小学奥数竞赛计算题常用解法
- 格式:doc
- 大小:222.00 KB
- 文档页数:5
[全]小学奥数18个解题方法解析(含例题)解题方法1--分类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的。
例1:可分为这样几类:(1)以A为左端点的线段共4条,分别是:AB,AC,AD,AE;(2)以B为左端点的线段共3条,分别是:BC,BD,BE;(3)以C为左端点的线段共2条,分别是:CD,CE;(4)以D为左端点的线段有1条,即DE。
一共有线段4+3+2+1=10(条)。
还可以把图中的线段按它们所包含基本线段的条数来分类。
(1)只含1条基本线段的,共4条:AB,BC,CD,DE;(2)含有2条基本线段的,共3条:AC,BD,CE;(3)含有3条基本线段的,共2条:AD,BE;(4)含有4条基本线段的,有1条,即AE。
例2:有长度分别为1、2、3、4、5、6、7、8、9、10、11(单位:厘米)的木棒足够多,选其中三根作为三条边围成三角形。
如果所围成的三角形的一条边长为11厘米,那么,共可围成多少个不同的三角形?提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长度。
设这两条边长度分别为a,b,那么a,b的取值必须受到两条限制:①a、b只能取1~11的自然数;②三角形任意两边之和大于第三边。
1、11 ;一种2、11 ;2、10;二种3、11;3、10;3、9 ;三种4、11;4、10;4、9;4、8 ;四种5、11;5、10;5、9;5、8;5、7 ;五种6、11;6、10;6、9;6、8;6、7;6、6;六种7、11;7、10;7、9;7、8;7、7;五种8、11;8、10;8、9;8、8;四种9、11;9、10;9、9;三种10、11;10、10;二种11、11;一种总计:1+2+3+4+5+6+5+4+3+2+1=36种解题方法2--化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况(化大为小),从中分析探寻出问题的规律,以获得问题的答案。
奥数解题方法总结
1、形象化画图法:解奥数题时,如果可以科学合理的、科学合理的、巧妙地依靠点、线、面、图、表将小学奥数难题形象化形象的展示出来,将抽象的数量关系具象化,可让学生们非常容易弄清数量关系,沟通交流“”与“”的联系,把握住问题的本质,快速答题
2、倒推法:从题目上述的最后结果考虑,运用标准一步一步向前反推,直至题目中难题及时解决。
3、枚举法:奥数题中常常出现一些数量关系十分特殊题目,用普通的办法难以列式解释,有时候压根列出不来对应的式子来。
人们用枚举法,依据题目的需求,一一列举压根符合要求的数据信息,随后从这当中筛出符合要求的回答。
4、正难那样反:有一些数学题目假如你从标准正脸考虑考虑到有困难,那么你可以更改思考的方位,从结论或问题的背面考虑来考虑事情,使难题及时解决。
5、恰当转化:在解奥数题时,经常要提醒自己,碰到的新问题能不能转化成旧解决问题,化新为旧,通过表面,把握住难题的实质,把问题转化成自身熟悉的难题去解释。
转化的种类有条件转化、难题转化、关联转化、图形转化等。
整体掌握:有一些奥数题,从细节上考虑到,很复杂,也没有必要,如果可以从整体上掌握,宏观上考虑到,根据研究问题的整体方式、整体结构、一部分与整体的相互关系,“只看见山林,看不到花草树木”,来求取问题的解决。
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
(适于二年级程度)6、16、26、____、____、____、____。
解数学竞赛计算题的七把金钥匙同学们,你们在数学课上一定学过混合运算,它需要我们认真计算,每一步都不能出现错误,否则结果就会错。
但当你遇到算式较长的计算题时,只要灵活运用数学方法,就可以提高计算速度,再也不用一步步去计算了。
下面就让我来介绍解答计算题的几种方法,也就是打开计算之门的金钥匙吧!钥匙一:利用乘法分配律例1:183×83+83×83分析:我们可以把183拆成100+83,那么接下来的过程就是:=(100+83)×17+83×83=100×17+83×17+83×83=100×17+(83+17)×83=100×17+100×83=100×(17+83)=100×100=10000例2:4003002001296864432300200100963642321⨯⨯++⨯⨯+⨯⨯+⨯⨯⨯⨯++⨯⨯+⨯⨯+⨯⨯ 分析:不要分子和分母直接约分,因为有加法。
都算出来也很麻烦。
我们把分子提取公因数1×2×3,把分母提取公因数2×3×4,再约掉相同的因数,就变得很简单了。
=)1004321(432)1004321(32133333333+++++⨯⨯⨯+++++⨯⨯⨯ =41钥匙二:利用等差数列求和公式 例:计算1009910021001434241323121++++++++++ 分析:先把它们分组,分组后就可以看出它们得数的公差,之后就可以按照等差数列的求和公式求出得数。
原式=)1009910021001()434241()3231(21 +++++++++ =0.5+1+1.5+2+…+49.5=(0.5+49.5)×99÷2=2475钥匙三:利用数形结合 例:计算:21+41+81+161+321+641+…+10241 分析:这道题若直接通分计算是比较烦琐的。
小学奥数解题方法完整版一、引言小学奥数是培养孩子数学思维和解题能力的重要途径。
在面对各种题型和难度的奥数题目时,学生需要了解正确的解题方法。
本文将介绍小学奥数常见的解题方法,帮助学生更好地应对奥数考试。
二、奥数解题方法1. 四则运算四则运算是小学奥数题目中最基本的类型。
在解题时,需要掌握加法、减法、乘法和除法的运算规则。
此外,学生还需了解运算顺序,即先乘除后加减。
2. 分数运算分数运算在小学奥数中也是常见的题型。
在解决分数运算题时,可以使用找最小公倍数、通分、约分等方法来简化计算过程。
同时,还需要熟练掌握分数的加减乘除规则。
3. 算式变换奥数题目中常会涉及算式的变换。
在解题时,可以通过交换律、结合律、分配律等运算法则,将原始算式转化为更简单的形式。
这样能够加快解题速度,提高解题效率。
4. 排列组合排列组合是奥数中的重要概念。
当遇到排列组合问题时,可以运用阶乘、组合数等数学方法来求解。
同时,可以通过画图、列式等方式辅助理解问题,找到更简洁的解题方法。
5. 逻辑推理逻辑推理题目在小学奥数中也经常出现。
解决这类题目时,学生需要运用逻辑思维和分析能力。
可以通过分情况讨论、排除法等方式来找到正确答案。
6. 图形推理图形推理题是小学奥数中较为复杂的题型之一。
解决这类题目需要运用几何知识和图形分析能力。
学生可以通过观察图形的形状、对称性、旋转等特点,找到规律并推理出正确答案。
三、解题技巧除了上述的解题方法外,还有一些解题技巧可以帮助学生更好地解决奥数题目。
1. 多做题目做更多的奥数题目有助于提高解题能力和熟练度。
通过大量练习,学生可以熟悉各类题型的解题方法,掌握常用的技巧和思路。
2. 学会总结每次做完一道题目后,及时总结解题过程中使用的方法和思路。
这样可以帮助学生记住解题思路并且提高解题能力。
3. 理解题意在解题过程中,要仔细阅读题目,理解其中的条件和要求。
只有正确理解题意,才能有针对性地运用相应的解题方法。
小学数学奥数题与解题方法在小学数学的学习中,奥数题常常是让同学们感到既有趣又具有挑战性的部分。
奥数题不仅能够锻炼我们的思维能力,还能培养我们解决问题的技巧和方法。
接下来,让我们一起探讨一些常见的小学数学奥数题以及它们的解题方法。
一、行程问题行程问题是奥数中常见的题型之一。
例如:小明和小红同时从学校和家出发相向而行,小明每分钟走 60 米,小红每分钟走 50 米,经过10 分钟两人相遇,求学校到家的距离。
解题方法:行程问题的关键在于理解速度、时间和路程之间的关系,即路程=速度×时间。
对于相向而行的情况,两人走过的路程之和就是总路程。
在这个例子中,小明的速度是每分钟60 米,走了10 分钟,所以小明走的路程是 60×10 = 600 米;小红的速度是每分钟 50 米,走了 10 分钟,小红走的路程是 50×10 = 500 米。
那么学校到家的距离就是 600 + 500 = 1100 米。
二、工程问题工程问题也是经常出现的一类奥数题。
比如:一项工程,甲单独做需要15 天完成,乙单独做需要20 天完成,两人合作需要多少天完成?解题方法:工程问题中,通常把工作总量看作单位“1”。
甲单独做需要 15 天完成,那么甲每天的工作效率就是 1÷15 = 1/15;乙单独做需要 20 天完成,乙每天的工作效率就是 1÷20 = 1/20。
两人合作每天的工作效率就是 1/15 + 1/20 = 7/60,所以两人合作完成这项工程需要的时间是 1÷7/60 = 60/7 天。
三、年龄问题年龄问题常常让同学们感到困惑。
例如:今年爸爸 35 岁,儿子 10 岁,几年后爸爸的年龄是儿子的 2 倍?解题方法:年龄问题的关键是抓住年龄差不变。
爸爸和儿子的年龄差是 35 10 = 25 岁。
当爸爸的年龄是儿子的 2 倍时,年龄差还是 25 岁,此时儿子的年龄是 25 岁,所以需要经过 25 10 = 15 年。
奥数计算题及解题技巧
奥数(奥林匹克数学竞赛)是一种专注于培养学生逻辑思维能力和解题技巧的数学竞赛。
以下是一些常见的奥数计算题及解题技巧:
1. 简化问题:奥数题目通常是通过将复杂问题简化为更易解决的问题来考察学生的解题思路。
例如,将一个复杂的几何问题转化为求一个已知图形的面积或周长等简单问题。
2. 利用数学性质:奥数题目经常利用数学性质来解决问题。
熟悉常用的数学定理和公式,例如勾股定理、等腰三角形性质等,可以帮助解题。
3. 分析思路:在解题过程中,分析问题是非常重要的。
将问题分解为几个简单的步骤,逐步解决,可以避免出现错误,并更好地理解问题。
4. 实际问题转化:奥数题目经常与实际生活问题相关。
将数学问题转化为实际问题,可以更好地理解和解决问题。
5. 数学工具的灵活应用:在解答奥数题目中,灵活运用数学工具如图形、方程式、代数运算等能够帮助学生快速解题。
6. 培养逻辑思维:奥数题目强调逻辑思维能力的培养。
通过练习逻辑推理、概念分类等能力,可以提高解题效率。
7. 多实践:奥数题目的解题技巧需要不断实践才能掌握。
参加
奥数培训班、阅读相关的数学竞赛资料以及练习大量的题目,能够帮助学生熟悉题目类型和解题方法。
总结起来,奥数的计算题及解题技巧包括简化问题、利用数学性质、分析思路、实际问题转化、数学工具的灵活应用、培养逻辑思维和多实践等。
通过不断实践和积累经验,学生能够提高解题能力和竞赛成绩。
奥数题的一些常用解法
1.推理法:通过观察题目中的规律,运用逻辑推理能力进行解题。
这种方法常被运用在数列、排列组合等类型的题目中。
2. 反证法:假设结论不成立,通过推导出矛盾或不符合题目条件的结果来证明所假设的结论是错误的。
这种方法常被运用在几何题型中。
3. 分类讨论法:将问题分成不同的情况进行讨论,找出每种情况的解法,最后合并得出总的解法。
这种方法常被运用在概率、几何、代数题型中。
4. 数学归纳法:通过证明某个命题对于一个确定的整数成立,再证明对于这个整数加1后仍成立,从而证明该命题对于所有整数成立。
这种方法常被运用在数列、不等式等类型的题目中。
5. 递推法:通过寻找问题中的递推式,运用递推关系逐步推导出问题的解法。
这种方法常被运用在数列、组合、几何等题型中。
6. 假设法:假设某个未知量的值,再用已知条件进行计算,最终通过验证假设的值是否符合题目要求来求解未知量。
这种方法常被运用在几何、代数等类型的题目中。
- 1 -。
小学奥数解题方法大全100道及答案(完整版)题目1:计算1 + 2 + 3 + 4 + …+ 100 的和。
解题方法:使用等差数列求和公式,首项为1,末项为100,公差为1,项数为100。
求和公式为:(首项+ 末项)×项数÷2 。
答案:(1 + 100) ×100 ÷2 = 5050题目2:鸡兔同笼,共有30 个头,88 只脚,求鸡兔各有多少只?解题方法:假设全是鸡,共有脚30×2 = 60 只,比实际少88 - 60 = 28 只。
因为每把一只兔当成鸡,就少算4 - 2 = 2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。
答案:鸡16 只,兔14 只。
题目3:一条路长100 米,从头到尾每隔10 米栽1 棵梧桐树,共栽多少棵树?解题方法:因为两端都栽树,所以棵数= 间隔数+ 1 ,间隔数为100÷10 = 10 ,则棵数为10 + 1 = 11 棵。
答案:11 棵。
题目4:某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?解题方法:参加数学或航模小组的人数为15 + 18 - 10 = 23 人,所以两个小组都不参加的人数为40 - 23 = 17 人。
答案:17 人。
题目5:甲乙两数的和是32,甲数的3 倍与乙数的5 倍的和是122,求甲、乙二数各是多少?解题方法:设甲数为x,乙数为y,则x + y = 32 ,3x + 5y = 122 。
将第一个式子乘以3 得到3x + 3y = 96 ,用第二个式子减去这个式子得到2y = 26 ,y = 13 ,则x = 19 。
答案:甲数19,乙数13 。
题目6:一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?解题方法:火车40 秒走的路程= 桥长+ 车长,30 秒走的路程= 山洞长+ 车长。
小学奥数解题方法大全一、加减法解题方法在小学奥数中,加减法是最基础也是最常见的题型。
以下是几种常用的解题方法:1. 竖式计算法竖式计算法是最常用的加减法解题方法,适用于任何数值大小的计算。
先将两个数竖式排列,逐位相加或相减,并按进位或借位的要求进行计算。
2. 寻找相反数法有时候,我们可以通过寻找相反数的方法来简化计算。
例如,对于一个加法题目3 + 7,我们可以通过找到7的相反数-7,然后用3 - 7的方式进行计算,得到的结果再取相反数即可。
3. 进退相等法进退相等法适用于一些特殊的加减法题目。
当两个数相差一致(如8和9)时,我们可以采用进退相等法来计算。
比如计算8 + 9,我们可以将9退1,变成8 + 8 = 16,然后再加上1,即可得到17。
二、乘法解题方法乘法是小学奥数中较为复杂的题型。
以下是几种常用的解题方法:1. 分解因数法对于一个较大的乘法题目,我们可以将其中一个数拆分成多个因数的乘积,然后再进行计算。
例如,计算36 × 4,我们可以将36分解成6 × 6,然后计算6 × 4 × 6 = 144。
2. 组合乘法法则组合乘法法则适用于一些特殊的乘法题目。
例如,计算12 × 7,我们可以将12拆分成10 + 2,然后计算(10 × 7) + (2 × 7) = 70 + 14 = 84。
3. 巧用倍数关系在一些乘法题目中,我们可以巧妙地运用倍数关系来简化计算。
例如,计算8 × 25,我们可以将8拆分成2 × 4,然后计算(2 × 25) × 4 =50 × 4 = 200。
三、除法解题方法除法是小学奥数中较为复杂的题型之一。
以下是几种常用的解题方法:1. 精确除法精确除法是最常用的除法解题方法。
根据除法的定义,将被除数除以除数,得到的商和余数就是精确除法的结果。
2. 简化除法有时候,我们可以通过简化运算来进行除法计算。
小学奥数竞赛计算题常用解法来源:合肥奥数网整理文章作者:奥数网编辑 2011-09-02 20:45:09[标签:小学奥数竞赛杯赛计算题试题][当前17711家长在线讨论]在小学数学中,计算题占有一定的分量,特别是小学奥数中。
因此有必要掌握灵活、多变的解题方法,合理地运用运算性质、定律、法则。
下面是计算题的常用解法:一、分组凑整法:例1.3125+5431+2793+6875+4569解:原式=(3125+6875)+(4569+5431)+2793=22793例2.100+99-98-97+96+95-94-93+……+4+3-2解:原式=100+(99-98-97+96)+(95-94-93+92)+……+(7-6-5+4)+(3-2)=100+1=101分析:例2是将连续的(+ - - +)四个数组合在一起,结果恰好等于整数0,很快得到中间96个数相加减的结果是0,只要计算余下的100+3-2即可。
二、加补数法:例3:1999998+199998+19998+1998+198+88解:原式=2000000+200000+20000+2000+200+100-2×5-12=2222300-22=2222278分析:因为各数都是接近整十、百…的数,所以将各数先加上各自的补数,再减去加上的补数。
三、找准基数法:例4.51.2+48.8+52.5+50.9+47.8+52.3-48.2-59.6解:原式=50×(6-2)+1.2-1.2+2.5+0.9-2.2+2.3+1.8-9.6=200-4.3=195.7分析:这些数都比较接近50,所以计算时就以50为基数,把每个数都看作50,先计算,然后再加多或减少,这样减轻了运算的负担。
四、分解法:例5.1992×198.9-1991×198.8解:原式=1991×198.9+198.9×1-1991×198.8=1991×(198.9-198.8)+198.9=199.1+198.9=398分析:由于1991与1992、1989与198.8相差很小,所以不妨把其中的任意一个数进行分解,如:198.9=198.8+0.1或198.8=198.9-0.1,多次运用。
小学奥数题目解题攻略在小学生奥数竞赛中,题目的难度逐渐增加,需要学生在有限的时间内做出正确的解答。
以下是一些解题攻略,帮助小学生更好地应对奥数题目。
一、理清思路解题的第一步是理清思路。
在看到一个新的数学问题时,不要急于给出答案。
拿出纸和笔,仔细阅读题目,明确题目要求,分析这个问题应该从哪个方面入手,构建解答思路。
对于数学题目,如果是选择题,首先排除明显错误的答案选项,然后逐一尝试剩余选项,与题目要求进行对比,找到正确答案。
如果是计算题,确定解题方法,列出计算步骤,逐步推导解答。
二、建立数学基础奥数题目的难度在于它们往往需要运用多种数学知识和技巧。
因此,为了在解题过程中能够更加得心应手,建立坚实的数学基础是非常重要的。
要多学习数学书籍、参加数学课程,掌握基本的数学概念和运算技巧。
熟练掌握加减乘除、分数、小数、百分数等基本运算,牢固掌握数学公式和定理,提高数学应用能力。
三、灵活使用解题技巧在解题过程中,灵活运用解题技巧可以帮助小学生更快地找到解题的方法。
以下是一些常见的解题技巧:1. 找规律:观察问题中的数字、形状或关系之间的规律性,从中寻找解题思路。
2. 分解问题:将复杂的问题分解成多个简单的步骤,逐步解决,最后得到整个问题的答案。
3. 反证法:假设问题的反面情况成立,通过推导和对比,得出问题的正确解答。
4. 假设解法:根据对题目的分析,假设一个解法,并验证其可行性。
5. 剔除法:对于选择题,通过排除明显错误的选项,缩小正确选项的范围。
四、多做练习题练习是提高解题能力的关键。
通过多做奥数题目的练习题,掌握不同类型题目的解题思路,增加遇到问题时的解决能力。
可以根据题目难度和类型进行分类练习,每天完成一定数量的题目。
也可以参加数学竞赛培训班,与其他学生共同解决问题,相互学习和交流。
五、养成良好的解题习惯解题过程中,养成良好的解题习惯可以提高解题速度和准确性。
1. 仔细阅读题目:确保完全理解题目要求,避免因误解而出错。
34个奥数解题公式34个小学奥数“必考”公式,打印贴墙背,6年数学“不慌张”!数学是一门十分重视根底的学科,小学数学正是孩子打根底的最好阶段,而小学数学中,应用题一直是考试中的重难点。
1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题:确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
1、对照法如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。
根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
例2:判断题:能被2除尽的数一定是偶数。
这里要对照“除尽”和“偶数”这两个数学概念。
只有这两个概念全理解了,才能做出正确判断。
2、公式法运用定律、公式、规则、法则来解决问题的方法。
它体现的是由一般到特殊的演绎思维。
公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。
但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
例3:计算59×37+12×59+5959×37+12×59+59=59×(37+12+1)…………运用乘法分配律=59×50…………运用加法计算法则=(60-1)×50…………运用数的组成规则=60×50-1×50…………运用乘法分配律=3000-50…………运用乘法计算法则=2950…………运用减法计算法则3、比较法通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
四年级奥数解题技巧一、速算与巧算。
1. 计算:9999 + 999 + 99+9。
解析:把每个数看作整十、整百、整千……减1的形式,再进行计算。
9999+999 + 99+9 =(10000 - 1)+(1000-1)+(100 - 1)+(10 - 1) =10000+1000 + 100+10-4 =11110- 4 =111062. 计算:489 + 487+483+485+484+486+488。
解析:选480为基准数,489+487 + 483+485+484+486+488 =(480 +9)+(480+7)+(480+3)+(480+5)+(480+4)+(480+6)+(480+8) =480×7+(9 + 7+3+5+4+6+8)=3360+(9+1+6+3+5+4+8) =3360+(10+6+3+5+4+8) =3360+(16+3+5+4+8)=3360+(19+5+4+8) =3360+(24+4+8) =3360+(28+8) =3360+36 =3396二、数列求和。
3. 求1 + 2+3+…+100的和。
解析:这是一个等差数列求和,公式为S_n=(n(a_1 + a_n))/(2)(n是项数,a_1是首项,a_n是末项)这里n = 100,a_1=1,a_n = 100S_100=(100×(1 + 100))/(2)=50×101 = 50504. 求数列3,5,7,9,…,21的和。
解析:这是一个首项a_1 = 3,末项a_n=21,公差d=2的等差数列。
先求项数n=(a_n - a_1)/(d)+1=(21-3)/(2)+1=(18)/(2)+1=10再根据求和公式S_n=(n(a_1 + a_n))/(2)S_10=(10×(3 + 21))/(2)=5×24=120三、定义新运算。
5. 设a、b都表示数,规定a△b=(a + b)×2。
小学奥数竞赛常见的数学题型及解题技巧在小学奥数竞赛中,有一些常见的数学题型,每个题型都有其特定的解题技巧。
本文将介绍这些常见的数学题型,并就每个题型给出解题技巧,帮助考生更好地应对奥数竞赛。
一、加减法运算题加减法运算题是奥数竞赛中最常见的题型之一。
解决这类问题的关键是熟练掌握加减法运算的基本技巧。
首先,注意数值的进位或借位;其次,注意对齐数字,对位相加或相减;最后,要检查计算结果是否正确。
解题技巧:遇到多个数的加减法运算题时,可先计算括号内的部分,再进行整体运算。
同时,注意使用适当的计算顺序,避免出现疏漏。
二、乘法口诀题乘法口诀题也是小学奥数竞赛中常见的题型。
解决这类问题需要熟练掌握乘法口诀表,特别是对于二位数乘一位数的计算。
解题技巧:在解答乘法口诀题时,可以尝试利用分解数的方法,将乘法问题转化为加法或减法问题。
另外,熟记乘法口诀表也是提高解题速度的关键。
三、数的特征题数的特征题旨在考察学生对数字特性的理解。
这类题目包括质数、偶数、奇数等内容。
解题技巧:解决数的特征题需要对数字的性质有一定的理解。
例如,质数只能被1和自身整除,奇数末位数字只能是1、3、5、7、9等。
在解答此类题目时,要细心观察数字的规律,发现其中的数学规则。
四、找规律题找规律题是小学奥数竞赛中常见的题型之一。
通过观察、分析数字序列或图形的规律,找出其中隐藏的数学规律。
解题技巧:解决找规律题需要锻炼观察力和逻辑思维能力。
可以通过列举、画图等方法进行思考。
同时,注意观察数字之间的关系,寻找共同点或递推规则。
五、图形题图形题在小学奥数竞赛中也出现频率较高。
此类题目要求学生根据指定的条件绘制相应的图形,或是根据给定的图形进行计算或判断。
解题技巧:解决图形题需要熟练掌握基本的图形知识,如长方形、正方形、三角形等。
在解答此类题目时,要仔细阅读题目要求,根据题目给出的条件进行推理和计算。
六、逻辑推理题逻辑推理题旨在考察学生的逻辑思维和推理能力。
小学奥数解题方法大全小学奥数作为一项重要的学科竞赛,对于培养学生的逻辑思维能力和数学解决问题的能力起着非常重要的作用。
因此,掌握一些解题方法和技巧对于小学生来说是至关重要的。
下面就为大家介绍一些小学奥数解题方法的大全,希望对大家有所帮助。
首先,对于小学奥数中的加减乘除题目,我们需要掌握一些基本的计算技巧。
比如,在做加法题时,可以利用进位的方法来简化计算,而在做减法题时,则可以利用借位的方法来简化计算。
在做乘法题时,可以利用分解因数的方法来简化计算,而在做除法题时,则可以利用倍数和因数的关系来简化计算。
通过掌握这些基本的计算技巧,可以大大提高解题的效率。
其次,对于小学奥数中的逻辑推理题目,我们需要注重培养学生的逻辑思维能力。
在做逻辑推理题时,可以通过列出真假命题表来帮助理清思路,找出其中的规律和关联,从而得出正确的答案。
同时,还可以通过画图、列举法等方式来辅助解题,帮助学生更好地理解题意,找到解题的突破口。
另外,对于小学奥数中的几何题目,我们需要注重培养学生的空间想象能力。
在做几何题时,可以通过画图、模型等方式来帮助学生更好地理解题意,找到解题的方法。
同时,还可以通过分析图形的性质和特点来辅助解题,帮助学生更好地把握题目的要点,从而得出正确的答案。
最后,对于小学奥数中的应用题目,我们需要注重培养学生的问题解决能力。
在做应用题时,可以通过建立方程、列出关系式等方式来帮助学生把问题转化为数学语言,从而更好地解决问题。
同时,还可以通过分析问题的实际意义和逻辑关系来辅助解题,帮助学生更好地理解问题,找到解题的思路。
综上所述,小学奥数解题方法大全包括基本的计算技巧、逻辑推理能力、空间想象能力和问题解决能力。
通过掌握这些解题方法和技巧,可以帮助学生更好地应对小学奥数竞赛,提高解题的效率和准确性。
希望以上内容对大家有所帮助,祝大家在小学奥数竞赛中取得好成绩!。
小学奥数竞赛计算题常用解法
来源:合肥奥数网整理文章作者:奥数网编辑 2011-09-02 20:45:09
[标签:小学奥数竞赛杯赛计算题试题][当前17711家长在线讨论]
在小学数学中,计算题占有一定的分量,特别是小学奥数中。
因此有必要掌握灵活、多变的解题方法,合理地运用运算性质、定律、法则。
下面是计算题的常用解法:
一、分组凑整法:
例1.3125+5431+2793+6875+4569
解:原式=(3125+6875)+(4569+5431)+2793
=22793
例2.100+99-98-97+96+95-94-93+……+4+3-2
解:原式=100+(99-98-97+96)+(95-94-93+92)+……+(7-6-5+4)+(3-2)
=100+1=101
分析:例2是将连续的(+ - - +)四个数组合在一起,结果恰好等于整数0,很快得到中间96个数相加减的结果是0,只要计算余下的100+3-2即可。
二、加补数法:
例3:1999998+199998+19998+1998+198+88
解:原式=2000000+200000+20000+2000+200+100-2×5-12
=2222300-22=2222278
分析:因为各数都是接近整十、百…的数,所以将各数先加上各自的补数,再减去加上的补数。
三、找准基数法:
例4.51.2+48.8+52.5+50.9+47.8+52.3-48.2-59.6
解:原式=50×(6-2)+1.2-1.2+2.5+0.9-2.2+2.3+1.8-9.6
=200-4.3=195.7
分析:这些数都比较接近50,所以计算时就以50为基数,把每个数都看作50,先计算,然后再加多或减少,这样减轻了运算的负担。
四、分解法:
例5.1992×198.9-1991×198.8
解:原式=1991×198.9+198.9×1-1991×198.8
=1991×(198.9-198.8)+198.9
=199.1+198.9=398
分析:由于1991与1992、1989与198.8相差很小,所以不妨把其中的任意一个数进行分解,如:198.9=198.8+0.1或198.8=198.9-0.1,多次运用。