RIP路由实验
- 格式:doc
- 大小:622.00 KB
- 文档页数:5
静态路由rip实验报告实验目的本实验主要目的是通过配置和实验验证静态路由和RIP(Routing Information Protocol)协议的工作原理和使用方法。
通过实验,我们能够更好地理解和掌握静态路由和RIP协议在网络中实现路由选择的过程。
实验环境- 操作系统:Windows 10- 软件:Cisco Packet Tracer- 实验设备:3台路由器、3台主机实验步骤1. 搭建实验拓扑使用Cisco Packet Tracer搭建实验拓扑,包括3台路由器和3台主机。
将路由器和主机连接起来,形成一个小型的局域网。
2. 配置IP地址和路由器接口为每个路由器和主机配置对应的IP地址。
打开命令提示符,使用以下命令:Router(config)interface [interface_name]Router(config-if)ip address [ip_address] [subnet_mask]配置完成后,为每个路由器配置默认网关。
3. 配置静态路由在每个路由器上配置静态路由。
打开命令提示符,使用以下命令:Router(config)ip route [destination_network] [subnet_mask] [next_hop] 配置完成后,通过命令`show ip route`检查静态路由是否配置正确。
4. 配置RIP协议在每个路由器上配置RIP协议。
打开命令提示符,使用以下命令:Router(config)router ripRouter(config-router)network [network_address]配置完成后,通过命令`show ip route`检查RIP协议是否配置正确。
5. 测试和验证- 使用主机发送ICMP消息,检查网络连通性。
- 使用命令`show ip route`查看路由表和距离矢量信息。
实验结果经过实验,我们成功搭建了静态路由和RIP协议实验环境,并成功配置和验证了静态路由和RIP协议。
实验报告南通大学计算机科学与技术学院软件工程专业**年级*班实验时间:2019年10月28日姓名:沈** 学号:**********实验名称:路由信息协议(RIP)实验一、实验目的1.掌握利用路由器划分子网的方法,并对路由器的各个接口设置IP地址。
2.掌握路由信息协议(RIP)的配置方式。
二、实验设备1.路由器、计算机、直通线、交叉线2.实验所用的拓扑图如图所示。
三、实验内容1. 将各类设备进行连接和配置,完成RIP协议的编写2. 深入理解RIP协议的规则四、实验步骤1.按照图8‐1所示进行设备的连接和配置。
2. RouterA的基本配置如下:3.RouterB的基本配置如下:4.配置RouterA的RIP路由如下。
5.配置RouterB的静态路由如下。
6.查看配置。
在RouterA运行show ip router命令会显示如下所示的路由信息。
其中,“R192.168.3.0/4[1/0]via192.168.2.2”就是我们加上去的RIP路由。
在上面显示的信息中,C为直连网络,R为RIP路由。
在RouterB运行show ip router命令会显示如下所示的路由信息。
7.测试PC1,PC2,PC3,PC4是否能互相Ping通,如果能,则表示达到了实验的要求。
8.删除路由协议:Router(config)#no router rip五、实验拓扑结构图六、实验结果及分析七、实验总结及体会通过此次试验,成功掌握了利用路由器划分子网的方法,并对路由器的各个接口设置IP地址。
掌握了路由信息协议(RIP)的配置方式。
实验二、路由协议实验(RIP,OSPF)
一.实验目的
常见的路由协议有静态RIP,OSPF等,静态路由一般用于较小的网络环境,RIP一般用于不超过15台路由器的环境,OSPF常用于大型的网络环境,是目前主流的网络路由协议之一。
二.实验内容和要求
1.如何配置路由器,并掌握基本的命令
2.学习常见的网络路由协议配置方法
三.实验主要仪器设备和材料
AR28路由器、AR18路由器,一台PC机。
四.实验结果截图
组别为13组,我们作为分组1
(1)RIP实验
1.AR28-1路由表
3.可以PING 通
(2)OSPF实验
1.AR28-1路由表
2.可以PING 通
五、RIP,OSPF的工作原理
RIP是距离矢量路由协议,它通过交换明确的路由来达到全网互通,即是说他所获得的路由都是通过邻居发送过来的。
类似于问路的时候沿路打听。
OSPF是链路状态路由协议,他不发送路由信息。
而是通过发送链路状态LSA来独自计算路由条目。
类似GPS发送给对方方位后具体怎么走是本地系统计算出来的。
六、思考题
1、答:可以同时配置。
OSPF的优先级较高,所以OSPF协议生效。
PT 实验(九) 路由器RIP动态路由配置一、实验目标●掌握RIP协议的配置方法;●掌握查看通过动态路由协议RIP学习产生的路由;●熟悉广域网线缆的连接方式;二、实验背景假设校园网通过一台三层交换机连到校园网出口路由器上,路由器再和校园外的另一台路由器连接。
现要做适当配置,实现校园网内部主机与校园网外部主机之间的相互通信。
为了简化网管的管理维护工作,学校决定采用RIP V2协议实现互通。
三、技术原理RIP(Routing Information Protocols),路由信息协议,是应用较早、使用较普通的IGP内部网关协议,适用于小型同类网络,是距离矢量协议;RIP协议以跳数衡量路径开销,RIP协议里规定最大跳数为15;RIP协议有两个版本:RIPv1和RIPv2,RIPv1属于有类路由协议,不支持VLSM,以广播形式进行路由信息的更新,更新周期为30秒;RIPv2属于无类路由协议,支持VLSM,以组播形式进行路由更新。
四、实验步骤实验拓扑1、在三层交换机上划分VLAN10和VLAN20,其中VLAN10用于连接校园网主机,VLAN20用于连接R1;2、路由器之间通过V.35电缆通过串口连接,DCE端连接在R1上,配置其时间频率为64000;3、主机和交换机通过直连线连接,主机与路由器通过交叉线连接;4、在S3560上配置RIPv2路由协议;5、在路由器R1、R2上配置RIPv2路由协议;6、将PC1、PC2主机默认网关分别设置为与直连网络设备接口IP地址;7、验证PC1、PC2主机之间可以互相通信;S3560:Switch>Switch>enSwitch#conf tEnter configuration commands, one per line. End with CNTL/Z.Switch(config)#hostname S3560S3560(config)#vlan 10S3560(config-vlan)#exitS3560(config)#vlan 20S3560(config-vlan)#exitS3560(config)#interface fa0/10S3560(config-if)#switchport access vlan 10S3560(config-if)#exitS3560(config)#interface fa0/20S3560(config-if)#switchport access vlan 20S3560(config-if)#exitS3560(config)#interface vlan 10%LINK-5-CHANGED: Interface Vlan10, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan10, changed state to up S3560(config-if)#ip address 192.168.1.1 255.255.255.0S3560(config-if)#exitS3560(config)#interface vlan 20%LINK-5-CHANGED: Interface Vlan20, changed state to upS3560(config-if)#ip address 192.168.3.1 255.255.255.0S3560(config-if)#exitS3560#%SYS-5-CONFIG_I: Configured from console by consoleS3560#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC 192.168.1.0/24 is directly connected, Vlan10S3560(config)#router rip //配置rip路由协议S3560(config-router)#network 192.168.1.0S3560(config-router)#network 192.168.3.0S3560(config-router)#version 2S3560(config-router)#endS3560#%LINK-5-CHANGED: Interface FastEthernet0/20, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/20, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan20, changed state to up //当配置好所有RIPv2后,再查看路由信息S3560#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC 192.168.1.0/24 is directly connected, Vlan10R 192.168.2.0/24 [120/2] via 192.168.3.2, 00:00:01, Vlan20C 192.168.3.0/24 is directly connected, Vlan20R 192.168.4.0/24 [120/1] via 192.168.3.2, 00:00:01, Vlan20S3560#R1:Router>enRouter#conf tEnter configuration commands, one per line. End with CNTL/Z.Router(config)#hostname R1R1(config)#interface fa0/0R1(config-if)#ip address 192.168.3.2 255.255.255.0R1(config-if)#no shutdown%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up R1(config-if)#exitR1(config)#interface serial 0/0R1(config-if)#ip address 192.168.4.1 255.255.255.0R1(config-if)#no shutdown%LINK-5-CHANGED: Interface Serial0/0, changed state to downR1(config-if)#clock rate 64000R1(config-if)#exitR1#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setR 192.168.1.0/24 [120/1] via 192.168.3.1, 00:00:15, FastEthernet0/0C 192.168.3.0/24 is directly connected, FastEthernet0/0R1(config)#router rip //配置rip路由协议R1(config-router)#network 192.168.3.0R1(config-router)#network 192.168.4.0R1(config-router)#version 2R1(config-router)#end%SYS-5-CONFIG_I: Configured from console by console%LINK-5-CHANGED: Interface Serial0/0, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0, changed state to up //当配置好所有RIPv2后,再查看路由信息R1#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setR 192.168.1.0/24 [120/1] via 192.168.3.1, 00:00:19, FastEthernet0/0R 192.168.2.0/24 [120/1] via 192.168.4.2, 00:00:11, Serial0/0C 192.168.3.0/24 is directly connected, FastEthernet0/0C 192.168.4.0/24 is directly connected, Serial0/0R1#R2:Router>enRouter#conf tEnter configuration commands, one per line. End with CNTL/Z.Router(config)#hostname R2R2(config)#interface fa0/0R2(config-if)#ip address 192.168.2.1 255.255.255.0R2(config-if)#no shutdown%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up R2(config-if)#exitR2(config)#interface Serial 0/0R2(config-if)#ip address 192.168.4.2 255.255.255.0R2(config-if)#no shutdown%LINK-5-CHANGED: Interface Serial0/0, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0, changed state to upR2(config-if)#exitR2(config)#end%SYS-5-CONFIG_I: Configured from console by consoleR2#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC 192.168.2.0/24 is directly connected, FastEthernet0/0C 192.168.4.0/24 is directly connected, Serial0/0R2#conf tEnter configuration commands, one per line. End with CNTL/Z.R2(config)#router ripR2(config-router)#network 192.168.2.0R2(config-router)#network 192.168.4.0R2(config-router)#version 2R2(config-router)#end%SYS-5-CONFIG_I: Configured from console by console//当配置好所有RIPv2后,再查看路由信息R2#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setR 192.168.1.0/24 [120/2] via 192.168.4.1, 00:00:00, Serial0/0C 192.168.2.0/24 is directly connected, FastEthernet0/0R 192.168.3.0/24 [120/1] via 192.168.4.1, 00:00:00, Serial0/0C 192.168.4.0/24 is directly connected, Serial0/0R2#五、测试Packet Tracer PC Command Line 1.0PC>ipconfigIP Address......................: 192.168.2.2Subnet Mask.....................: 255.255.255.0Default Gateway.................: 192.168.2.1PC>ping 192.168.1.2Pinging 192.168.1.2 with 32 bytes of data:Request timed out.Request timed out.Reply from 192.168.1.2: bytes=32 time=16ms TTL=125Reply from 192.168.1.2: bytes=32 time=17ms TTL=125Ping statistics for 192.168.1.2:Packets: Sent = 4, Received = 2, Lost = 2 (50% loss), Approximate round trip times in milli-seconds:Minimum = 16ms, Maximum = 17ms, Average = 16ms PC>ping 192.168.1.2Pinging 192.168.1.2 with 32 bytes of data:Reply from 192.168.1.2: bytes=32 time=19ms TTL=125Reply from 192.168.1.2: bytes=32 time=16ms TTL=125Reply from 192.168.1.2: bytes=32 time=13ms TTL=125Reply from 192.168.1.2: bytes=32 time=15ms TTL=125Ping statistics for 192.168.1.2:Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:Minimum = 13ms, Maximum = 19ms, Average = 15ms PC>。
rip实验原理与实验步骤RIP(Routing Information Protocol)是一种基于距离向量算法的路由协议,它通过交换路由信息来更新网络的路由表。
本实验将介绍RIP协议的原理和实验步骤。
1. 实验原理RIP协议采用距离向量算法,每个路由器通过向相邻路由器发送自己的路由表来获取网络拓扑信息。
路由器收到路由表后,更新自己的路由表,并将更新后的路由表发送给相邻路由器。
通过不断地交换路由信息,整个网络构建一个路由信息表,路由器就可以根据该表选择最优路径进行数据传输。
RIP协议使用了Hop Count(跳数)作为度量单位,即每个数据包经过的路由器数。
默认情况下,RIP协议的最大跳数限制是15,超过这个跳数的数据包将会被丢弃。
RIP协议还具有自适应能力,如果某个路由器网络的拓扑结构发生了改变,RIP协议将会相应地调整路由表。
2. 实验步骤步骤一:准备实验环境为了进行实验,需要组建一个网络实验环境。
可以通过模拟器或者真实的设备来实现。
在实验环境搭建完成后需要确认网络连接正确,并确保所有路由器和主机设备能够相互通信。
步骤二:启用RIP协议在每个路由器上启用RIP协议,设置相应的参数。
启用RIP协议后,路由器将会开始收集并更新路由信息表。
步骤三:测试路由为了测试RIP协议的工作效果,需要利用ping命令或者traceroute命令来测试路由。
在测试过程中要尽量模拟实际网络环境,进行多次测试并记录测试结果,可以根据测试结果来调整路由器的设置和参数。
步骤四:观察路由信息表在测试过程中需要不断地观察路由信息表,确保路由器的路由信息表与实际网络拓扑相符。
如果出现不符合的情况,需要及时进行调整和更新。
步骤五:调整RIP协议参数在测试中,可能需要调整RIP协议的参数,比如更新频率、路由收敛时间等,来改善网络的质量。
同时也需要关注资源消耗,保证网络的高效性和可靠性。
通过以上实验步骤,可以深入了解RIP协议的工作原理,并且对网络拓扑结构进行更加细致的优化和管理。
实验六路由信息协议RIP一、RIP协议的基本配置1、实验目的(1)理解动态路由协议的基本原理(2)理解RIP协议的工作过程,了解RIP协议的报文结构(3)理解RIP协议中的定时器的用途(4)掌握RIPv1的配置(5)掌握RIPv2的配置2、实验拓扑3、实验步骤(1)配置网络基本信息及检查路由器接口是否被正确激活R1#show ip interface brief注:如果Status和Protocol都是up,说明端口已经被激活,可以进行路由协议的配置,否则检查故障并确保端口处于正常工作状态(2)RIP路由协议配置R1(config)#router ripR1(config-router)#network192.168.10.0R1(config-router)#network172.16.0.0R1(config-router)#version2R2参考R1配置(3)检查配置结果与测试①在PC0上ping PC1,测试结果:②查看R1路由表R1#show ip route通过以上内容可以看出,R1上存在到192.168.2.0的路由,路由项前面的R表示该路由是通过RIP得到的,[120/1]中的120表示管理距离,RIP路由协议的管理距离为120;1表示时度量值,在RIP中为跳数,表示R1到达该网络的跳数为1,。
③查看R1路由协议配置R1#show ip protocols③使用debug调试输出RIP报文信息R1#debug ip ripR1#undebug all//关闭调试二、不连续子网中的RIP及计时器的配置1、使用目的(1)理解不连续子网RIP配置(2)理解RIP四大计时器的作用(3)掌握四大计时器的配置(4)理解四大计时器配置对RIP的影响2、实验拓扑3、实验步骤(1)网络配置和RIP的配置参考上面(2)查看两路由器汇总R1#sh ip routeR2#sh ip route通过查看路由表可以看出R1并没有得到PC1的网络172.16.20.0/24的路由,而是得到了进行汇总之后的路由172.16.0.0/16,说明在R2的边界进行了路由汇总.通过查看R2的路由表可以看出,R2并没有得到PC0网络10.10.10.0/24的路由,而是得到了进行汇总之后的路由10.0.0.0/8,说明在R1的边界也进行了路由汇总(3)配置RIPv2和关闭路由汇总R1(config)#router ripR1(config-router)#version2R1(config-router)#no auto-summaryR2参考此配置(4)结果验证R1#sh ip routeR2#sh ip route比较两次的不同(5)使用R2#debug ip rip可以查看RIP路由项的接收和发送情况(6)关闭调试,将R2的fa0/0接口关闭180s后继续观察R1的路由表,在R1上使用show ip route命令观察路由表的变化。
实验五 RIP路由协议配置【实验目的】1.掌握RIP协议的工作原理。
2. 掌握RIP协议的配置方法。
【实验原理】1.路由信息协议RIP路由信息协议(Routing Information Protocol,RIP)是内部网关协议中最先得到广泛应用的协议。
RIP是一种基于距离向量的路由协议,其最大优点就是简单,开销小。
(1)距离RIP协议要求网络中每一个路由器都维护从它自己到每一个目的网络的距离记录,这个距离作为衡量路由优劣的度量值。
RIP中的“距离”也称为“跳数”,路由器到直连网络的距离定义为“0”,到非直连网络的距离定义为所经过的路由器的个数。
RIP规定,当距离等于16时,表示该目的网络不可达,所以RIP仅适用于小型网络。
(2)工作原理每个运行RIP协议的路由器都周期性地向其直接相连的邻居路由器发送自己完全的路由表的信息(路由信息是封装在RIP报文中发送的,主要包括目的网络,下一跳路由器,距离等信息),同时也从邻居路由器接收路由更新信息,并按照距离向量算法更新自己的路由表。
路由器刚开始工作时,仅知道自己的直连网络及其距离,接着路由器向邻居路由器交换并更新路由信息,经过若干次的更新后,所有的路由器最终都会知道到达本自治系统中任何一个网络的最短距离和下一跳路由器。
(3)距离向量算法邻居发来的路由更新报文中包括了很重要的信息:目的网络,其距离(即最短距离),下一跳地址。
RIP路由器必须根据更新报文和自己当前路由表的内容找出到每一个目的网络的最短距离和正确的下一跳。
这种更新算法称为距离向量算法。
对每一个相邻路由器发来的更新报文,进行以下步骤处理:○1对地址为X的相邻路由器发来的更新报文,先修改报文中的项目:“下一跳”均修改为X,“距离”均加1。
○2对修改后的报文的每一项(这里为了叙述清楚,用项目A来表示)进行以下处理:若本路由器路由表中没有项目A的目的网络,则把项目A添加到路由表中。
若本路由器中某个路由的目的网络和下一跳地址均与项目A相同,则用项目A的距离更新本路由。
太原理工大学现代科技学院计算机通信网络课程实验报告专业班级学号姓名指导教师实验名称 同组人 专业班级 学号 姓名 成绩 一、实验目的 计算机通信网络实验指导书 掌握RIP 动态路由协议的配置、诊断方法; 二、实验任务 1、配置RIP 动态路由协议,使得3 台Cisco 路由器模拟远程网络互联; 2、对运行中的RIP 动态路由协议进行诊断; 三、实验设备 Cisco 路由器3 台,带有网卡的工作站PC2 台,控制台电缆一条,交叉线、V35 线若干; 四、实验环境 五、实验步骤 1、运行Cisco Packet Tracer 软件,在逻辑工作区放入3 台路由器、……………………………………装………………………………………订…………………………………………线………………………………………两台工作站PC,分别点击各路由器,打开其配置窗口,关闭电源,分别加入一个2 口同异步串口网络模块WIC-2T,重新打开电源;然后,用交叉线Copper Cross-Over按图6-1其中静态路由区域所示分别连接路由器和各工作站PC,用DTE 或DCE 串口线缆连接各路由器router0 router1,注意按图中所示接口连接S0/0 为DCE,S0/1 为DTE;2、分别点击工作站PC1、PC3,进入其配置窗口,选择桌面Desktop项,选择运行IP 设置IP Configuration,设置IP 地址、子网掩码和网关分别为PC1:/24 gw: PC3:/24 gw: 3、点击路由器R1,进入其配置窗口,点击命令行窗口CLI项,输入命令对路由器配置如下:点击路由器R2,进入其配置窗口,点击命令行窗口CLI项,输入命令对路由器配置如下:同理对R3 进行相应的配置:4、测试工作站PC 间的连通性;从PC1 到PC3:PC>ping 不通5、设置RIP 动态路由接前述实验,继续对路由器R1 配置如下:同理,在路由器R2、R3 上做相应的配置:6、在路由器R1 上输入show ip route 命令观察路由信息,可以看到增加的RIP 路由信息;同理,在路由器R2、R3 上输入show ip route 命令观察路由信息; 从PC1 到PC3:PC>ping 通,六、实验体会在实验中,我们掌握RIP动态路由协议的配置、诊断方法;对运行中的RIP动态路由协议进行诊断,在对设备路由器的连接时,先将路由器的电源开关关闭,加入2个WIC-2T,再关上电源,路由器之间进行连接应注意端口的;从实验中,对RIP配置的了解有一定的认识与理解,使自己在计算机领域的知识又有了一定的提高;。
网络路由协议实验结果分析近年来,随着互联网的快速发展,网络路由协议成为了保障网络通信的重要技术之一。
在网络中,路由协议负责确定数据包传输的最佳路径,确保网络的高效运行。
本文将就网络路由协议实验结果进行详细分析,探讨其在实际应用中的优缺点及改进方向。
一、实验环境概述本次实验采用了常见的路由器设备和网络模拟器软件搭建了一个小规模网络环境。
在该环境下,使用了多种常见的路由协议,包括RIP、OSPF和BGP等,分别在不同拓扑结构下进行了实验。
二、实验结果分析1. RIP协议实验结果分析RIP(Routing Information Protocol)是一种基于距离向量的内部网关协议,其路由选择依据跳数。
实验结果显示,RIP协议在小规模网络中运行良好,具有较低的计算复杂度,并且对于网络拓扑变化能够快速适应。
然而,由于其传输的只是路由表中的距离信息,无法满足大规模网络中的高效路由需求。
2. OSPF协议实验结果分析OSPF(Open Shortest Path First)协议是一种链路状态协议,通过收集邻居节点的链路状态信息来构建网络拓扑,通过计算最短路径来进行路由选择。
实验结果表明,OSPF协议在大规模网络中的性能较好,具有较低的路由计算复杂度和较快的收敛速度。
但是,OSPF协议对网络资源的开销较大,需要额外的带宽和路由器计算资源。
3. BGP协议实验结果分析BGP(Border Gateway Protocol)协议是一种用于互联网自治系统之间的路由选择协议,其路由策略基于路径。
实验结果显示,BGP协议适用于大规模互联网环境中,能够提供高度的可靠性和灵活性,能够根据策略来选择最佳的路径。
然而,BGP协议的路由选择时间较长,收敛速度较慢,存在一定的安全风险。
三、实验结论及改进方向通过实验结果的分析,我们可以得出以下结论:首先,不同的路由协议适用于不同规模和需求的网络环境。
RIP协议适用于小规模网络,OSPF协议适用于大规模网络,而BGP协议适用于互联网环境。
在小规模网络的互联的情况下,可以采取手工建立的静态路由的方法,人为指定每一个可达网络的路由。
所以静态路由一般用于网络相对简单、网络与网络之间只有一条路径互联的情况。
动态路由是指利用路由协议,通过与相邻的路由器交换路由信息而动态建立的路由表。
路由协议分为内部路由协议(IGP)和外部路由协议(EGP);根据交换的路由信息的不同,路由协议可分为:距离向量、链路状态、混杂型。
RIP、IGRP属于距离向量型,OSPF属于链路状态型。
路由协议优缺点:
静态路由的优先级比动态路由的高;静态路由不会占有路由器CPU的资源,也不会占用路由器之间的带宽(动态路由须相互通信更新路由,显然要占用一定的带宽);动态路由能够自动适用变换了网络情况,不需要手工更新路由表(而静态路由无法自适用,需要手工更新路由表,数据可以路由到哪个网络由管理员指定)。
动态路由协议RIP实验
一、实验拓扑图
RouterB
router A 的IP地址:F0/1 172.1.1.1/24 F0/0 192.168.1.1/24 router B 的IP地址:F0/1 192.168.1.2/24 F0/0 172.2.2.1/24
host A的IP地址: 172.1.1.2/24 网关:172.1.1.1
host B的IP地址: 172.1.1.3/24 网关:172.1.1.1
host C的IP地址: 172.2.2.2/24 网关:172.2.2.1
host D的IP地址: 172.2.2.3/24 网关:172.2.2.1
二、实验要求:
1.路由器的基本配置: 1)、设置路由器接口IP地址。
2.根据以上拓扑划分出的3个网段,要求配置RIP路由以达到所有客户机都能
相互通信。
该如何实现?
三、实验步骤:
路由器的基本配置: 1)、设置路由器接口IP地址。
1.router A 的配置:
2.router B的配置:
3.RIP路由:
router A 的配置:
router B的配置:
4.查看配置:
在Router A中运行:show ip route 会显示路由配置信息,如下图:
其中,“R 172.2.2.0 [120/1] via 192.168.1.2 ”就是我们加上去的RIP路由,如果没有显示这样的信息,就说明你没有把RIP路由加载成功。
C—直连网络,S—静态路由,R---rip 协议,O--- ospf 协议。
在Router B 中用show ip route 会显示路由信息,如下图:
5.接下来测试一下host A、host B 、host C、host D都能互相ping 通,这样就达到实验
要求了。
6.最后值得注意的是,如果一个网络中存在多个路由器时,存在静态路由协议、存在默认路由跟动态RIP路由协议时,路由器按照优先级选择。
大家可以动手配置比较下(静态路由优先级高于动态路由)
7.删除路由协议:
Router(config)# router rip
Router(config-router)# no route rip
四、思考
1.如果拓扑图如下又应该如何配置?
RouterB
提示:当两个路由器之间用串口现联时,必须设置其中一个路由器现联的接口为DCE,另一个路由器的接口为DTE。
为DCE的接口必须先要设置时钟频率,操作如下:
Router(config-if)#clock rate 64000
2.如果是3个路由器组成的拓扑图又应该如何配置?
RouterC。