7-1-2压杆稳定及欧拉公式解析
- 格式:ppt
- 大小:1.14 MB
- 文档页数:1
压杆稳定问题中,欧拉公式成立的条件(一)压杆稳定问题中,欧拉公式成立的条件1. 引言在静力学中,我们经常遇到压杆稳定问题。
欧拉公式是研究压杆稳定性的重要工具之一。
本文将阐述欧拉公式成立的条件。
2. 什么是欧拉公式?欧拉公式是描述弹性直杆稳定性的一种公式。
它的数学表达式为:Fcr = (π² * E * I) / L²其中,Fcr代表临界压力,E是弹性模量,I是截面惯性矩,L是杆件的有效长度。
3. 欧拉公式的作用欧拉公式可以用来判断压杆在不同条件下是否会发生稳定失效。
当施加的压力小于临界压力时,压杆稳定;当施加的压力大于临界压力时,压杆会发生屈曲失稳。
4. 欧拉公式的前提条件要保证欧拉公式成立,有以下几个关键的前提条件:•材料是均匀的弹性材料;•杆件是直线型的;•杆件的截面是均匀的;•杆件的两端是固定的。
如果以上条件不满足,欧拉公式可能不适用,需要采用其他方法进行稳定性分析。
5. 欧拉公式的局限性尽管欧拉公式在很多情况下都具有很好的适用性,但也存在一些局限性:•欧拉公式忽略了杆件在屈曲时的非线性行为,因此在较大的弯曲时可能不准确;•欧拉公式适用于线弹性材料,在非线性材料中应用时需要额外的修正或采用其他方法。
6. 结语欧拉公式提供了一种简单但有效的判断压杆稳定性的方法。
在满足一定的前提条件下,我们可以使用欧拉公式来判断压杆是否会发生屈曲失稳。
然而,在实际工程中,我们需要根据具体情况进行综合分析,避免忽略其他因素的影响。
参考文献: [1] 郭华东. 弹性力学[M]. 北京:高等教育出版社, 2014. [2] Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability[M]. McGraw-Hill.以上为本文的主要内容,通过介绍欧拉公式的成立条件,我们可以更好地理解压杆稳定问题。
希望这篇文章对您有所帮助!。
第七章压杆稳定一、压杆稳定的基本概念受压直杆在受到干扰后,由直线平衡形式转变为弯曲平衡形式,而且干扰撤除后,压杆仍保持为弯曲平衡形式,则称压杆丧失稳定,简称失稳或屈曲。
压杆失稳的条件是受的压力P P cr。
P cr称为临界力。
二、学会各种约束情形下的临界力计算压杆的临界力P cr cr A,临界应力cr 的计算公式与压杆的柔度所处的范围有关。
以三号钢的压杆为例:p ,称为大柔度杆,cr 22Es p ,称为中柔度杆,cr a b s ,称为小柔度杆,crs 。
三、压杆的稳定计算有两种方法1)安全系数法n P P cr n st,n st为稳定安全系数。
2)稳定系数法PP [ ] st [ ] ,为稳定系数A四、学会利用柔度公式,提出提高压杆承载能力的措施根据l,i A I,愈大,则临界力(或临界应力)愈低。
提高压杆承载能力的措施为:1)减小杆长。
2)增强杆端约束。
3)提高截面形心主轴惯性矩I。
且在各个方向的约束相同时,应使截面的两个形心主轴惯性矩相等。
4)合理选用材料。
§15-1 压杆稳定的概念构件除了强度、刚度失效外,还可能发生稳定失效。
例如,受轴向压力的细长杆,当压 力超过一定数值时, 压杆会由原来的直线平衡形式突然变弯 (图 15-1a ),致使结构丧失承载能力;又如,狭长截面梁在横向载荷作用下,将发生平面弯曲,但当载荷超过一定数值时, 梁的平衡形式将突然变为弯曲和扭转 (图 15-1b );受均匀压力的薄圆环, 当压力超过一定数 值时, 圆环将不能保持圆对称的平衡形式,而突然变为非圆对称的平衡形式 (图 15-1c )。
上 述各种关于 平衡形式的突然变化 ,统称为 稳定失效 ,简称为 失稳或屈曲 。
工程中的柱、 桁架 中的压杆、薄壳结构及薄壁容器等,在有压力存在时,都可能发生失稳。
由稳定平衡转变为不稳定平衡时所 受的轴向压力,称为临界载荷,或简称 为临界力 ,用 P cr 表示。
第七章压杆稳定本章重点介绍有关压杆稳定的基本概念和压杆临界力的计算方法,简单说明其它形式构件的稳定性问题。
第一节压杆稳定的概念考察图7-1所示的受压理想直杆,当压力F小于某一数值时,在任意小的扰动下,压杆偏离其直线平衡位置,产生轻微弯曲,当扰动除去后,压杆又回到原来的直线平衡位置。
这表明压杆的直线平衡是稳定的。
当压力逐渐增加达到一定数值时,压杆在外界扰动下,偏离直线平衡位置,扰动去除,则不能再回到原来的直线平衡位置,而在某一弯曲状态下达到新的平衡,因此称该直线平衡是不稳定的。
从稳定平衡状态过渡到不稳定平衡状态的压力极限值,称为临界载荷或临界力,用F cr表示。
压杆丧失直线形式平衡状态的现象称为丧失稳定,简称失稳。
图7-1杆件失稳后,压力的微小增加将引起弯曲变形的显著增大,从而使杆件丧失承载能力。
但细长压杆失稳时,杆内的应力不一定高,有时甚至低于材料的比例极限。
可见,压杆失稳并非强度不足,而是区别于强度、刚度失效的又一种失效形式。
由于压杆稳定是突然发生的,因此所造成的后果也是严重的。
历史上瑞士和俄国的铁路桥,都发生过因为桥桁架中的压杆失稳而酿成的重大事故。
因此在工程实际中,对于压杆稳定性问题必须充分重视。
当压杆的材料、尺寸和约束等情况已经确定时,临界力是一个确定的值。
因此可根据杆件实际的工作压力是小于还是大于压杆的临界力,来判断压杆是稳定的还是不稳定的。
可见解决压杆稳定的关键问题是确定压杆的临界力。
第二节细长压杆的临界载荷一、两端铰支细长压杆的临界力取一根两端为球铰的细长压杆,使其处于微弯的平衡状态,选取相应的坐标系(图7-2a)。
考察微弯状态下任意一段压杆的平衡(图7-2 b),则杆件横截面上的弯矩为(a)根据挠曲线近似微分方程,有(b)将式(a)代入式(b),有(c)其中(d)微分方程(c)的一般解为(e)其中C1、C2常数,可根据两端支承的约束边界条件确定,在两端铰支的情况下,边界条件为(0)=(l)=0将微分方程的解代入,得C2=0, C1sinkl=0 (f)后式表明,C1或者sinkl等于零。
压杆稳定问题中,欧拉公式成立的条件压杆稳定问题中,欧拉公式成立的条件什么是压杆稳定问题?压杆稳定问题是力学中的一个经典问题。
在这个问题中,我们考虑一个竖立的杆,一个力作用在杆的一侧,试图使杆失去平衡。
我们想要确定杆将保持平衡的条件。
欧拉公式欧拉公式是数学中的一个经典公式,它描述了复数的性质。
欧拉公式如下:[ e^{ix} = (x) + i(x) ]其中,( e ) 是自然对数的底,( i ) 是虚数单位。
欧拉公式与压杆稳定问题在压杆稳定问题中,我们可以利用欧拉公式来解决该问题。
以下是欧拉公式在解决压杆稳定问题中的应用条件:1.杆的长度恒定:对于欧拉公式成立,杆的长度必须是恒定的,即不随时间变化。
2.杆的质量集中于一个点:杆上的质量应该被视为在杆的质心处集中。
如果质量分布不均匀,则需要将杆分割为多个小段,并对每个小段进行分析。
3.杆受到的外力在杆的质心处作用:外力,比如压力或重力,必须作用在杆的质心处,而不是其他位置。
如果外力不在质心处作用,我们需要将它分解为在质心处的分量。
4.杆不受其他非联系力的影响:杆只受到施加在它上面的力的影响,并且不受其他非联系力的作用,比如摩擦力或空气阻力。
在满足以上条件的情况下,我们可以应用欧拉公式来解决压杆稳定问题。
通过使用欧拉公式,我们可以将直线上的力转化为复数上的点,并利用复数的性质进一步分析问题。
总结压杆稳定问题中,欧拉公式成立的条件包括杆的长度恒定、杆的质量集中于一个点、杆受到的外力在杆的质心处作用以及杆不受其他非联系力的影响。
在这些条件下,我们可以应用欧拉公式来解决压杆稳定问题,并利用复数的性质进行分析。
欧拉公式的应用在压杆稳定问题中,我们可以将欧拉公式应用于以下方面:1. 力的分解通过将外力分解为在杆上的水平和垂直分量,我们可以利用欧拉公式来求解杆的受力情况。
将外力分解为复数形式,我们可以根据欧拉公式中的正余弦关系,计算出杆在水平和垂直方向上的力。
2. 力的合成通过利用欧拉公式中复数的加法和乘法法则,我们可以将杆受到的多个力合成为一个力。
压杆稳定欧拉公式首先,我们来看一下欧拉公式的表达式。
欧拉公式被记作:e^iπ+1=0e^(ix) = cos(x) + i*sin(x)这个表达式将指数函数e^(ix)分解为一个实部cos(x)和一个虚部sin(x)之和。
这个等式揭示了欧拉公式与三角函数之间紧密的关系。
特别地,当x取π时,欧拉公式退化为欧拉恒等式(Euler's identity):e^(iπ)+1=0这个等式表明,虚数单位i的指数函数e^(ix)在π这一特殊点上等于-1、这就是为什么欧拉公式通常被表达为e^(iπ) + 1 = 0。
欧拉公式在数学中的应用非常广泛,特别是在压杆稳定问题中。
压杆稳定问题是一个研究结构力学的经典难题,主要探讨物体在受外力作用下的平衡问题。
欧拉公式通过复数的指数函数形式,提供了一种简单而强大的数学工具,用于求解压杆的稳定性问题。
在压杆稳定问题中,我们可以用两个方程来描述物体的平衡条件。
第一个方程是力的平衡方程,它描述了物体在受到外力作用下的平衡状态。
第二个方程是扭矩的平衡方程,它描述了物体在受到外力作用下的旋转平衡状态。
通过这两个方程的求解,我们可以得到物体在受外力作用下的平衡状态。
欧拉公式在压杆稳定问题中的应用主要体现在力的平衡方程的求解中。
由于力是矢量,所以我们常常使用复数来表示力的方向和大小。
利用欧拉公式,我们可以将复数的指数函数形式应用到力的平衡方程中。
通过将力的分解为实部和虚部的和,我们可以方便地对力的方向和大小进行计算和求解。
另外,欧拉公式还可以在压杆稳定问题中应用于力的分析和优化。
通过对力的平衡方程进行求导和优化,我们可以得到物体受力最优的条件和方向。
这样,欧拉公式为我们提供了一种解决压杆稳定问题的数学工具和思路。
第11章压杆稳定[内容提要]稳定问题是结构设计中的重要问题之一。
本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。
11.1 压杆稳定的概念工程中把承受轴向压力的直杆称为压杆。
前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。
但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。
杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。
我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。
所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。
为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。
图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。
当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。
因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。
P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值crP时,杆件虽位置上保持平衡。
但如果继续增加荷载,当轴向压力等于某个临界值,即P=cr然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。
因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。
P=cr(a) (b) (c)图11-1 图11-2继续增大压力P ,当轴向压力P 略大于cr P 时,由于外界不可避免地给予压杆侧向的干扰作用(例如轻微的振动,初偏心存在,材料的不均匀性,杆件制作的误差等),该杆件将立即发生弯曲,甚至折断,从而杆件失去承载能力。
【陆工总结材料力学考试重点】之(第7章)压杆的稳定性问题1、压杆稳定性的特点?答:1)杆件两端受轴向压缩载荷作用;2)杆子比较细长;3)产生弯曲变形。
2、细长压杆的平衡状态?答:在F的作用下,压杆存在两种平衡状态:直线平衡状态,弯曲平衡状态。
F cr称为临界载荷,即使杆件恰好由直杆变为曲杆的压缩载荷。
压杆稳定性问题的关键就是求临界载荷F cr。
3、细长压杆的临界载荷——欧拉公式?答:细长压杆的临界载荷公式(欧拉公式):F cr=π2EI (μL)2式中:L为压杆的实际长度,μ为长度系数,μL为压杆的相当长度(有效长度),I为压杆横截面对中性轴的惯性矩,E为弹性模量。
注意:对于上图所示矩形截面压杆,有两种弯曲可能,在xz面弯曲,或yx面弯曲,具体在哪个面弯曲,取决于惯性矩I z=bℎ312和I y=ℎb312的大小。
若I y>I z,则在xz平面内弯曲;若I z>I y,则在xy平面内弯曲;即采用F cr=π2EI(μL)2计算细长压杆的临界载荷时,I取I y、I z里面的较小值。
4、不同约束的长度系数μ值?1)对于图a):细长压杆的一端为固定端约束,一端为自由端,μ=2 2)对于图b):细长压杆的两端均为铰链约束,μ=13)对于图c):细长压杆的一端为固定端约束,一端为铰链约束,μ=0.7 4)对于图d):细长压杆的两端均为固定端约束, μ=0.5约束的强弱程度顺序:固定端约束>铰链约束>自由端约束可知:约束程度越强,则μ值越小。
5、临界正应力总图?答:根据不同压杆临界正应力σcr与长细比λ之间的关系绘成图,即可得到压杆的临界正应力总图:结论:杆子长细比λ越大,临界正应力σcr(临界载荷F cr=σcr A)越小,则杆子越容易弯曲(实际经验也可知道,杆子越细越长,则越容易被压弯)。
6、压杆的稳定性计算?答:设压杆的临界载荷为F cr,压杆实际承受的工作载荷为F,定义安全系数:n=F crF(可知,对于固定的压杆,其临界载荷为一固定值,则实际承受的工作载荷越小,安全系数就越大,压杆也就越安全),出于工程安全的考虑,假设压杆所允许的工作安全系数为[n]st(大于1的数),则实际操作中就必须满足:n=F crF≥[n]st。
稳定承载力欧拉公式
稳定承载力欧拉公式(Euler's formula for stable load-bearing capacity)在工程力学中用于分析细长杆件的稳定问题。
这个公式是由瑞士数学家和物理学家莱昂哈德·欧拉(Leonhard Euler)提出的,用于计算杆件在受到压缩力时的临界载荷,即欧拉临界力。
然而,需要注意的是,通常所说的“欧拉公式”可能指的是复变函数中的欧拉公式:e^(ix) = cos(x) + i*sin(x),其中e是自然对数的底数,i是虚数单位,x是任意实数。
这个公式将复指数函数与三角函数联系起来,是复变函数理论中的一个基本公式。
在稳定承载力的语境下,欧拉公式与细长杆件的稳定性分析有关。
当一根细长的杆件(如梁或柱)受到压缩力时,如果压力过大,杆件可能会突然弯曲并失去稳定性。
这种现象称为“屈曲”或“失稳”。
欧拉公式用于计算这个临界载荷,即在何种载荷下杆件会发生屈曲。
欧拉临界力的计算公式大致为:F = π²EI / (KL)²,其中:
F 是欧拉临界力,
E 是材料的弹性模量,
I 是杆件截面关于弯曲轴的惯性矩,
K 是一个与杆件两端约束条件有关的常数(称为有效长度因子),L 是杆件的实际长度。
请注意,上述公式是一个简化模型,仅适用于理想情况下的细长杆件。
在实际应用中,可能需要考虑更多的因素,如材料的非线性行为、杆件的初始缺陷等。