初中数学微课典型案例
- 格式:doc
- 大小:18.00 KB
- 文档页数:1
初中数学优秀教案案例5篇教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
这里给大家分享一些关于初中数学优秀教案案例,方便大家学习。
初中数学优秀教案案例篇1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx 平行的一条直线。
基础训练:1、写出一个图象经过点(1,—3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k 是:5、过点(0,2)且与直线y=3x平行的直线是:6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是:7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。
初中数学微课教案设计5篇初中数学微课教案设计篇1教学目的:(一)知识点目标:1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:知道什么是正数和负数,理解数0表示的量的意义。
教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动与教师讲解相结合。
教具准备:地图册(中国地形图)。
教学过程:引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:1.自然数的产生、分数的产生。
2.章头图。
问题见教材。
让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。
根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、- 等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。
展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。
初中数学教学案例6篇教学案例简称教案,是教师在教学之后再回过头来对当时的教学情境回顾、反思而写成的文字。
以下是为大家整理的初中数学教学案例6篇,欢迎品鉴!【篇一】初中数学教学案例教学目标:1、了解公式的意义,使学生能用公式解决简单的实际问题;2、初步培养学生观察、分析及概括的能力;3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议:一、教学重点、难点重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。
如本课中梯形、圆的面积公式。
应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。
具体计算时,就是求代数式的值了。
有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。
用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。
整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。
初中数学情境导入精彩案例数学是一门既有理论基础又有实际应用的科学,很多时候学生在学习数学时会觉得枯燥乏味。
为了激发学生对数学的兴趣,老师可以通过引入精彩的数学案例,营造出一种情境,在实际生活中应用数学知识,使学生能够更好地理解和应用数学知识。
下面是一个初中数学情境导入的精彩案例,希望能够激发你的兴趣和思考。
案例:糖果的研究在一个小小村庄里,住着一位数学爱好者,他非常热爱数学,并常常用数学知识来解决实际问题。
这一天,他的邻居送给他一袋糖果,里面有不同颜色和形状的糖果。
数学爱好者拿到糖果后,出于求知欲望,开始研究这些糖果。
他把所有糖果一个一个地取出来,仔细观察了它们的形状和颜色,然后将它们分成了三堆。
第一堆是红色的糖果,形状是正方形的;第二堆是绿色的糖果,形状是圆形的;第三堆是蓝色的糖果,形状是长方形的。
数学爱好者继续研究,他发现每一种糖果的颜色和形状都是有一定规律的。
他统计了一下各种糖果的数量:红色正方形糖果有9个绿色圆形糖果有16个蓝色长方形糖果有25个数学爱好者好奇地想要知道,这袋糖果共有多少个糖果呢?他思考了一会儿,想到了一个数学方法,乘法。
他牢牢记住了这样一条规律:两个数相乘,代表了这两个数的个数的总和。
于是,他将红色正方形糖果的个数(9个)和绿色圆形糖果的个数(16个)相乘,得到了一个结果。
再将这个结果和蓝色长方形糖果的个数(25个)相乘,就得到了最终的答案。
数学爱好者计算了一下,得出的结果是:9×16×25=3600于是,他得出结论:这袋糖果一共有3600个。
通过这个精彩的数学情境导入案例,学生可以在实际生活中应用数学知识,体会数学在解决问题中的重要性和实用性。
数学爱好者通过统计和比较数量,运用乘法规律计算出了最终的结果,使学生对乘法的运用方式有了更深刻的理解。
通过此案例的引入,在解决其他数学问题时,学生可以运用类似的思路和方法,将抽象的数学知识与具体情境相结合,从而更好地理解和应用数学知识。
初中数学教学案例第一篇:初中数学教学案例——整数的加减法教学一、教学目标:1.了解整数的概念及其在实际生活中的运用。
2.掌握整数的加减法运算规律。
3.能够解决整数加减法运算实际问题。
二、教学内容:1.整数的概念及运用。
2.整数的加减法运算规律。
3.整数加减法运算实际问题的解决。
三、教学方法:1.概念讲解法。
2.板书法。
3.示范演示法。
4.课堂练习方法。
四、教学步骤:1.导入。
教师通过巧妙的导入,介绍整数是数学中的一种运算类型,从而激发学生的兴趣,让学生主动参与。
2.讲解整数基本概念。
通过生动的例子,引导学生了解整数的基本概念及其符号表示法。
3.掌握整数的加减法运算规律。
介绍整数加减法运算规律,由浅入深地讲解各类运算方法,同时涉及一些特殊情况的处理方法。
4.例题解析和举一反三。
通过逐步解析典型例题、变化多端的例题,让学生逐渐掌握整数加减法运算的方法和技巧,并通过举一反三的方法,培养学生发散思维。
5.课堂练习。
练习题目与教材内容相结合,使学生通过课内课后的集中、分散练习逐步掌握整数加减法运算能力。
6.总结点拨。
通过引导学生对课后练习的检查,发现和分析错误,总结提炼法则,加深认识,巩固知识。
五、教学评估:通过考试、作业、课堂表现等方式,对学生实施模拟和评估,评定学生对整数的掌握程度。
六、教学后记:本课教学过程中,教师要注重学生思维方法、技能和思维复合能力的发展,立足于问题解决,使学生掌握数学核心思想,运用数学技能和工具解决实际问题。
初中数学微课教案范例教案目标本微课旨在通过数学微课教学的方式,帮助初中学生掌握平面图形的性质和相关概念,培养他们的数学思维和逻辑推理能力。
教学内容1.平面几何图形的基本概念和性质2.直线的性质和分类3.角的定义和分类4.三角形的分类和性质5.常见的四边形和特殊的四边形教学目标1.理解平面几何图形的基本概念和性质2.掌握直线的性质和分类3.能够定义和分类角4.理解三角形的分类和性质5.认识常见的四边形和特殊的四边形教学步骤步骤一:引入1.利用实际生活中的例子,引发学生对平面几何图形的兴趣和思考。
2.引导学生通过观察、思考和发问,了解平面几何图形的重要性和应用场景。
步骤二:概念讲解1.介绍平面几何图形的基本概念,如点、直线、角、三角形、四边形等。
2.通过实际例子和图示的方式,让学生理解这些概念的含义和特点。
步骤三:性质探究1.分别引入直线、角、三角形和四边形的性质,引导学生思考和探究。
2.通过教师提问和学生交流,整理总结这些性质,建立学生对性质的清晰认识。
步骤四:分类与演练1.基于已学概念和性质,引导学生对直线、角、三角形和四边形进行分类。
2.利用具体的题目和情境,组织学生进行练习和演练,巩固他们对分类方法和性质的理解。
步骤五:应用拓展1.引导学生在实际问题中应用所学的知识和技能,解决简单的几何问题。
2.鼓励学生以创新的方式应用几何知识,提高他们的数学思维和问题解决能力。
教学工具1.教学PPT:用于呈现概念和性质的图示和例子。
2.黑板和粉笔:用于学生的思维导图和总结整理。
3.练习册和作业:用于学生的练习和巩固。
教学评估1.课堂练习:通过课堂练习和活动,检查学生对基本概念和性质的掌握情况。
2.作业评改:通过批改学生的作业,评估他们运用所学知识解决问题的能力。
3.学生反馈:通过询问学生的学习感受和理解程度,了解他们对本次微课的反应和收获。
教学总结通过本次微课的教学,学生应该能够掌握平面几何图形的基本概念和性质,理解直线、角、三角形和四边形的分类和性质。
初中数学教案案例模板范文(15篇)初中数学教案案例模板范文篇1教材分析:一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。
教材通过一元二次方程a_2+b_+c=0(a≠0)的根_1、_2得出一元二次方程根与系数的关系,以及以数_1、_2为根的一元二次方程的求方程模型。
然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。
体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重难点:1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
板书设计:一元二次方程根与系数的关系如果a_+b_+c=0(a≠0)的两根是_1,_2,那么_1+_2=,_1_2=。
问题6.在方程a_+b_+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4a c≥0时,_1+_2=,_1_2=。
初中数学教学案例50篇案例1:整数运算应用问题描述:小明乘以一个整数后得到的结果是-30,如果小明除以这个整数,商是-6。
请问这个整数是多少?解决思路:设这个整数为x,根据题意可以建立如下方程:x * (-30) = -6。
解这个方程可以得到整数x的值。
案例2:解一元一次方程问题描述:有一辆火车从A地出发,以每小时60公里的速度向B 地行驶。
另外一辆从B地出发,以每小时80公里的速度向A地行驶。
两车相遇时,两地相距1200公里,则两车分别行驶多长时间?解决思路:假设两车相遇所行驶的时间为t小时,利用速度和时间的关系可以建立方程:60t + 80t = 1200。
解这个方程可以得到时间t的值。
案例3:等差数列求和问题描述:有一个等差数列,首项是5,公差是2,求这个数列的前10项和。
解决思路:根据等差数列的求和公式,可以得到这个数列的前10项和。
案例4:三角形面积计算问题描述:已知一个三角形的底是5cm,高是8cm,求这个三角形的面积。
解决思路:利用三角形面积的计算公式,可以得到这个三角形的面积。
案例5:平方根运算问题描述:求解方程x^2 = 16的解。
解决思路:通过开平方的运算,可以得到方程的解。
案例6:倍数关系问题描述:某个数的13倍再加上5等于123,请问这个数是多少?解决思路:设这个数为x,可以建立如下方程:13x + 5 = 123。
解这个方程可以得到数x的值。
案例7:解一元二次方程问题描述:解方程x^2 + 5x - 6 = 0。
解决思路:通过解一元二次方程的方法,可以得到方程的解。
案例8:等差数列通项计算问题描述:有一个等差数列,公差是3,第5项是14,求解这个数列的通项。
解决思路:利用等差数列的通项公式,可以得到数列的通项。
案例9:计算百分比问题描述:小明考试得了80分,满分是100分,他的得分占总分的百分之多少?解决思路:通过计算分数所占百分比的方法,可以得到小明的得分在总分中的百分比。
第1篇一、案例背景随着新课程改革的不断深入,初中数学教学越来越注重培养学生的逻辑思维能力、空间想象能力和实际问题解决能力。
三角形全等是初中数学教学中的重要内容,也是学生必须掌握的基础知识。
为了提高学生对三角形全等判定方法的理解和应用能力,我设计了一节以“三角形全等的判定方法”为主题的数学课。
二、教学目标1. 知识与技能:掌握三角形全等的判定方法,并能熟练运用这些方法解决实际问题。
2. 过程与方法:通过观察、实验、讨论、归纳等方法,引导学生发现和总结三角形全等的判定方法。
3. 情感态度与价值观:培养学生的逻辑思维能力、空间想象能力和实际问题解决能力,激发学生对数学学习的兴趣。
三、教学重难点1. 教学重点:三角形全等的判定方法,包括SSS、SAS、ASA、AAS、HL。
2. 教学难点:运用三角形全等的判定方法解决实际问题,提高学生的空间想象能力和逻辑思维能力。
四、教学过程1. 导入新课(1)回顾三角形全等的定义,引导学生思考如何判断两个三角形是否全等。
(2)提出问题:有哪些方法可以判断三角形全等?2. 新课讲授(1)教师引导学生观察课本上的三角形全等判定方法,并举例说明。
(2)学生分组讨论,尝试运用SSS、SAS、ASA、AAS、HL等方法证明两个三角形全等。
(3)每组派代表展示证明过程,其他组进行评价和补充。
(4)教师点评学生的证明过程,强调证明方法的选择和逻辑推理的重要性。
3. 巩固练习(1)教师出示一些三角形全等的证明题,要求学生独立完成。
(2)学生互相批改,教师巡视指导。
(3)对学生的解答进行点评,指出错误和不足,引导学生总结经验。
4. 应用拓展(1)教师出示一些实际问题,要求学生运用三角形全等的判定方法解决。
(2)学生分组讨论,尝试找出解题思路。
(3)每组派代表展示解题过程,其他组进行评价和补充。
(4)教师点评学生的解题过程,强调实际问题解决能力的重要性。
5. 总结与反思(1)教师引导学生回顾本节课所学内容,总结三角形全等的判定方法。
第1篇一、案例背景随着新课程改革的不断深入,数学教育越来越注重实践性,旨在培养学生的数学思维能力、解决问题的能力和创新精神。
初中数学教学也不例外,为了提高学生的数学素养,教师需要将数学知识与实践相结合,设计富有实践性的教学活动。
本文以“三角形全等的证明”这一教学内容为例,阐述如何进行初中数学实践教学。
二、案例目标1. 知识与技能目标:通过实践探究,使学生掌握三角形全等的判定方法,并能运用所学知识解决实际问题。
2. 过程与方法目标:通过小组合作、探究讨论等方式,培养学生的团队协作能力和创新思维。
3. 情感态度与价值观目标:激发学生学习数学的兴趣,培养学生严谨求实的科学态度。
三、案例实施1. 教学过程(1)创设情境,导入新课教师通过展示生活中常见的三角形全等现象,如:剪纸、拼图等,激发学生的学习兴趣,引导学生思考三角形全等的判定方法。
(2)小组合作,探究新知教师将学生分成若干小组,每组选择一种三角形全等的判定方法(SSS、SAS、ASA、AAS),进行小组合作探究。
① 小组讨论:分析三角形全等的判定方法,找出其适用条件。
② 小组汇报:各小组汇报探究成果,教师点评并总结。
③ 实践应用:教师给出几个实际问题,让学生运用所学知识进行解答。
(3)巩固练习,提升能力教师设计一系列三角形全等的证明题目,让学生在练习中巩固所学知识,提高解题能力。
(4)总结反思,拓展延伸教师引导学生总结本节课所学内容,并提出拓展延伸问题,如:三角形全等的性质、三角形相似等。
2. 教学方法(1)情境教学法:通过创设生活情境,激发学生的学习兴趣。
(2)小组合作探究法:通过小组合作,培养学生的团队协作能力和创新思维。
(3)练习巩固法:通过设计练习题,让学生在练习中巩固所学知识。
四、案例反思1. 教学效果本节课通过实践探究,使学生在轻松愉快的氛围中掌握了三角形全等的判定方法,提高了学生的数学素养。
2. 教学反思(1)注重实践性:将数学知识与实践相结合,提高学生的实践能力。
一、课题名称《初中数学:一元一次方程的解法》二、教学目标1. 知识与技能:- 学生能够理解一元一次方程的概念,掌握一元一次方程的解法;- 学生能够运用一元一次方程解决实际问题。
2. 过程与方法:- 通过观察、分析、归纳等过程,提高学生发现问题、解决问题的能力;- 通过小组合作,培养学生的团队协作精神和沟通能力。
3. 情感态度与价值观:- 培养学生对数学的兴趣,增强学习数学的自信心;- 引导学生体会数学在生活中的应用,激发学生运用数学解决实际问题的热情。
三、教学重难点1. 教学重点:- 一元一次方程的概念;- 一元一次方程的解法。
2. 教学难点:- 解方程过程中的移项、合并同类项等步骤;- 解方程的实际应用。
四、教学过程1. 导入新课- 通过实际生活案例,如购物找零、行程问题等,引出一元一次方程的概念,激发学生的学习兴趣。
2. 新课讲解- 讲解一元一次方程的定义,强调方程中未知数的最高次数为1;- 讲解一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤;- 通过实例演示,让学生掌握解方程的方法。
3. 课堂练习- 设计一系列练习题,让学生巩固一元一次方程的解法;- 鼓励学生独立完成练习,教师巡视指导。
4. 小组合作- 将学生分成小组,每组选取一个实际问题,运用一元一次方程进行解答;- 各小组汇报解答过程,教师点评并总结。
5. 总结提高- 回顾本节课所学内容,强调一元一次方程的概念和解法;- 引导学生思考一元一次方程在生活中的应用,激发学生运用数学解决实际问题的兴趣。
五、教学反思1. 教学过程中,关注学生的学习状态,及时调整教学策略;2. 注重培养学生的合作意识,提高学生的团队协作能力;3. 通过实例演示,让学生体会数学在生活中的应用,激发学生的学习兴趣;4. 针对学生的不同学习需求,提供个性化指导,帮助学生克服学习困难。
六、教学资源1. 教学课件;2. 练习题;3. 实际生活案例。
七、教学评价1. 学生对一元一次方程的概念和解法的掌握程度;2. 学生在课堂练习和小组合作中的表现;3. 学生运用一元一次方程解决实际问题的能力。
初中数学教学案例(精选8篇)1. 线性方程组的解法教学目标:理解线性方程组的概念,掌握解法方法。
教学内容:线性方程组的定义,解法方法,实例演练等。
教学过程:教师引导学生理解线性方程组的概念,引入解法方法,通过实例演练提高学生的解题能力。
教学效果:学生在实践中掌握了线性方程组的解法方法,能够独立完成相关题目。
2. 平面几何与三维几何的联系教学目标:认识平面几何与三维几何的联系,培养学生的几何思维。
教学内容:平面几何与三维几何的基本概念及联系,实例演练。
教学过程:教师通过生动的例子和图像让学生了解平面几何与三维几何的联系,鼓励学生发挥几何思维来解决相关问题。
教学效果:学生掌握了平面几何与三维几何的联系,培养了几何思维。
3. 十字相乘法因式分解教学目标:掌握十字相乘法因式分解的方法。
教学内容:十字相乘法因式分解的概念,方法和实例演练。
教学过程:教师通过具体的实例,引导学生理解十字相乘法因式分解的方法,提高学生的解题能力。
教学效果:学生掌握了十字相乘法因式分解的方法,能够独立解题。
4. 直线与平面的位置关系教学目标:了解直线与平面的位置关系,培养学生的几何思维。
教学内容:直线与平面的基本概念、位置关系及公式推导,实例演练。
教学过程:教师通过生动的图像,引导学生了解直线与平面的位置关系,鼓励学生发挥几何思维来解决相关问题。
教学效果:学生掌握了直线与平面的位置关系,培养了几何思维。
5. 平移、旋转和翻转变换教学目标:了解平移、旋转和翻转变换的概念及应用。
教学内容:平移、旋转和翻转变换的基本概念,公式推导及实例演练。
教学过程:教师以具体的图像为例,引导学生了解平移、旋转和翻转变换的概念及公式推导,并通过实例演练提高学生的应用能力。
教学效果:学生掌握了平移、旋转和翻转变换的概念及应用。
6. 加减法与倍数基本关系教学目标:认识加减法与倍数基本关系,掌握解题方法。
教学内容:加减法与倍数基本关系的定义,解题方法及实例演练。
初中数学导入精彩案例
嘿,同学们!今天咱就来聊聊初中数学那些超精彩的导入案例。
比如说,有一次上课,老师拿着一把糖果进了教室,咱都懵了,这是要干啥呀?结果老师说:“同学们,看这一把糖果,如果我要分给咱班这么多同学,怎么分才公平呀?”哇塞,这一下子就勾起了大家的兴趣。
这不就跟除法的概念联系上了嘛,大家都积极地开始讨论怎么分,真的太有意思了!这就好比是在迷雾中突然找到了一条明亮的路。
还有一次,老师让我们玩一个猜数字的游戏。
他心里想一个数,我们来猜,他告诉我们大了还是小了。
哎呀,那叫一个紧张刺激啊!我们都绞尽脑汁地想,这不就是在锻炼我们的逻辑思维吗?就像在迷宫中寻找出口一样。
又比如讲几何的时候,老师拿了一个足球进教室,问我们:“足球的表面是什么形状呀?”我们七嘴八舌地说。
然后老师就开始引导我们去理解球体的特点。
这多形象啊,简直就像是给抽象的知识穿上了一件有趣的外套。
再说说学习概率的时候,老师在课堂上模拟抽奖,让我们感受不同事件发生的可能性大小。
我们都兴奋得不行,这不跟我们生活中的买彩票、抽奖很像嘛!
这些导入案例是不是超级精彩?它们就像一把神奇的钥匙,一下子就打开了我们学习数学的兴趣大门。
真的能让我们感受到,原来数学这么有趣,这么贴近生活啊!不是那种枯燥乏味的东西。
这些案例让学习数学变得轻松又好玩,让我们不知不觉就沉浸在数学的世界里,享受着探索的乐趣。
所以说,好的导入案例真的太重要啦!它们能让我们爱上数学!。
最新十分钟数学微格教学教案(四篇)【精选推荐】今天我所要训练的技能是导入技能的故事导入技能。
我的教学片段选自人教版九年级上册,第二十五章第一节——随机事件与概率。
由于我的教学对象是九年级学生,从知识基础方面来看,中学生在小学学习分数时已经初步接触过概率,但由于概率的内容比较抽象,中学生直观能力强但抽象能力较差,所以为了激起学生的学习兴趣,本节课的导入采用故事导入技能。
)下面开始我的微格教学。
师:同学们,在上课之前老师先来给你们讲一个有趣的故事。
狄青是北宋的一名大将,他战功显赫,在一次平定南方战乱的战役前,他呀,为了鼓舞士气,召集了所有的将士,说:“我现在要用100枚铜板来占卜,把他们抛向上空,如果铜板落到地面上的时候都是正面朝上,那就说明上天祝我们这次战役能够取得成功!”左右的官员就劝他别这样子做:“如果铜板掷得不如意,恐怕会影响士气!”师:同学们,你们觉得这些官员的担心有没有必要呢?生:很有必要师:那么,100枚铜板落到地面上所有的正面都朝上,这种可能性有没有?师:(有)同学们回答的非常好,我们都知道,一枚铜板有正反两个面,所以,掷100枚,全都正面朝上这种可能性是有的。
同学们再思考一个问题,在这次上抛的过程当中,一定就能保证这100枚铜板都正面朝上吗?师:好,我听到有同学说不一定,有的说可能。
其他同学的看法呢?师:既然你们有不同的意见,那哪位同学有充分的理由说明自己是对的吗?(没有)因此,咱们应该在回答时加上一个什么词?(板书:可能)即有可能出现全都正面朝上,也有可能出现全都反面朝上,也有可能同时出现正面和反面,那么这样的事件是怎样发生的呢?生:偶然的、不一定的、可能的……师:偶然的、不一定的,可能的,这是我们能够事先预测的吗?(不能)所以说它是随机的。
通过刚才的解释,我们可以得出,全都正面朝上是可能发生的,有可能不发生。
如果不是出现全部都正面朝上,那不就糟了吗?士兵们肯定会认为上天不能助他们一臂之力,这次战役是输定了!聪明的狄青自有他的妙计。
七年级数学教学案例(推荐五篇)第一篇:七年级数学教学案例七年级数学教学案例——平行线的性质杨志成一、案例实施背景本节课是2012—2013年学年度第二学期本人在陕西靖边第五中学的一节公开课,课堂中数学优秀生、中等生及困难生都有,所用教材为北师大版七年级数学(下册)。
二、案例主题分析与设计本节课是北师大版七年级数学(下册)第二章第3节内容——平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
在七年级上学期,学生对几何知识的学习过程中,已经历了一些探索、发现的数学活动,并积累了一些直观活动经验,具备了一定的图形的识别能力和借助图形分析、解决问题的能力,初步感受了推理说明的必要性;同时七年级学生经过一个学期的合作交流,初步形成了一定的动手实践,自主探索,合作学习的经验,具备了一定的合作与交流的能力。
而且初中生本身好胜、好强的特点,也为他们独立思考,合作探究奠定了基础,合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。
本节课将以“生活?数学”“活动?思考”“表达?应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标1、知识与技能目标: 经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2、过程与方法目标:经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动。
在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益。
通过学习习近平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既普遍联系又相互区别的辩证唯物主义思想.四、案例教学重、难点1.重点:对平行线判定的掌握与应用。
第1篇一、案例背景随着新课程改革的不断深入,我国初中数学教学越来越注重培养学生的数学思维能力和实践能力。
图形变换是初中数学的重要内容,它不仅有助于学生理解图形的内在联系,还能培养学生的空间想象力和几何直观能力。
为了提高学生对图形变换中对称性的认识,本案例以“探究图形变换中的对称性”为主题,通过一系列教学活动,引导学生深入理解对称性的概念及其在图形变换中的应用。
二、案例设计(一)教学目标1. 知识与技能:理解轴对称图形的概念,掌握轴对称变换的基本方法,能够识别和构造轴对称图形。
2. 过程与方法:通过观察、操作、探究等活动,培养学生的观察能力、动手操作能力和合作学习能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的审美情趣和探究精神。
(二)教学重点与难点1. 教学重点:轴对称图形的概念,轴对称变换的基本方法。
2. 教学难点:轴对称图形的识别和构造,轴对称变换的应用。
(三)教学过程1. 导入新课- 教师展示生活中常见的轴对称图形,如蝴蝶、剪纸等,引导学生观察并思考这些图形的特点。
- 学生分享观察到的特点,教师总结:这些图形都是关于某条直线对称的,这条直线就是它们的对称轴。
2. 探究活动- 教师分发轴对称图形的模板,让学生动手操作,将图形沿对称轴折叠,观察折叠后的结果。
- 学生汇报操作过程和结果,教师引导学生总结出轴对称图形的定义:如果一个图形沿某条直线折叠后,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形。
- 教师讲解轴对称变换的基本方法:将图形沿对称轴折叠,然后将折叠后的图形展开,得到新的图形。
3. 案例分析- 教师展示一些生活中的轴对称图形,如建筑、家具等,让学生分析这些图形的对称轴和对称性。
- 学生分组讨论,教师巡视指导,帮助学生总结出识别和构造轴对称图形的方法。
4. 练习巩固- 教师布置练习题,让学生独立完成,巩固所学知识。
- 学生展示解题过程,教师点评并总结。
5. 总结反思- 教师引导学生回顾本节课的学习内容,总结轴对称图形的概念、轴对称变换的方法以及应用。