 的右焦点,如图,连接PF 1,Q F 1.根据对称性,线段FF 1与线段P Q 在点O 处互相平分,所以四边形PF Q F 1是平行四边形,|F Q |=|PF 1|,∠FPF 1=180°-∠PF Q =60°,根据椭圆的定义得|PF |+|PF 1|=2a ,又|PF |=2|Q F |,所以|PF 1|=23a ,|PF |=43a ,而|F 1F |=2c ,在△F 1PF 中,由余弦定理,得(2c )2=⎝⎛⎭⎫23a 2+⎝⎛⎭⎫43a 2-2×23a ×43a ×cos 60°,化简得c 2a 2=13, 所以椭圆E 的离心率e =c a =33.12.已知函数f (x )=e xx 2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( )A.⎝⎛⎦⎤-∞,e 24 B.⎝⎛⎦⎤-∞,e2 C .(0,2] D .[2,+∞)解析:选A f ′(x )=e x (x -2)x 3+k (2-x )x =(x -2)(e x -kx 2)x 3(x >0),令f ′(x )=0,得x =2或e x =kx 2(x >0).由x =2是函数f (x )的唯一极值点知e x ≥kx 2(x >0)恒成立或e x ≤kx 2(x >0)恒成立, 由y =e x (x >0)和y =kx 2(x >0)的图象可知,只能是e x ≥kx 2(x >0)恒成立. 当x >0时,由e x≥kx 2,得k ≤e xx2.设g (x )=e xx2,则k ≤g (x )min .由g ′(x )=e x (x -2)x 3,得当x >2时,g ′(x )>0,g (x )单调递增,当0<x <2时,g ′(x )<0,g (x )单调递减,所以g (x )min =g (2)=e 24,所以k ≤e 24.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a ,b 满足a ⊥b ,|a |=1,|2a +b |=22,则|b |=________. 解析:法一:因为|2a +b |=22, 所以4a 2+4a ·b +b 2=8. 因为a ⊥b ,所以a ·b =0.又|a |=1,所以4×1+4×0+b 2=8,所以|b |=2. 法二:如图,作出OA ―→=2a ,OB ―→=b ,OC ―→=2a +b ,因为a ⊥b ,所以OA ⊥OB ,因为|a |=1,|2a +b |=22, 所以|OA ―→|=2,|OC ―→|=22,所以|OB ―→|=|b |=2.法三:因为a ⊥b ,所以以O 为坐标原点,以a ,b 的方向分别为x 轴,y 轴的正方向建立平面直角坐标系(图略),因为|a |=1,所以a =(1,0),设b =(0,y )(y >0),则2a +b =(2,y ),因为|2a +b |=22,所以4+y 2=8,解得y =2,所以|b |=2.答案:214.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +3≥0,x -y +4≥0,2x +y -4≤0,则z =x +3y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示,作出直线x +3y =0,并平移该直线,当直线经过点A (0,4)时,目标函数z =x +3y 取得最大值,且z max =12.答案:1215.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若cos C =14,c =3,且a cos A =bcos B,则△ABC 的面积等于________. 解析:由a cos A =b cos B 及正弦定理,得sin A cos A =sin Bcos B ,即tan A =tan B ,所以A =B ,即a =b .由cos C =14且c =3,结合余弦定理a 2+b 2-2ab cos C =c 2,得a =b =6,又sin C =1-cos 2 C =154,所以△ABC 的面积S =12ab sin C =3154. 答案:315416.如图,等腰三角形PAB 所在平面为α,PA ⊥PB ,AB =4,C ,D 分别为PA ,AB 的中点,G 为CD 的中点.平面α内经过点G 的直线l 将△PAB 分成两部分,把点P 所在的部分沿直线l 翻折,使点P 到达点P ′(P ′∉平面α).若点P ′在平面α内的射影H 恰好在翻折前的线段AB 上,则线段P ′H 的长度的取值范围是________.解析:在等腰三角形PAB 中,∵PA ⊥PB ,AB =4,∴PA =PB =2 2.∵C ,D 分别为PA ,AB 的中点, ∴PC =CD =2且PC ⊥CD .连接PG ,P ′G ,∵G 为CD 的中点,∴PG =P ′G =102. 连接HG ,∵点P ′在平面α内的射影H 恰好在翻折前的线段AB 上, ∴P ′H ⊥平面α,∴P ′H ⊥HG ,∴HG <P ′G =102. 易知点G 到线段AB 的距离为12,∴HG ≥12,∴12≤HG <102.又P ′H =⎝⎛⎭⎫1022-HG 2, ∴0<P ′H ≤32.答案:⎝⎛⎦⎤0,32“12+4”限时提速练(四) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.复数z =2+i1-i的共轭复数对应的点在复平面内位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选D 复数z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=1+3i 2=12+32i ,则复数z 的共轭复数为z =12-32i ,所以复数z 的共轭复数对应的点的坐标是⎝⎛⎭⎫12,-32,该点位于第四象限. 2.已知集合M =⎩⎨⎧⎭⎬⎫x |2x ≥1,N ={}y |y =1-x 2,则M ∩N =( )A .(-∞,2]B .(0,1]C .[0,1]D .(0,2]解析:选B 由2x ≥1得x -2x ≤0,解得0<x ≤2,则M ={x |0<x ≤2}; 函数y =1-x 2的值域是(-∞,1],则N ={y |y ≤1},因此M ∩N ={x |0<x ≤1}=(0,1].3.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( )A .52B .78C .104D .208解析:选C 依题意得3a 7=24,a 7=8,S 13=13(a 1+a 13)2=13a 7=104,选C. 4.已知f (x )是定义在R 上的偶函数,且满足f (x +4)=f (x ),当x ∈[-2,0]时,f (x )= -2x ,则f (1)+f (4)等于( )A.32 B .-32C .-1D .1解析:选B 由f (x +4)=f (x )知f (x )是周期为4的周期函数, 又f (x )是定义在R 上的偶函数,故f (4)=f (0)=-1,f (1)=f (-1),又-1∈[-2,0],所以f (-1)=-2-1=-12,所以f (1)=-12,f (1)+f (4)=-32.5.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( ) A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5, 因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5. 6.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( )(注:下表为随机数表的第8行和第9行)⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54 第9行A .07B .25C .42D .52解析:选D 依题意得,依次选出的个体分别是12,34,29,56,07,52,…因此选出的第6个个体是52.7.在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x的概率为( )A .34 B.23C .12D.14解析:选D 作出不等式表示的平面区域如图所示, 故所求概率P (y ≤2x)=12×12×11×1=14.8.设三棱锥的三条侧棱两两互相垂直,且长度分别为2,23,4,则其外接球的表面积为( )A .48πB .32πC .20πD .12π解析:选B 依题意,设题中的三棱锥外接球的半径为R ,可将题中的三棱锥补形成一个长方体,则R =1222+(23)2+42=22,因此三棱锥外接球的表面积为4πR 2=32π.9.已知点P ,A ,B 在双曲线x 2a 2-y 2b 2=1上,直线AB 过坐标原点,且直线PA ,PB 的斜率之积为13,则双曲线的离心率为( )A.233B.153 C .2D.102解析:选A 根据双曲线的对称性可知点A ,B 关于原点对称,设A (x 1,y 1),P (x 2,y 2),则B (-x 1,-y 1),所以⎩⎨⎧x 21a 2-y 21b 2=1,x22a2-y 22b2=1,两式相减得x 21-x 22a 2=y 21-y 22b 2,即y 21-y 22x 21-x 22=b 2a 2,因为直线PA ,PB 的斜率之积为13,所以k PA ·k PB =y 1-y 2 x 1-x 2·-y 1-y 2-x 1-x 2=y 21-y 22x 21-x 22=b 2a 2=13,所以双曲线的离心率为e =1+b 2a2= 1+13=233. 10.将函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位长度后的图象关于原点对称,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A.32B.12C .-12D .-32解析:选D 依题意得,函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+φ=sin ⎝⎛⎭⎫2x +π3+φ是奇函数,则sin ⎝⎛⎭⎫π3+φ=0,又|φ|<π2,因此π3+φ=0,φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3.当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,所以f (x )=sin ⎝⎛⎭⎫2x -π3在⎣⎡⎦⎤0,π2上的最小值为-32. 11.某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,则其俯视图中椭圆的离心率为( )A .12 B.24 C .22D.32解析:选C 依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-⎝⎛⎭⎫a 2a 2=22. 12.已知函数f (x )=x 3-3x ,则方程f [f (x )]=1的实根的个数是( ) A .9 B .7 C .5D .3解析:选A 依题意得f ′(x )=3(x +1)(x -1), 当x <-1或x>1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0.所以函数f (x )在区间(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,且f(-1)=f (2)=2,f (1)=-2,f (±3)=f (0)=0.在平面直角坐标系内画出直线y =1与函数y =f(x )的图象(图略),结合图象可知,它们共有三个不同的交点,记这三个交点的横坐标由小到大依次为x 1,x 2,x 3, 则-3<x 1<-1<x 2<0,3<x 3<2.再画出直线y =x 1,y =x 2,y =x 3,结合图象可知,直线y =x 1,y =x 2,y =x 3与函数y=f (x )的图象的交点个数均为3,且这些交点的横坐标各不相同,所以方程f [f (x )]=1的实根个数是9.二、填空题(本大题共4小题,每小题5分,共20分)13.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________. 解析:因为当x <0时,f (x )=2x ,令x >0,则-x <0,故f (-x )=2-x ,又因为f (x )是定义在R 上的奇函数,所以当x >0时,f (x )=-2-x ,又因为log 49=log 23>0,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1314.若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________. 解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α), 所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件; 由cos α-sin α=14,两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:151615.已知点A 是抛物线y 2=2px (p >0)上一点,F 为其焦点,以F 为圆心,|FA |为半径的圆交准线于B ,C 两点,若△FBC 为正三角形,且△ABC 的面积为1283,则抛物线的方程为________.解析:如图,可得|BF |=2p3,则由抛物线的定义知点A 到准线的距离也为2p 3,又△ABC 的面积为1283,所以12×2p 3×2p 3=1283,解得p =8,故抛物线的方程为y 2=16x .答案:y 2=16x16.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n =1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,得a n +1+b n +1=2(a n+b n ),所以a n +1+b n +1a n +b n=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n , 将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘,得a n +1b n +1a n b n =2, 所以数列{a n b n }是首项为1,公比为2的等比数列, 所以a n b n =2n -1,因为c n =1a n +1b n ,所以c n =a n +b n a n b n =2n2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036. 答案:4 036。
高考数学客观题限时训练习题(十一套)高考数学客观题限时训练一班级 姓名 学号 记分1、已知集合{}{}|12,|35A x a x a B x x =-≤≤+=<<,则能使A B ⊇成立的实数a 的取值范围是( )A .{}|34a a <≤B .{}|34a a <<C .{}|34a a ≤≤D .∅ 2、等比数列{}n a 中,0n a >且21431,9a a a a =-=-,则45a a +等于( ) A .16 B .27 C .36 D .27- 3、不等式2103x x -≤的解集为( )A .{|2x x ≤≤ B .{}|25x x -≤≤ C .{}|25x x ≤≤ D .{}5x x ≤ 4、曲线24y x =关于直线2x =对称的曲线方程是( )A .2164y x =-B .284y x =-C .248y x =-D .2416y x =-5、已知()321233y x bx b x =++++是R 上的单调增函数,则b 的范围( )A .1b <-或2b >B .1b ≤-或2b ≥C .12b -<<D .12b -≤≤6、直线l 是双曲线()222210,0x y a b a b-=>>的右准线,以原点为圆心且过双曲线的焦点的圆被直线l 分成弧长为21∶的两段圆弧,则该双曲线的离心率是( )A B C D7、空间四点A B C D 、、、,若直线,,AB CD AC BD AD BC ⊥⊥⊥同时成立,则A B C D 、、、四点的位置关系是( )A .一定共面B .一定不共面C .不一定共面D .这样的四点不存在8、()f x 是定义在R 上的奇函数,它的最小正周期为T ,则2T f ⎛⎫- ⎪⎝⎭的值为( )A .0B .2TC .TD .2T-9、已知实数x y 、满足22326x y +=,则2x y +的最大值为( ) A .4 BC. D10、函数222x y e -=的图象大致是( )选择题答案栏11、直线20x y m ++=按向量()1,2a =--平移后与圆22:240C x y x y ++-=相切,则实数m 的值为____________.12、在()()10211x x x ++-的展开式中,4x 项的系数是_______________.13、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有____________14、函数()f x =是奇函数的充要条件是____________ABCD15、260100x y x x y +-≤⎧⎪+≥⎨⎪-≤⎩,z mx y =+取得最大值的最优解有无数个,则m 等于16、在下列四个命题中,①函数2cos sin y x x =+的最小值是1-。
2020版考前小题练 高考数学理科(全国通用)总复习文档:12+4满分练四一、选择题1.已知集合A={x|x 2-2x -3>0},集合B={x|0<x <4},则(∁R A)∩B 等于( )A.(0,3]B.[-1,0)C.[-1,3]D.(3,4)2.设i 为虚数单位,若复数a +2i1+i为纯虚数,则实数a 的值为( )A.-1B.1C.-2D.23.将函数f(x)=(cos x -2sin x)+sin 2x 的图象向左平移π8个单位长度后得到函数g(x),则g(x)具有性质( )A.在错误!未找到引用源。
上单调递增,为奇函数B.周期为π,图象关于错误!未找到引用源。
对称C.最大值为2,图象关于直线x=π2对称D.在错误!未找到引用源。
上单调递增,为偶函数 4.为了得到函数y=的图象,只需把函数y=的图象( )A.向左平移π4个单位长度B.向右平移π4个单位长度C.向左平移π2个单位长度D.向右平移π2个单位长度5.已知三棱锥A -BCD 的所有顶点都在球O 的球面上,AB 为球O 的直径,若该三棱锥的体积为433,BC=4,BD=3,∠CBD=90°,则球O 的表面积为( )A.11πB.20πC.23πD.35π6.一个几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.36πB.8πC.9π2D.27π87.阅读如图所示的程序框图,若输出的数据为58,则判断框中应填入的条件为( )A.k ≤3?B.k ≤4?C.k ≤5?D.k ≤6?8.过点M(2,-2p)引抛物线x 2=2py(p >0)的切线,切点分别为A ,B ,若|AB|=410,则p 的值是( )A.1或2B.2或2C.1D.2 已知点P 为不等式组⎩⎪⎨⎪⎧x -2y +1≥0,x ≤2,x +y -1≥0所表示的平面区域内的一点,点Q 是圆M :(x +1)2+y 2=1上的一个动点,则|PQ|的最大值是( )A.35+22B.25+33C.253D.109.已知三个函数f(x)=2x+x ,g(x)=x -1,h(x)=log 3x +x 的零点依次为a ,b ,c ,则( )A.a <b <cB.b <a <cC.c <a <bD.a <c <b10.已知当x=θ时,函数f(x)=2sin x -cos x 取得最大值,则等于( )A.7210B.210C.-210D.-7210 11.已知M 是函数f(x)=e -2|x -1|+在x ∈[-3,5]上的所有零点之和,则M 的值为( )A.4B.6C.8D.10 二、填空题12.我们把满足:x n +1=x n -f (x n )f ′(x n )的数列{x n }叫做牛顿数列.已知函数f(x)=x 2-1,数列{x n }为牛顿数列,设a n =ln x n -1x n +1,已知a 1=2,则a 3=________.13.已知直角梯形ABCD 中,AD ∥BC ,∠ADC=90°,AD=2,BC=1,点P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________.14.点P 在双曲线x 2a 2-y2b2=1(a >0,b >0)的右支上,其左、右焦点分别为F 1,F 2,直线PF 1与以坐标原点O 为圆心、a 为半径的圆相切于点A ,线段PF 1的垂直平分线恰好过点F 2,则该双曲线的渐近线的斜率为________.15.已知数列{}a n 的前n 项和为S n ,S n =43()a n -1,则()4n -2+1的最小值为______.答案解析一、选择题 1.答案为:A ;解析:因为A={x|x <-1或x >3},故∁R A={x|-1≤x ≤3},B={x|0<x <4}, 所以(∁R A)∩B={x|0<x ≤3},故选A.2.答案为:C ;解析:由题意,得a +2i 1+i =a +22+2-a2i ,则⎩⎪⎨⎪⎧a +22=0,2-a2≠0⇒a=-2,故选C.3.答案为:A ;解析:函数的解析式为f(x)=sin ⎝ ⎛⎭⎪⎫3π2+x (cos x -2sin x)+sin 2x=sin 2x -cos 2x=2sin ⎝⎛⎭⎪⎫2x -π4, 将其图象向左平移π8个单位长度,得到函数g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8-π4=2sin 2x 的图象,则g(x)为奇函数,且在⎝⎛⎭⎪⎫0,π4上单调递增,故A 正确.4.答案为:A解析:y=cos ⎝ ⎛⎭⎪⎫2x -4π3=sin ⎝ ⎛⎭⎪⎫2x -4π3+π2=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4-π3,所以函数y=cos ⎝ ⎛⎭⎪⎫2x -4π3的图象向左平移π4个单位长度得到函数y=sin ⎝⎛⎭⎪⎫2x -π3的图象, 故选A.5.答案为:C ;解析:设棱锥的高为h ,因为S △BCD =12×BC ×BD=23,所以V A -BCD =13S △BCD ×h=433,所以h=2,因此点O 到平面BCD 的距离为1,因为△BCD 外接圆的直径为19,所以OB=1+194=232,所以球O 的表面积为S=4πr 2=23π,故选C.6.答案为:B ;解析:从题设中三视图所提供的图形信息与数据信息可知该几何体是棱长为2,2, 2的长方体的一角所在三棱锥,其外接球与该长方体的外接球相同,其直径是该长方体的对角线l=22+(2)2+(2)2=22,故球的半径为R=2,所以该外接球的表面积S=4π(2)2=8π,故选B.7.答案为:B ;解析:第一次循环,S=12=1,k=2;第二次循环,S=2×1+22=6,k=3;第三次循环,S=2×6+32=21,k=4;第四次循环,S=2×21+42=58,k=5, 最后输出的数据为58,所以判断框中应填入k ≤4?,故选B.8.答案为:A ;解析:设切点为⎝ ⎛⎭⎪⎫t ,12p t 2,因为y ′=1p x ,则切线斜率k=12p t 2+2p t -2=1p t ,整理可得t 2-4t -4p 2=0,由根与系数的关系可得t 1+t 2=4,t 1t 2=-4p 2,则(t 1-t 2)2=(t 1+t 2)2-4t 1t 2=16(1+p 2).设切点A ⎝⎛⎭⎪⎫t 1,t 212p ,B ⎝ ⎛⎭⎪⎫t 2,t 222p ,则|AB|=(t 1-t 2)2+⎝ ⎛⎭⎪⎫t 21-t 222p 2=(t 1-t 2)2⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫12p 2(t 1+t 2)2,即|AB|=4(1+p 2)⎝ ⎛⎭⎪⎫1+4p 2,所以(1+p 2)⎝ ⎛⎭⎪⎫1+4p 2=10,即p 4-5p 2+4=0,解得p 2=1或p 2=4,即p=1或p=2,故选A.9.答案为:A ;解析:由题意得,画出不等式组所表示的平面区域,如图中阴影部分所示,由题意知点A 到圆心(-1,0)的距离最远,由⎩⎪⎨⎪⎧x -2y +1=0,x =2,解得A ⎝ ⎛⎭⎪⎫2,32, 最远距离为d=(2+1)2+⎝ ⎛⎭⎪⎫322=352,所以|PQ|的最大值为352+1=35+22,故选A.10.答案为:D ;解析:由题意知f(x),g(x),h(x)均为各自定义域上的增函数,且有唯一零点,因为f(-1)=12-1=-12<0,f(0)=1>0,所以-1<a <0,由g(x)=0可得x=1,所以b=1,h ⎝ ⎛⎭⎪⎫13=-1+13=-23<0,h(1)=1>0,所以13<c <1,所以a <c <b ,故选D.11.答案为:D ;解析:因为f(x)=5sin(x -φ),所以f(x)max =5,其中cos φ=25,sin φ=15,当x -φ=2k π+π2,k ∈Z 时,函数取得最大值,即θ=2k π+π2+φ,k ∈Z 时函数取得最大值.由于sin 2θ=-sin 2φ=-2×25×15=-45,cos 2θ=-cos 2φ=-(2cos 2φ-1)=-35,故sin ⎝⎛⎭⎪⎫2θ+π4=22(sin 2θ+cos 2θ)=-75×22=-7210,故选D.12.答案为:C解析:因为f(x)=e -2|x -1|+=e -2|x -1|-2cos πx ,所以f(x)=f(2-x),因为f(1)≠0,所以函数零点有偶数个,两两关于x=1对称.当x ∈[1,5]时,y=e -2(x -1)∈(0,1],且单调递减; y=2cos πx ∈[-2,2],且在[1,5]上有两个周期,因此当x ∈[1,5]时,y=e -2(x -1)与y=2cos πx 有4个不同的交点, 从而所有零点之和为4×2=8,故选C.二、填空题13.答案为:8;解析:由f(x)=x 2-1,得f ′(x)=2x ,则x n +1=x n -x 2n -12x n =x 2n +12x n ,所以x n +1-1=(x n -1)22x n,x n +1+1=(x n +1)22x n ,所以x n +1-1x n +1+1=(x n -1)2(x n +1)2,所以ln x n +1-1x n +1+1=ln (x n -1)2(x n +1)2=2lnx n -1x n +1, 即a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列,则a 3=2×22=8.14.答案为:5;解析:方法一:以点D 为原点,分别以DA ,DC 所在直线为x ,y 轴,建立如图所示的平面直角坐标系,设DC=a ,DP=x.∴D(0,0),A(2,0),C(0,a),B(1,a),P(0,x),PA →=(2,-x),PB →=(1,a -x), ∴PA →+3PB →=(5,3a -4x),|PA →+3PB →|2=25+(3a -4x)2≥25, ∴|PA →+3PB →|的最小值为5. 方法二: 设DP →=xDC →(0<x <1),∴PC →=(1-x)DC →,PA →=DA →-DP →=DA →-xDC →,PB →=PC →+CB →=(1-x)DC →+12DA →,∴PA →+3PB →=52DA →+(3-4x)DC →,|PA →+3PB →|2=254DA →2+2×52×(3-4x)DA →·DC →+(3-4x)2DC 2→=25+(3-4x)2DC →2≥25,∴|PA →+3PB →|的最小值为5.15.答案为:±43;解析:如图,A 是切点,B 是PF 1的中点,因为|OA|=|a|,所以|BF 2|=2a ,又|F 1F 2|=2c ,所以|BF 1|=2b ,|PF 1|=4b ,又|PF 2|=|F 1F 2|=2c , 根据双曲线的定义,有|PF 1|-|PF 2|=2a ,即4b -2c=2a ,两边平方并化简得3c 2-2ac -5a 2=0,所以c a =53,因此b a =⎝ ⎛⎭⎪⎫c a 2-1=43.16.答案为:4;解析:∵S n =43()a n -1,∴S n -1=43()a n -1-1()n ≥2,∴a n =S n -S n -1=43()a n -a n -1,∴a n =4a n -1.又a 1=S 1=43()a 1-1,∴a 1=4,∴{}a n 是首项为4,公比为4的等比数列,∴a n =4n,∴()4n -2+1⎝ ⎛⎭⎪⎫16a n +1=⎝ ⎛⎭⎪⎫4n 16+1⎝ ⎛⎭⎪⎫164n +1=2+4n16+164n ≥2+2=4,当且仅当n=2时取“=”.。
“12+4”小题提速练(四)一、选择题1.(湖州模拟)已知复数z 满足(3-4i)z =25,则z =( ) A .-3-4i B .-3+4i C .3-4iD .3+4i解析:选D 由已知可得z =253-4i =253+4i3-4i 3+4i=3+4i,故选D. 2.(贵阳模拟)设集合A ={x |(x -1)(x +2)<0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -3<0,则A ∪B =( ) A .(-2,1) B .(-2,3) C .(-1,3)D .(-1,1)解析:选B A ={x |-2<x <1},B ={x |-1<x <3},A ∪B ={x |-2<x <3},故选B. 3.(张掖模拟)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=( ) A .-4 B .-6 C .-8D .-10解析:选B ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4,∴(a 1+4)2=a 1(a 1+6),∴a 1=-8,∴a 2=-8+2=-6. 4.(唐山模拟)执行如图所示的程序框图,当输入的n 为7时,输出的S 的值是( )A .14B .210C .42D .840解析:选B n =7,S =1,7<5?,否,S =7×1=7,n =6,6<5?,否,S =6×7=42,n =5,5<5?,否,S =5×42=210,n =4,4<5?,是,退出循环,输出的S 的值为210,选B.5.(河北五个一名校联考)在如图所示的正方形中随机投掷10 000个点,则落在阴影部分(曲线C 的方程为x 2-y =0)的点的个数约为( )A .3 333B .6 667C .7 500D .7 854解析:选B 题图中阴影部分的面积为⎠⎛01(1-x 2)dx =⎝ ⎛⎭⎪⎫x -x 33⎪⎪⎪10=23,正方形的面积为1,设落在阴影部分的点的个数为n ,由几何概型的概率计算公式可知,231=n10 000,n ≈6 667,故选B.6.已知函数f (x )=2x -1,则下列结论正确的是( ) A .函数f (x )的图象关于点(1,0)中心对称 B .函数f (x )在(-∞,1)上是增函数 C .函数f (x )的图象关于直线x =1对称D .函数f (x )的图象上至少存在两点A,B,使得直线AB∥x 轴 解析:选A 由题知,函数f (x )=2x -1的图象是由函数y =2x的图象向右平移1个单位长度得到的,可得函数f (x )的图象关于点(1,0)中心对称,选项A 正确;函数f (x )在(-∞,1)上是减函数,选项B 错误;易知函数f (x )=2x -1的图象不关于直线x =1对称,选项C 错误;由函数f (x )的单调性及函数f (x )的图象,可知函数f (x )的图象上不存在两点A,B,使得直线AB∥x 轴,选项D 错误.故选A.7.已知双曲线C :x 2m -y 2m 2+4=1的离心率为5,左、右焦点分别为F 1,F 2,则双曲线C 上满足MF 1―→·MF 2―→=0的点M 构成的图形的面积为( )A.285 B .565C.745D.965解析:选D 由题意得m >0,m +m 2+4m=5,解得m =2,所以双曲线C :x 22-y 28=1,设M(x 0,y 0),则x 202-y 208=1,因为MF 1―→·MF 2―→=0,所以x 20+y 20=10,故y 0=±4105,x 0=±3105,所以满足条件的点M 共有四个,构成一个矩形,长为8105,宽为6105,故面积为965.8.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点与虚轴的一个端点构成一个角为120°的三角形,则双曲线C 的离心率为( )A.52B .62C. 3D. 5解析:选B 设双曲线C 的左、右焦点分别为F 1,F 2,虚轴的一个端点为A,则∠F 1A F 2=120°,得cb=t an 60°,即c =3b ,a =2b ,所以双曲线C 的离心率e =62. 9.我国南北朝时期数学家、天文学家——祖暅,提出了著名的祖暅原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是两等高立方体,若在每一等高处的截面积都相等,则两立方体体积相等.已知某不规则几何体与如图所对应的几何体满足“幂势同”,则该不规则几何体的体积为( )A .4-π2B .8-4π3C .8-πD .8-2π解析:选C 由祖暅原理可知,该不规则几何体的体积与已知三视图的几何体体积相等.根据题设所给的三视图,可知图中的几何体是从一个正方体中挖去一个半圆柱,正方体的体积为23=8,半圆柱的体积为12×(π×12)×2=π,因此该不规则几何体的体积为8-π,故选C.10.(西安三模)已知O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足OP ―→=OA ―→+λ(AB ―→+AC ―→),λ∈[0,+∞),则动点P 的轨迹一定经过△ABC 的( )A .外心B .内心C .重心D .垂心解析:选C 设BC 的中点为D ,则由OP ―→=OA ―→+λ(AB ―→+AC ―→),可得AP ―→=λ(AB ―→+AC ―→)=2λAD ―→,所以点P 在△ABC 的中线AD 所在的射线上,所以动点P 的轨迹一定经过△ABC 的重心.故选C.11.已知三棱锥SABC 的每个顶点都在球O 的表面上,SA ⊥底面ABC ,AB =AC =4,BC =215,且二面角SBCA 的正切值为4,则球O 的表面积为( )A .240πB .248πC .252πD .272π解析:选D 取BC 的中点D ,连接SD,AD ,易知AD ⊥BC ,SD ⊥BC ,所以∠SDA 是二面角SBCA 的平面角,于是有t an ∠SDA=4,即SA =4AD =442-152=4.在△ABC 中,sin∠ABC =AD AB =14,由正弦定理得△ABC 的外接圆半径r =AC 2si n ∠ABC=8. 可将三棱锥SABC 补形成一个直三棱柱ABCSB′C′,其中该直三棱柱的底面为△ABC ,高为SA =4,因此三棱锥SABC 的外接球的半径R =22+82=68,因此三棱锥SABC 的外接球的表面积为4πR 2=272π,选D.12.(武昌模拟)已知函数f (x )=l n xx-kx 在区间[e 41,e]上有两个不同的零点,则实数k 的取值范围为( )A.⎣⎢⎡⎭⎪⎫14e ,12e B .⎝ ⎛⎭⎪⎫14e ,12e C.⎣⎢⎡⎦⎥⎤1e 2,14eD.⎣⎢⎡⎦⎥⎤1e 2,1e 解析:选A 令f (x )=l n x x-kx =0,则k =l n x x2,令g(x )=l n x x2,则g′(x )=⎝ ⎛⎭⎪⎫l n x x 2′=1-2l n x x3,令g′(x )=0,解得x =e 21∈[e 41,e].因为当x ∈(e 41,e 21)时,g′(x )>0,所以g(x )在(e 41,e 21)上单调递增;当x ∈(e 21,e)时,g′(x )<0,所以g(x )在(e 21,e)上单调递减.所以当x =e 21时,g(x )取得最大值g(e 21)=l n e 21e 212=12e .由题意函数f (x )=l n x x -kx 在区间[e 41,e]上有两个不同的零点,知直线y =k 与g(x )=l n x x2的图象在区间[e 41,e]上有两个不同的交点,又g(e 41)=l n e 41e 412=14e,g(e)=l n e e 2=1e 2,因为1e 2<14e,所以14e≤k <12e ,故选A.二、填空题13.若f (x )=x 2-2x -4l n x ,则f ′(x )>0的解集为________.解析:f ′(x )=2x -2-4x =2x 2-x -2x (x >0),由f ′(x )>0得2x 2-x -2x>0,解得-1<x <0或x >2,又x >0,∴f ′(x )>0的解集为{x |x >2}.答案:(2,+∞)14.已知圆O :x 2+y 2=4,若不过原点O 的直线l 与圆O 交于P,Q 两点,且满足直线OP,PQ,OQ 的斜率依次成等比数列,则直线l 的斜率为________.解析:设直线l :y =kx +b (b ≠0),代入圆的方程,化简得(1+k 2)x 2+2kbx +b 2-4=0,设P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=-2k b 1+k 2,x 1x 2=b 2-41+k 2,k OP ·k OQ =y 1x 1·y 2x 2=⎝ ⎛⎭⎪⎫k +b x 1⎝ ⎛⎭⎪⎫k +b x 2=k 2+kb ⎝ ⎛⎭⎪⎫x 1+x 2x 1x 2+b 2x 1x 2=k 2+kb ⎝ ⎛⎭⎪⎫-2k b b 2-4+b 21+k 2b 2-4=b 2-4k 2b 2-4,由k OP ·k OQ =k 2,得b 2-4k 2b 2-4=k 2,解得k =±1. 答案:±115.(高三·南宁、柳州联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0,2x -y -1≥0,x -2y +1≤0,等差数列{a n }满足a 1=x ,a 5=y ,其前n 项和为S n ,则S 5-S 2的最大值为________.解析:作出约束条件⎩⎪⎨⎪⎧x +y -5≤0,2x -y -1≥0,x -2y +1≤0表示的可行域如图中阴影部分所示.因为a 1=x ,a 5=y ,所以公差d =y -x4,S 5-S 2=a 3+a 4+a 5=3a 4=3(a 5-d )=34x +94y .设z =34x +94y ,作出直线34x +94y =0,平移该直线,当该直线经过点B (2,3)时,z 取得最大值334,即S 5-S 2的最大值为334. 答案:33416.(高三·湘东五校联考)已知f (x )=(3sin ωx +cos ωx )cos ωx -12,其中ω>0,f (x )的最小正周期为4π.(1)则函数f (x )的单调递增区间是________________;(2)锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c,若(2a -c)cos B =b cos C,则f (A)的取值范围是____________.解析:f (x )=(3sin ωx +cos ωx )cos ωx -12=32sin 2ωx +12cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π6. ∵f (x )的最小正周期为4π,∴2ω=2π4π=12,可得f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6.(1)令2k π-π2≤12x +π6≤2k π+π2,k ∈Z ,可得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤4k π-4π3,4k π+2π3,k ∈Z .(2)∵(2a -c )cos B =b cos C ,∴(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin A , 又sin A ≠0,∴cos B =12,B =π3,∵三角形ABC 为锐角三角形, ∴⎩⎪⎨⎪⎧0<A <π2,0<2π3-A <π2,∴π6<A <π2,∴π4<12A +π6<5π12,22<f (A )<6+24. 答案:(1)⎣⎢⎡⎦⎥⎤4k π-4π3,4k π+2π3,k ∈Z(2)⎝⎛⎭⎪⎫22,6+24。
“12+4”综合限时练4对应学生用书P143(满分80分,限时45分钟)一、选择题:本大题共12小题,每个小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,m ∈R ,复数z =(-m 2+3m +10)+(m 2-4m )i ,若z 为正实数,则m 的取值集合为( )A .{0}B .{0,4}C .(-2,5)D .(-5,2)解析 z 为正实数,则⎩⎪⎨⎪⎧-m 2+3m +10>0,m 2-4m =0⇒m =0或m =4.故选B.答案 B 2.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ∈(0,π)⎪⎪⎪ 12<sin θ≤1,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫φ⎪⎪⎪π4<φ<1,则集合A ∩B等于( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪ π4<θ<π2B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π6<θ<1C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪ π6<θ<π2D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪ π4<θ<1解析 ∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ∈(0,π)⎪⎪⎪ 12<sin θ≤1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪ π6<θ<5π6,∴A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π4<θ<1. 答案 D3.已知f (x )=⎩⎨⎧f (x +1)(x <1),3x (x ≥1),则f (-1+log 35)=( )A .15B .53 C .5D .15解析 f (-1+log 35)=f (-1+log 35+1)=f (log 35)=3log 35=5.故选C. 答案 C4.过抛物线y 2=mx (m >0)的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,|PQ |=54m ,则m 等于( )A .4B .6C .8D .10解析 因为y 2=mx ,所以焦点到准线的距离p =m2, 设P ,Q 的横坐标分别是x 1,x 2, 则x 1+x 22=3,即x 1+x 2=6.因为|PQ |=54m ,所以x 1+x 2+p =54m , 即6+m 2=54m ,解得m =8. 答案 C5.(2x +1)⎝ ⎛⎭⎪⎫1-1x 6的展开式中的常数项是( )A .-5B .7C .-11D .13 解析 ∵⎝ ⎛⎭⎪⎫1-1x 6的展开式的通项公式是C k 6·⎝ ⎛⎭⎪⎫-1x k ,其中含1x 的项是C 16⎝ ⎛⎭⎪⎫-1x 1,常数项为C 06·⎝ ⎛⎭⎪⎫-1x 0=1,故(2x +1)⎝ ⎛⎭⎪⎫1-1x 6的展开式中的常数项是2x ×⎣⎢⎡⎦⎥⎤C 16⎝ ⎛⎭⎪⎫-1x 1+1×1=-12+1=-11.答案 C6.如图,棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为线段AB 1上的动点,则下列结论错误的是( )A .存在点P ,使DC 1⊥D 1PB .存在点P ,使平面D 1A 1P ⊥平面A 1APC .存在点P ,使∠A 1PD >90° D .A 1P +PD 的最小值为2解析 把△A 1AB 1与四边形AB 1C 1D 展开到同一平面,连接A 1D 交AB 1于点P ,此时A 1P +PD 的值最小,为2+ 2.故选D.答案 D7.一排12个座位坐了4个小组的成员,每个小组都是3人,若每个小组的成员全坐在一起,则不同的坐法种数为( )A .A 33(A 44)3B .A 44(A 33)4C.A 1212A 33D .A 1212A 44解析 12个座位坐了4个小组的成员,每个小组都是3人,操作如下:先分别把第1,2,3,4个小组的3个人安排坐在一起,各有A 33种不同的坐法,再把这4个小组进行全排列,有A 44种不同的排法.根据分步乘法计数原理得,每个小组的成员全坐在一起共有(A 33)4A 44种不同的坐法.答案 B8.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1解析 由题意可设太阳的星等为m 2,太阳的亮度为E 2,天狼星的星等为m 1,天狼星的亮度为E 1,则由m 2-m 1=52lg E 1E 2,得-26.7+1.45=52lg E 1E 2,52lg E 1E 2=-25.25,∴lg E 1E 2=-10.1,lg E 2E 1=10.1,E 2E 1=1010.1,故选A.答案 A9.魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3 072边形,并由此求得了圆周率为3.1415和3.1416这两个近似数值.如图所示是利用刘徽的割圆术设计的计算圆周率π的程序框图,若输出的n =24,则p 的值可以是(参考数据:3≈1.732,sin15°≈0.2588,sin7.5°≈0.1305,sin3.75°≈0.0654)( )A .2.6B .3C .3.1D .3.14解析 执行程序框图,可得n =6,S ≈2.598,不满足S ≥p ;n =12,S =3,不满足S ≥p (排除A 、B);n =24,S ≈3.1056,满足S ≥p (排除D).故选C.答案 C10.在△ABC 中,tan A +B2=sin C ,若AB =2,则△ABC 的周长的取值范围是( )A .(2,22]B .(22,4]C .(4,2+22]D .(2+22,6]解析 由题意可得tan A +B 2=tan ⎝ ⎛⎭⎪⎫π2-C 2=cos C 2sin C 2=2sin C 2cos C 2,则sin 2C2=12,即1-cos C 2=12,∴cos C =0,C =π2.据此可得△ABC 是以点C 为直角顶点的直角三角形, 则4=a 2+b 2=(a +b )2-2ab ≥(a +b )2-2×⎝⎛⎭⎪⎫a +b 22, 据此有a +b ≤22,∴△ABC 的周长a +b +c ≤2+2 2. 三角形满足两边之和大于第三边, 则a +b >2,∴a +b +c >4.综上可得,△ABC 周长的取值范围是(4,2+2 2 ]. 答案 C11.(2018·福州模拟)设数列{a n }的前n 项和为S n ,a n +1+a n =2n +1,且S n =1 350.若a 2<2,则n 的最大值为( )A .51B .52C .53D .54解析 因为a n +1+a n =2n +1,所以a n +1-(n +1)=-(a n -n ),所以数列{a n -n }是以-1为公比的等比数列,所以a n -n =(a 1-1)·(-1)n -1,S n -n (n +1)2=(a 1-1)·1-(-1)n 2,所以S n =n (n +1)2+(a 1-1)·1-(-1)n 2. 当n 为偶数时,n (n +1)2=1 350,无解.当n 为奇数时,n (n +1)2+(a 1-1)=1 350, 所以a 1=1 351-n (n +1)2,因为a 2<2,所以3-a 1<2,所以a 1>1.所以1 351-n (n +1)2>1,所以n (n +1)< 2 700,又n ∈N *,所以n ≤51,故选A.答案 A12.若x =2是函数f (x )=(x 2-2ax )e x 的极值点,则函数f (x )的最小值为( ) A .(2+22)e -2 B .0 C .(2-22)e2D .-e解析 ∵f (x )=(x 2-2ax )e x , ∴f ′(x )=(2x -2a )e x +(x 2-2ax )e x =[x 2+2(1-a )x -2a ]e x , 由已知得,f ′(2)=0,∴2+22-2a -22a =0,解得a =1, ∴f (x )=(x 2-2x )e x ,∴f ′(x )=(x 2-2)e x ,∴令f ′(x )=(x 2-2)e x =0,得x =-2或x =2, 当x ∈(-2,2)时,f ′(x )<0, ∴函数f (x )在(-2,2)上是减函数,当x ∈(-∞,-2)或x ∈(2,+∞)时,f ′(x )>0, ∴函数f (x )在(-∞,-2),(2,+∞)上是增函数. 又当x ∈(-∞,0)∪(2,+∞)时,x 2-2x >0,f (x )>0, 当x ∈(0,2)时,x 2-2x <0,f (x )<0,∴f (x )min 在x ∈(0,2)上,又当x ∈(0,2)时,函数f (x )单调递减, 当x ∈(2,2)时,函数f (x )单调递增, ∴f (x )min =f (2)=(2-22)e 2.答案 C二、填空题:本大题共4小题,每个小题5分,共20分.13.已知正方形ABCD 的边长为1,P 为平面ABCD 内一点,则(P A →+PB →)·(PC →+PD →)的最小值为________.解析 以B 为坐标原点,BC ,BA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,则A (0,1),B (0,0),C (1,0),D (1,1), 设P (x ,y ),则P A →=(-x,1-y ),PB →=(-x ,-y ),PC →=(1-x ,-y ),PD →=(1-x,1-y ), (P A →+PB →)·(PC →+PD →)=(-2x,1-2y )·(2(1-x ),1-2y )=(1-2y )2-4(1-x )x =(1-2y )2+(2x -1)2-1,当x =12,y =12时,(P A →+PB →)·(PC →+PD →)取得最小值-1. 答案 -114.若对任意的x ∈R ,都有f (x )=f ⎝ ⎛⎭⎪⎫x -π6+f ⎝ ⎛⎭⎪⎫x +π6,且f (0)=-1,f ⎝ ⎛⎭⎪⎫π6=1,则f ⎝ ⎛⎭⎪⎫100π3的值为________.解析 因为f (x )=f ⎝ ⎛⎭⎪⎫x -π6+f ⎝ ⎛⎭⎪⎫x +π6,①所以f ⎝ ⎛⎭⎪⎫x +π6=f (x )+f ⎝ ⎛⎭⎪⎫x +π3,②①+②得,f ⎝ ⎛⎭⎪⎫x +π3=-f ⎝ ⎛⎭⎪⎫x -π6,所以f ⎝ ⎛⎭⎪⎫x +π2=-f (x ),所以f (x +π)=f (x ),所以T =π, 所以f ⎝ ⎛⎭⎪⎫100π3=f ⎝ ⎛⎭⎪⎫π3.在f (x )=f ⎝ ⎛⎭⎪⎫x -π6+f ⎝ ⎛⎭⎪⎫x +π6中,令x =π6,得f ⎝ ⎛⎭⎪⎫π6=f (0)+f ⎝ ⎛⎭⎪⎫π3,因为f (0)=-1,f ⎝ ⎛⎭⎪⎫π6=1,所以f ⎝ ⎛⎭⎪⎫π3=2,所以f ⎝ ⎛⎭⎪⎫100π3=f ⎝ ⎛⎭⎪⎫π3=2.答案 215.已知α∈⎣⎢⎡⎦⎥⎤π4,π3,β∈⎣⎢⎡⎦⎥⎤π2,π,满足sin(α+β)-sin α=2sin αcos β,则sin2αsin (β-α)的最大值为________.解析 因为sin(α+β)-sin α=2sin αcos β, 所以sin αcos β+cos αsin β-sin α=2sin αcos β, 所以cos αsin β-sin αcos β=sin α, 即sin(β-α)=sin α, 则sin2αsin (β-α)=sin2αsin α=2sin αcos αsin α=2cos α,因为α∈⎣⎢⎡⎦⎥⎤π4,π3,所以2cos α∈[1,2],所以sin2αsin (β-α)的最大值为 2.答案216.数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x |y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是________.解析 解法一:从结论“不超过”“小于”入手,利用基本不等式进行放缩,再利用图形估算面积.∵x 2+y 2=1+|x |y ≤1+|x ||y |≤1+x 2+y 22, ∴x 2+y 2≤2.①x 可能取得的整数值为±1,0,代入曲线C 的方程得整点坐标为(1,1),(1,0),(-1,1),(-1,0),(0,1),(0,-1),故①正确;②设曲线C 上任意一点到原点的距离为d ,则d 2=x 2+y 2≤2,∴d ≤2,故②正确;③由图知,图形在第一象限的面积S 1>1,图形在第四象限的面积S 4>12,由对称性得,“心形”区域面积S >⎝ ⎛⎭⎪⎫1+12×2=3,故③错误.综上可知正确的是①②.解法二:由图形封闭,结论中涉及曲线上的点到原点的距离,联想到极坐标方程.以原点为极点建立极坐标系, 则C :ρ2=1+ρ2|cos θ|sin θ, 则ρ2=11-|cos θ|sin θ.∵|cos θ|sin θ≤12|sin2θ|≤12, ∴ρ2≤2,即ρ≤2,故②正确. 由ρ≤2,知⎩⎪⎨⎪⎧x =ρcos θ≤2,y =ρsin θ≤2,经检验知共有6个整点满足条件,故①正确.在第一象限曲线C 的极坐标方程为ρ21=1+ρ21cos θ1·sin θ1,① 在第四象限曲线C 的极坐标方程为ρ24=1+ρ24cos θ4·sin θ4. 令θ4=-θ1,则ρ24=1-ρ24cos θ1·sin θ1,② 由①得ρ1-1=ρ21cos θ1·sin θ11+ρ1=cos θ1·sin θ1⎝ ⎛⎭⎪⎫1ρ12+1ρ1,由②得1-ρ4=ρ24cos θ1·sin θ11+ρ4=cos θ1·sin θ1⎝ ⎛⎭⎪⎫1ρ42+1ρ4,∵ρ1>ρ4,∴ρ1-1>1-ρ4(此时极径关于极轴对称). 如图所示,由图可知,右半部分“心形”区域面积大于半个单位圆面积,故“心形”区域面积S>2×12=π>3,故③错误.2π×1综上可知,正确结论的序号为①②.答案①②。
“12+4”小题提速综合练(五)一、选择题1.(2016·湖南模拟)已知全集U=R,集合A={x|y=lg(x-1)},集合B={y|y=x2+2x+5},则A∩B=()A.∅B.(1, 2]C.[2,+∞) D.(1,+∞)解析:选C由x-1>0,得x>1,故集合A=(1,+∞),又y=x2+2x+5=(x+1)2+4≥4=2,故集合B=[2,+∞),所以A∩B=[2,+∞),故选C.2.(2016·开封模拟)已知直线y=kx+1与曲线y=x3+mx+n相切于点A(1,3),则n=()A.-1 B.1C.3 D.4解析:选C对于y=x3+mx+n,y′=3x2+m,∴k=3+m,又k+1=3,1+m+n=3,可解得n=3.3.(2016·广州五校联考)以下有关命题的说法错误的是()A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.“x=1”是“x2-3x+2=0”的充分不必要条件C.若p∨q为假命题,则p,q均为假命题D.对于命题p:∃x∈R,使得x2+x+1<0,则綈p:∀x∈R,均有x2+x+1>0解析:选D选项D中綈p应为:∀x∈R,均有x2+x+1≥0.故选D.4.(2016·深圳调研)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B 由于三视图可见部分用实线画出,不可见部分用虚线画出,故选B .5.(2016·山西四校二模)已知a ,b 为正实数,且ab =1,若不等式(x +y )·⎝⎛⎭⎫a x +b y >m 对任意正实数x ,y 恒成立,则实数m 的取值范围是( )A .[4,+∞)B .(-∞,1]C .(-∞,4]D .(-∞,4)解析:选D 因为a ,b ,x ,y 为正实数,所以(x +y )·⎝⎛⎭⎫a x +b y =a +b +ay x +bx y≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bxy ,即a =b ,x =y 时等号成立,故只要m <4即可.6.(2016·太原模拟)某同学进入高三后,4次月考的数学成绩的茎叶图如图.则该同学数学成绩的方差是( )A .125B .5 5C .45D .3 5解析:选C 由茎叶图知平均值为x =114+126+128+1324=125,∴s 2=14[(125-114)2+(125-126)2+(125-128)2+(125-132)2]=45.7.(2016·天津模拟)已知数列{a n }的前n 项和为S n ,点(n ,S n )在函数f (x )=⎠⎛1x (2t +1)d t的图象上,则数列{a n }的通项公式为( )A .a n =2n -2B .a n =n 2+n -2C .a n =⎩⎪⎨⎪⎧0,n =12n -1,n ≥2D .a n =⎩⎪⎨⎪⎧0,n =12n ,n ≥2解析:选D f(x)=⎠⎛1x (2t +1)d t =(t 2+t)| x 1=x 2+x -2,由于点(n ,S n )在函数f(x)的图象上,则S n =n 2+n -2,当n =1时,得a 1=S 1=0,当n ≥2时,得a n =S n -S n -1=n 2+n -2-[(n -1)2+(n -1)-2]=2n.故选D .8.过坐标原点O 作单位圆x 2+y 2=1的两条互相垂直的半径OA ,OB ,若在该圆上存在一点C ,使得OC ―→=a OA ―→+b OB ―→(a ,b ∈R),则以下说法正确的是( )A .点P (a ,b )一定在单位圆内B .点P (a ,b )一定在单位圆上C .点P (a ,b )一定在单位圆外D .当且仅当ab =0时,点P (a ,b )在单位圆上解析:选B 使用特殊值方法求解.设A (1,0),B (0,-1),则OC ―→=a OA ―→+b OB ―→=(a ,-b ).∵C 在圆上,∴a 2+b 2=1,∴点P (a ,b )在单位圆上,故选B .9.(2016·河南八市联考)已知f (x )=14x 2+cos x ,f ′(x )为f (x )的导函数,则f ′(x )的图象是( )解析:选A 因为f (x )=14x 2+cos x ,所以f ′(x )=12x -sin x ,这是一个奇函数,其图象关于原点对称,故排除B 、D ;当x =π6时,f ′(x )=π12-12<0,故排除C ,选A .10.(2016·赤峰模拟)已知函数f (x )=3sin 2x +cos 2x -m 在⎣⎡⎦⎤0,π2上有两个零点x 1,x 2,则tan x 1+x 22的值为( )A . 3B .22C .32D .33解析:选D ∵f (x )=3sin 2x +cos 2x -m =2sin ⎝⎛⎭⎫2x +π6-m , ∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6. ∴-1≤2sin ⎝⎛⎭⎫2x +π6≤2. ∵f (x )在⎣⎡⎦⎤0,π2上有两个零点x 1,x 2, ∴函数y =m 与y =3sin 2x +cos 2x 在⎣⎡⎦⎤0,π2上有两个交点,如图,∴x 1+x 2=π3.∴tan x 1+x 22=tan π6=33.11.(2016·宁夏吴忠联考)如图,某海上缉私小分队驾驶缉私艇以40 km/h 的速度由A 处出发,沿北偏东60°方向进行海面巡逻,当航行半小时到达B 处时,发现北偏西45°方向有一艘船C ,若船C 位于A 的北偏东30°方向上,则缉私艇所在的B 处与船C 的距离是( )A .5(6+2) kmB .5(6-2) kmC .10(6-2) kmD .10(6+2) km解析:选C 由题意,知∠BAC =60°-30°=30°,∠ABC =30°+45°=75°,∠ACB =180°-75°-30°=75°,∴AC =AB =40×12=20(km).由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =202+202-2×20×20×cos 30°=800-4003=400(2-3),∴BC =400(2-3)=200(3-1)2=102(3-1)=10(6-2)km.故选C .12.(2016·长春模拟)过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1作切线,切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .19解析:选B 由题可知,|PM |2-|PN |2=(|PC 1|2-4)-(|PC 2|2-1),因此|PM |2-|PN |2=|PC 1|2-|PC 2|2-3=(|PC 1|-|PC 2|)(|PC 1|+|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|-3=13.故选B .二、填空题13.(2016·广西模拟)包括甲、乙、丙三人在内的4个人任意站成一排,则甲与乙、丙都相邻的概率为________.解析:4个人的全排列种数为A 44,甲与乙、丙都相邻的排法有A 22A 22种,则所求概率为A 22A 22A 44=16. 答案:1614.(2017·昆明调研)⎝⎛⎭⎫2x +x (1-x )4的展开式中x 的系数是________.解析:(1-x )4展开式的通项公式T r +1=C r 4(-x )r =(-1)r C r 4x r 2.所以⎝⎛⎭⎫2x +x (1-x )4的展开式中含x 的项为2x ·(-1)4C 44x 2+x =2x ·x 2+x =3x ,故系数是3.答案:315.(2016·武汉调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则z =x +2y 的最小值为________.解析:作出不等式组表示的可行域,如图阴影部分所示. 在可行域内平移直线x +2y =0,当其经过x +y -2=0与y =1的交点A (1,1)时,z =x +2y 有最小值3.答案:316.(2017·开封模拟)设函数f (x )(x ∈R)满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在⎣⎡⎦⎤-12,32上的零点个数为________.解析:选B 由题意知函数f (x )是偶函数,且周期是2.作出g (x ),f (x )的函数图象如图所示.由图可知函数y =g (x ),y =f (x )在⎣⎡⎦⎤-12,32上图象有6个交点,故h (x )=g (x )-f (x )在⎣⎡⎦⎤-12,32上的零点有6个. 答案:6。
“12+4”小题综合提速练(七)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -1≤0,B ={0,1,2,3},则A ∩B =( ) A .{-1,0,1} B .{0,1} C .{-1,0} D .{0}解析:解不等式x +1x -1≤0,可得-1≤x <1, 所以集合A ={x |-1≤x <1},又B ={0,1,2,3}, 利用交集中元素的特征,求得A ∩B ={0},故选D. 答案:D2.(2018·某某模拟)已知复数z =1-2i22+i ,则复数z 的模为( )A .5 B. 5 C.310D.52 解析:由题意知, z =1-2i 22+i=1-4-4i 2+i =-3-4i 2+i =-3-4i2-i5=-6-4-5i 5=-2-i ,所以|z |=4+1=5,故选B. 答案:B3.某珠宝店丢了一件珍贵珠宝,以下四人中只有一个人说了真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是( ) A .甲 B .乙 C .丙D .丁解析:假如甲说了真话,则乙、丙、丁都说了假话,那么丙不是小偷,丁不是小偷,丁偷了珠宝,显然矛盾,故甲说了假话,即甲是小偷,故选A.4.(2018·某某模拟)已知等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=3S 3,则a 4=( ) A .2 B. 2 C .4D .1解析:a 4+a 5+a 6=2(a 1+a 2+a 3),即q 3=2, 所以a 4=a 1q 3=2,故选A. 答案:A5.(2018·某某模拟)已知cos ⎝ ⎛⎭⎪⎫π4-α=45,则sin 2α=( )A .-725B.725C .-15D.15解析:因为cos(π4-α)=45,所以cos α+sin α=425,将式子两边平方得1+2sin αcos α=3225,所以sin 2α=725,故选B.答案:B6.(2018·某某模拟)非零向量a ,b 满足:|a -b |=|a |,a ·(a -b )=0,则a -b 与b 夹角的大小为( ) A .135˚ B .120˚ C .60˚D .45˚解析:因为a ·(a -b )=0,即a 2-a ·b =0, 因为|a |=|a -b |,可得a 2=a 2-2a ·b +b 2, 整理可得b 2=2a ·b ,所以有|b |=2|a |, 设a -b 与b 的夹角为θ,则有cos θ=a -b ·b |a -b ||b |=a ·b -b 2|a ||b |=a 2-2a 22|a |2=-22, 又因为θ∈[0˚,180˚],所以θ=135˚,故选A. 答案:A7.(2018·某某调研)如图是某几何体的三视图,则该几何体的体积为( )A.73B.83C.93D.103解析:根据题中所给的几何体的三视图,可知其可以由正方体切割而成,最后切割的结果为底面ABCD 是完整的,其余两个顶点分别是正对内侧的两条竖直方向的棱中点和端点,在求其体积时,过底面的对角线竖直方向切开,切为一个四棱锥和一个三棱锥, 最后求得体积V =13×12×(1+2)×2×2+13×12×2×2×1=83,故选B.答案:B8.(2018·某某模拟)下列命题中,真命题的个数是( )①已知直线l 1:mx +(m +1)y +2=0,l 2:(m +1)x +(m +4)y +3=0,则“m =-2”是“l 1⊥l 2”的充要条件;②“若am 2≤bm 2,则a ≤b ”的逆否命题为真命题;③命题“若a 2+b 2=0,则a =b =0”的否命题是“若a 2+b 2≠0,则a ,b 至少有一个不等于0”;④命题p :∀x ∈[1,+∞),ln x >0,则綈p :∃x 0∈[1,+∞),ln x 0<0. A .0 B .1 C .2D .3解析:①直线l 1⊥l 2⇔m (m +1)+(m +1)(m +4)=0,即m =-1或m =-2,因此题中应是充分不必要条件,①错误;②若am 2≤bm 2,因为m 2≥0,所以a ≤b ,是真命题,因此其逆否命题也是真命题,②正确; ③正确;④綈p 是:∃x 0∈[1,+∞),ln x 0≤0,④错误.所以有两个命题正确, 故选C. 答案:C9.(2018·某某模拟)执行下面的程序框图,若输入S ,a 的值分别为1,2,输出的n 值为4,则m 的取值X 围为( )A .3<m ≤7B .7<m ≤15C .15<m ≤31D .31<m ≤63解析:根据题中所给的程序框图,可以判断出S =1+21+22+ (2),根据判断框里的条件, 就要求1+2+22<m ≤1+2+22+23, 从而求得7<m ≤15,故选B. 答案:B10.(2018·某某模拟)已知点F 1、F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,|F 1F 2|=2|OP |,△PF 1F 2的面积为4,且该双曲线的两条渐近线互相垂直,则双曲线C 的方程为( ) A.x 22-y 22=1 B.x 24-y 24=1 C.x 28-y 24=1 D.x 22-y 24=1 解析:根据题中条件|F 1F 2|=2|OP |,可以断定∠F 1PF 2=π2, 根据焦点三角形面积公式可得S △F 1PF 2=b 2tanπ4=4,可以确定b 2=4,又因为该双曲线的两条渐近线互相垂直,可知该双曲线是等轴双曲线,所以双曲线的方程为x 24-y 24=1,故选B.答案:B11.棱长为2的正方体ABCD A 1B 1C 1D 1中,E 为棱AD 中点,过点B 1(图略)且与平面A 1BE 平行的正方体的截面面积为( ) A .5 B .2 5 C .2 6D .6解析:取BC 中点M ,取A 1D 1中点N (图略),则四边形B 1MDN 即为所求的截面, 根据正方体的性质,可以求得MN =22,B 1D =23, 根据各边长,可以断定四边形B 1MDN 为菱形, 所以其面积S =12×22×23=26,故选C.答案:C12.已知定义域为R 的函数f (x )的图象经过点(1,1),且对任意实数x 1<x 2,都有f x 1-f x 2x 1-x 2>-2,则不等式f (log 2|3x -1|)<3-log 2|3x-1|的解集为( )A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:由题意,令F (x )=f (x )+2x ,由任意x <y ,f x -f yx -y>-2,可得f (x )+2x <f (y )+2y ,∴F (x )在定义域内单调递增. 由f (1)=1,得F (1)=f (1)+2=3. ∵f (log 2|3x-1|)<3-log2|3x -1|等价于f (log 2|3x -1|)+2log 2|3x-1|<3.令t =log 2|3x -1|,有f (t )+2t <3,则有t <1, 即log 2|3x-1|<1,从而|3x-1|<2,解得x <1,且x ≠0.故选A. 答案:A二、填空题(本大题共4小题,每小题5分,把答案填在相应题号后的横线上)13.(2018·某某模拟)过抛物线C :x 2=4y 的焦点F 的直线与抛物线C 交于A 、B 两点,若弦AB 中点到x 轴的距离为5,则|AB |=________.解析:根据题意可知,抛物线x 2=4y 的准线方程为y =-1,从而可以确定弦的中点到抛物线的准线的距离等于5-(-1)=6, 此时分别从A ,B 两点向准线作垂线,垂足为A ′,B ′, 根据梯形中位线的性质,可知|AA ′|+|BB ′|=2×6=12,根据抛物线的定义,可知|AB |=|AF |+|BF |=|AA ′|+|BB ′|=12,故答案是12. 答案:1214.(2018·某某模拟)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤12x +y ≥-1x -y ≤0,则 z =x -y 的最小值为________.解析:根据约束条件画出相应的可行域,可知其为一个封闭的三角形区域(如图阴影部分),由z =x -y ,可得y =x -z , 根据-z 的几何意义,可以确定其在直线x +2y =1和直线2x +y =-1的交点处取得最小值,由⎩⎪⎨⎪⎧x +2y =12x +y =-1,解得⎩⎪⎨⎪⎧x =-1y =1,代入求得z =-1-1=-2,从而确定出最小值为-2. 答案:-215.(2018·潍坊一中模拟)已知数列{a n }满足a 1=1,a n +1=2a n a n +2.记=2na n ,则数列{}的前n项和c 1+c 2+…+=________. 解析:由a n +1=2a n a n +2得1a n +1=a n +22a n =1a n +12, 所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,以12为公差的等差数列,所以1a n =n +12,即=n +12·2n =(n +1)·2n -1,记S n =c 1+c 2+c 3+…+,则S n =2·20+3·21+4·22+…+(n +1)·2n -1 (1),式子两边都乘以2得2S n =2·21+3·22+4·23+…+(n +1)·2n(2), 两式相减得, -S n =2+21+22+…+2n -1-(n +1)·2n =-n ·2n,所以S n =n ·2n . 答案:n ·2n16.(2018·某某模拟)已知定义在R 上的函数f (x )满足:f (1+x )=f (1-x ),在[1,+∞)上为增函数;若x ∈[12,1]时,f (ax )<f (x -1)成立,则实数a 的取值X 围为________.解析:根据题意,可知函数f (x )的图象关于直线x =1对称, 因为其在[1,+∞)上为增函数,则在(-∞,1)上是减函数, 并且距离自变量离1越近,则函数值越小,由f (ax )<f (x -1)可得,|ax -1|<|x -1-1|,化简得|ax -1|<|x -2|, 因为x ∈[12,1],所以|x -2|=2-x ,所以该不等式可以化为x -2<ax -1<2-x ,即不等式组⎩⎪⎨⎪⎧a -1x >-1a +1x <3在x ∈[12,1]上恒成立,从而有⎩⎪⎨⎪⎧a -1×12>-1a -1×1>-1a +1×12<3a +1×1<3,解得0<a <2,故答案为(0,2).答案:(0,2)。
“12+4”小题综合提速练(一)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018·广西三校联考)如果集合M ={}x |y =5x -20,集合N ={}x |y =log 3x ,则M ∩N =( )A .{x |0<x <4}B .{x |x ≥4}C .{x |0<x ≤4}D .{x |0≤x ≤4}解析:由5x -20≥0,得x ≥4,∴M ={x |x ≥4},N ={x |x >0},∴M ∩N ={x |x ≥4},故选B. 答案:B2.已知复数z 满足z (1-i)2=1+i(i 为虚数单位),则|z |为( ) A.12 B.22C. 2D .1解析:由z (1-i)2=1+i ,得:z =1+i -2i =-12+12i ,∴|z |=-122+122=22.故选B. 答案:B3.(2018·石家庄二中模拟)已知命题p :∃x 0∈(0,+∞),ln x 0=1-x 0,则命题p 的真假及綈p 依次为( )A .真;∃x 0∈(0,+∞),ln x 0≠1-x 0B .真;∀x ∈(0,+∞),ln x ≠1-xC .假;∀x ∈(0,+∞),ln x ≠1-xD .假;∃x 0∈(0,+∞),ln x 0≠1-x 0解析:当x 0=1时,ln x 0=1-x 0=0,故命题p 为真命题; ∵p :∃x 0∈(0,+∞),ln x 0=1-x 0, ∴綈p :∀x ∈(0,+∞),ln x ≠1-x .故选B. 答案:B4.(2018·大连八中模拟)若等比数列{a n }的前n 项和为S n ,a 1=2,S 3=6,则S 4=( ) A .10或8 B .-10 C .-10或8D .-10或-8解析:设等比数列的公比为q ,则2+2q +2q 2=6, 解得q =1或q =-2.当q =1时,S 4=S 3+2=8;当q =-2时,S 4=S 3+a 1q 3=-10.故选C. 答案:C5.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43B .-34C. 3D .2解析:因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43. 答案:A6.函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1log 2x -1,x >1,则f ⎣⎢⎡⎦⎥⎤f52=( ) A .-12B .-1C .-5D.12解析:∵f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1log 2x -1,x >1,∴f (52)=log 232,f ⎣⎢⎡⎦⎥⎤f52=f (log 232)==-12.故答案为A. 答案:A7.在下列命题中,属于真命题的是( ) A .直线m ,n 都平行于平面α,则m ∥nB .设αl β是直二面角,若直线m ⊥α,则m ∥β,C .若直线m ,n 在平面α内的射影依次是一个点和一条直线,(且m ⊥n ),则n 在α内或n 与α平行D .设m ,n 是异面直线,若m 与平面α平行,则n 与α相交解析:直线m ,n 都平行于平面α,则m ,n 可平行,可异面,可相交;设αl β是直二面角,若直线m ⊥α,则m ∥β或m ⊂β;直线m 在平面α内的射影是一个点,所以m ⊥α,又m ⊥n ,所以n 在α内或n 与α平行;m ,n 是异面直线,若m 与平面α平行,则n 与α相交或n ⊂α,因此选C.答案:C8.2017年8月1日是中国人民解放军建军90周年纪念日,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22 mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A.726π5 mm 2B.363π10 mm 2C.363π5mm 2D.363π20mm 2解析:由题意可知,纪念币的直径为22毫米,所以纪念币的面积为π·⎝ ⎛⎭⎪⎫2222=121π平方毫米,又向硬币内随机投掷芝麻100次,恰有30次芝麻落在军旗内, 则芝麻落在军旗内的概率是30100=310,所以军旗的面积大约为121π·310=363 π10平方毫米.故本题正确答案为B. 答案:B9.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为( )A .7B .9C .10D .11答案:B10.(2018·天津市八校联考)函数f (x )=A sin(ωx +φ),(其中A >0,ω>0,|φ|<π2)的一部分图象如图所示,将函数图象上的每一个点的纵坐标不变,横坐标伸长为原来的2倍,得到的图象表示的函数可以为( )A .f (x )=sin ⎝⎛⎭⎪⎫x +π3B .f (x )=sin ⎝⎛⎭⎪⎫4x +π3 C .f (x )=sin ⎝⎛⎭⎪⎫x +π6 D .f (x )=sin ⎝ ⎛⎭⎪⎫4x +π6 解析:由题意得A =1,T =5π6-⎝ ⎛⎭⎪⎫-π6=π⇒ω=2πT =2,φω=|-π6|⇒φ=π3, f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3⇒y =sin ⎝ ⎛⎭⎪⎫2x 2+π3=sin ⎝⎛⎭⎪⎫x +π3,选A. 答案:A11.设F 1和F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,若F 1,F 2,P (0,2b )是正三角形的三个顶点,则双曲线的渐近线方程是( ) A .y =±33x B .y =±3x C .y =±217x D .y =±213x 解析:若F 1,F 2,P (0,2b )是正三角形的三个顶点, 设F 1(-c,0),F 2(c,0),则|F 1P |=c 2+4b 2, ∵F 1、F 2、P (0,2b )是正三角形的三个顶点, ∴c 2+4b 2=2c ,∴c 2+4b 2=4c 2, ∴c 2+4(c 2-a 2)=4c 2, ∴c 2=4a 2,即c =2a ,b =c 2-a 2=3a ,∴双曲线的渐近线方程为y =±b ax ,即为y =±3x , 故选B. 答案:B12.(2018·石家庄二中模拟)已知函数f (x )满足对任意实数m ,n ,都有f (m +n )=f (m )+f (n )-1,设g (x )=f (x )+a xa x +1(a >0,a ≠1),若g (ln 2 017)=2 018,则g ⎝ ⎛⎭⎪⎫ln 12 017=( )A .2 017B .2 018C .-2 016D .-2 015解析:f (m +n )=f (m )+f (n )-1中令m =n =0得f (0)=1,再令m =x ,n =-x 得:f (x )+f (-x )=2,设h (x )=a xa x +1,则h (x )+h (-x )=1,所以g (x )+g (-x )=f (x )+f (-x )+h (x )+h (-x )=3,所以g ⎝ ⎛⎭⎪⎫ln 12 017=g (-ln 2 017)=3-g (ln 2 017)=-2 015.故选D. 答案:D二、填空题(本大题共4小题,每小题5分,把答案填在相应题号后的横线上)13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0x -y +1≥0x ≤3,若z =mx +y 的最小值为-3,则m 的值为________.解析:由x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0x -y +1≥0x ≤3,作出可行域如图:联立⎩⎪⎨⎪⎧x =3x +y =2,解得A (3,-1),化目标函数z =mx +y 为y =-mx +z ,目标函数的最小值就是函数在y 轴上的截距最小,最小值为:-3,由图可知,m <0,使目标函数取得最小值的最优解为A (3,-1),把A (3,-1)代入z =mx +y =-3,求得m =-23.答案:-2314.已知直线l :x -3y =0与圆C :(x-2)2+y 2=4交于O ,A 两点(其中O 是坐标原点),则圆心C 到直线l 的距离为________,点A 的横坐标为________.解析:∵圆C :(x -2)2+y 2=4,∴C (2,0),由点到直线的距离公式可得C 到直线l 的距离为d =|2-0|2=1,由⎩⎨⎧x -3y =0x -22+y 2=4,得O (0,0),A (3,3),A 的横坐标为3.答案:1 315.已知△ABC 的周长为2+1,面积为16sin C ,且sin A +sin B =2sin C ,则角C 的值为________.解析:设△ABC 三个内角A 、B 、C 所对的边分别为a 、b 、c ,则a +b +c =2+1,又sin A +sin B =2sin C ,根据正弦定理得:a +b =2c ,则c =1,a +b =2,S △ABC =12ab sin C =16sin C ,ab =13,cos C =a 2+b 2-c 22ab=a +b 2-2ab -c 22ab =2-23-123=12,所以C =π3.答案:π316.(2018·南宁模拟)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点.现在沿AE 、AF 及EF 把这个正方形折成一个空间图形,使B 、C 、D 三点重合,重合后的点记为H .下列说法错误的是________(将符合题意的选项序号填到横线上).①AG ⊥△EFH 所在平面;②AH ⊥△EFH 所在平面;③HF ⊥△AEF 所在平面;④HG ⊥AEF 所在平面.解析:根据折叠前、后AH ⊥HE ,AH ⊥HF 不变,又HE ∩HF =H ,∴AH ⊥平面EFH ,②正确.∵过A 只有一条直线与平面EFH 垂直,∴①不正确.∵AG ⊥EF ,EF ⊥GH ,AG ∩GH =G ,∴EF ⊥平面HAG ,又EF ⊂平面AEF ,∴平面HAG ⊥平面AEF ,过H 作直线垂直于平面AEF ,一定在平面HAG 内,∴③不正确. 由条件证不出HG ⊥平面AEF ,∴④不正确.答案:①③④。