综合性实验报告 动态路由协议配置
- 格式:doc
- 大小:669.50 KB
- 文档页数:7
动态路由配置实验报告动态路由配置实验报告一、引言在计算机网络中,路由器是实现数据包转发的重要设备。
静态路由配置是一种简单但不灵活的方式,因为它需要手动配置路由表,无法适应网络拓扑的变化。
为了解决这个问题,动态路由配置应运而生。
本实验旨在探索动态路由配置的原理和应用。
二、实验目的1. 了解动态路由配置的基本原理;2. 熟悉动态路由协议的配置和使用;3. 掌握动态路由配置的优缺点及适用场景。
三、实验环境本实验使用了三台虚拟机,分别搭建了一个简单的局域网。
其中一台虚拟机作为路由器,另外两台虚拟机作为客户端。
四、实验步骤1. 配置路由器在路由器上安装并配置动态路由协议,如OSPF或RIP。
通过协议学习和交换,路由器可以自动更新路由表,实现动态路由配置。
2. 配置客户端在每个客户端上配置默认网关为路由器的IP地址。
这样,客户端就可以通过路由器转发数据包。
3. 测试连通性在客户端之间进行ping测试,验证动态路由配置是否成功。
如果ping命令能够正常执行,说明路由器已经成功转发数据包。
五、实验结果通过实验,我们成功实现了动态路由配置。
路由器能够根据网络拓扑的变化自动更新路由表,保证数据包能够正确传递。
客户端之间的连通性也得到了验证。
六、实验总结动态路由配置是一种灵活且自动化的路由管理方式。
相比静态路由配置,它能够更好地应对网络拓扑的变化。
动态路由配置通过学习和交换路由信息,实现了路由表的自动更新,从而提高了网络的可靠性和可扩展性。
然而,动态路由配置也存在一些缺点。
首先,它需要消耗额外的计算和带宽资源,因为路由器需要不断交换路由信息。
其次,动态路由协议的配置和调试相对复杂,需要一定的技术知识和经验。
在实际应用中,我们可以根据网络规模和需求选择合适的路由协议。
对于小型网络,静态路由配置可能更加简单有效。
而对于大型复杂网络,动态路由配置能够更好地应对网络变化和故障。
综上所述,动态路由配置是网络管理中重要的一环。
通过本次实验,我们深入了解了动态路由配置的原理和应用,并掌握了相关的配置技巧。
1. 了解动态路由协议的基本原理和工作机制;2. 掌握RIP和OSPF两种动态路由协议的配置方法;3. 通过实验,提高网络配置和故障排查能力。
二、实验环境1. 路由器:2台Cisco 2960系列路由器;2. 计算机客户端:2台PC机;3. 网线:2根直通网线,2根交叉网线;4. 路由器配置软件:Tera Term或PuTTY。
三、实验拓扑实验拓扑图如下:```+------+ +------+ +------+| PC1 |---->| R1 |---->| R2 |---->| PC2 |+------+ +------+ +------+```四、实验步骤1. 配置PC1和PC2的IP地址、子网掩码和默认网关;2. 配置R1和R2的接口IP地址、子网掩码和默认网关;3. 配置R1和R2的RIP动态路由协议;4. 验证PC1和PC2之间的连通性;5. 配置OSPF动态路由协议,验证网络连通性;6. 修改R1或R2的配置,观察网络连通性变化,分析故障原因。
1. 配置PC1和PC2的IP地址、子网掩码和默认网关PC1的IP地址:192.168.1.1,子网掩码:255.255.255.0,默认网关:192.168.1.2PC2的IP地址:192.168.2.1,子网掩码:255.255.255.0,默认网关:192.168.2.22. 配置R1和R2的接口IP地址、子网掩码和默认网关R1的接口配置如下:R1(config)#interface FastEthernet0/0R1(config-if)#ip address 192.168.1.2 255.255.255.0R1(config-if)#no shutdownR1的接口配置如下:R2(config)#interface FastEthernet0/0R2(config-if)#ip address 192.168.2.2 255.255.255.0R2(config-if)#no shutdown3. 配置R1和R2的RIP动态路由协议R1的RIP配置如下:R1(config)#router ripR1(config-router)#network 192.168.1.0R1(config-router)#network 192.168.2.0R2的RIP配置如下:R2(config)#router ripR2(config-router)#network 192.168.1.0R2(config-router)#network 192.168.2.04. 验证PC1和PC2之间的连通性在PC1上ping PC2的IP地址,发现无法ping通。
实验4 动态路由协议的配置(一)一、实验目的熟悉RIPv1、RIPv2、IGRP、EIGRP等动态路由协议的配置方法及配置指令、验证动态路由协议的工作原理。
二、实验指导配置路由协议,是路由器配置中最重要的项目之一。
通过启用某种路由协议,完成相应的配置项目,路由器就能自动生成和维护路由表。
RIP路由协议配置步骤如下:1. 在全局配置模式下,指定使用RIP协议,进入路由协议配置模式router(config)# router riprouter(config-router) #2. 指定参与RIP路由的子网router(config-router)# network network其中network为子网地址,路由器直接连接了多少个子网(网段),就配置多少行。
3. 配置RIP的版本,启用版本2router(config-router)#version 2RIP路由协议有2个版本,版本1和版本2。
RIP版本2支持验证、密钥管理、路由汇总、无类域间路由(CIDR)和变长子网掩码(VLSM)。
Cisco路由器在与其他厂商的路由器相连时,RIP版本必须一致。
在默认状态下,Cisco 路由器接收RIP版本1和版本2的路由信息,但只发送版本1的路由信息。
4. 控制版本信息在接口配置模式下输入下面的命令,可以控制特定端口发送或接收特定版本的路由信息。
只发送版本1或版本2的信息:ip rip send version 1|2同时接受版本1或版本2的信息:ip rip receive 1|2同时发送和接收版本1或版本2的信息:ip rip send receive 1|25. 相关查看命令,在特权模式下使用show ip route //查看路由表show ip protocol //查看路由协议进程参数三、实验内容及屏幕截图1. 实验4-1:RIPv1协议的配置在四台Cisco 2620路由器组成的网络中配置RIPv1路由,使得PC1和PC2之间或者路由器之间都可以相互Ping通,实验的拓扑图如图1所示。
动态路由的配置实验报告动态路由的配置实验报告引言:随着网络的快速发展,网络设备的数量和规模也在不断增加。
对于大型网络而言,静态路由已经无法满足其复杂的网络拓扑结构和高效的数据传输需求。
因此,动态路由的配置成为了网络管理中的重要环节。
本文将介绍动态路由的配置实验过程以及实验结果。
一、实验背景在网络中,路由器是实现数据包转发的重要设备。
静态路由是通过手动配置路由表来实现数据包的转发,而动态路由则是通过路由协议自动学习和更新路由表。
动态路由的配置可以大大减轻网络管理员的工作量,提高网络的可扩展性和灵活性。
二、实验目的本次实验的目的是通过配置动态路由协议,实现网络设备之间的自动学习和更新路由表,从而实现数据包的快速转发和高效传输。
三、实验环境本次实验使用了GNS3网络模拟器搭建实验环境。
实验中使用的设备包括路由器R1、R2和R3,它们之间通过以太网连接。
实验中采用的动态路由协议是开放最短路径优先(OSPF)协议。
四、实验步骤1. 配置设备IP地址:首先,为每个设备配置IP地址,确保它们可以相互通信。
2. 配置OSPF协议:在每个路由器上启动OSPF进程,并配置相应的区域。
3. 配置网络接口:将每个设备的接口与OSPF进程绑定,并设置相应的开销值。
4. 验证路由信息:通过查看路由表和邻居关系表,验证OSPF协议是否正常工作。
五、实验结果经过以上步骤的配置,我们成功实现了动态路由的配置。
通过查看路由表,可以看到每个路由器已经学习到了相应的网络信息,并且能够选择最短路径进行数据包的转发。
同时,通过查看邻居关系表,可以确认路由器之间已经建立了相互的邻居关系。
六、实验总结通过本次实验,我们深入了解了动态路由的配置过程,并成功实现了网络设备之间的自动学习和更新路由表。
动态路由的配置可以大大简化网络管理的工作,提高网络的可扩展性和灵活性。
同时,我们也了解到动态路由协议的选择和配置对网络性能和稳定性有着重要影响,需要根据实际需求进行合理选择和配置。
华南农业大学信息(软件)学院《计算机网络》综合性、设计性实验成绩单开设时间:2013学年第二学期目录一、实验目的 (3)二、实验要求 (3)三、实验原理分析 (4)1、路由算法原理 (4)2、动态路由 (4)3、动态路由的特点 (5)四、流程图 (5)五、RIP路由协议配置过程 (6)1、配置信息 (6)2、配置路由器R1、R2、R3 (7)(1)配置路由器R1 (7)(2)配置路由器R2 (8)(3)配置路由器R3 (8)3、配置主机PC0、PC1 (9)(1)配置PC0的信息 (9)(2)配置PC1的信息 (9)六、RIP路由协议配置测试与分析 (10)配置好动态路由后在PC1上检测连通性,结果如下: (10)结论: (10)七、OSPF路由协议配置过程 (10)1、配置信息 (10)2、配置路由器R1、R2、R3 (12)(1)配置路由器R1 (12)(2)配置路由器R2 (12)(3)配置路由器R3 (12)3、配置主机PC0、PC1 (13)(1)配置PC0的信息 (13)(2)配置PC1的信息 (13)八、OSPF路由协议配置测试与分析 (14)配置好动态路由后在PC1上检测连通性,结果如下: (14)结论: (14)九、体会 (14)实验报告一、实验目的《计算机网络》是计算机各个专业的重要的专业基础课,通过本综合性、设计性实验使学生进一步巩固课堂所学,全面熟悉、掌握计算机网络的基本原理,进一步提高网络工程、网络应用的能力。
(1)理解路由器的工作原理。
(2)理解路由表的概念。
(3)理解路由协议的分类,掌握动态路由的配置方法。
(4)学会ip route命令的使用。
(5)掌握查看路由器的路由表信息的方法。
(6)熟悉掌握路由器的RIP路由协议的配置方法。
(7)了解路由器的OSPF路由协议的由来。
(8)熟悉掌握路由器的OSPF路由协议的配置方法。
(9)提高在实体机器上的操作能力。
(10)通过本实验固课堂所学,全面熟悉、掌握计算机网络的基本原理和技术,进一步提高网络工程、网络应用的能力。
实验八 配置动态路由-RIP 协议1. 实验目的a) 掌握RIP 路由协议的基本配置过程。
b) 理解动态路由,掌握用RIP 协议实现不同子网间通信的方法。
2. 实验环境(拓扑结构如下图所示)3. 实验过程与主要步骤(1)按照上面拓扑图所示搭建网络。
(2)配置路由器与PC 机各端口的IP 地址与子网掩码。
a). 设置RouterA 的端口属性<H3C>reset save-configuration<H3C>reboot<H3C>system-view[H3C]sysname RouterA[RouterA]interface s0/0[RouterA-Serial0/0]ip address 10.0.0.1 255.0.0.0[RouterA-Serial0/0]interface e0/1[RouterA-Ethernet0/1]ip address 192.168.1.101 24[RouterA-Ethernet0/1]interface loopback 0[RouterA-LoopBack0]ip address 1.1.1.1 24b). 设置RouterB 的端口属性RouterB 的设置方法与 RouterA 相似。
PC1 192.168.1.100/24 PC2 192.168.0.200/24LoopbackA 0 1.1.1.1/242.2.2.2/24LoopbackB 0 静态路由拓扑结构图c). 设置PC1与PC2的IP地址与子网掩码。
注意将默认网关设置相应路由器以太网网口IP地址。
正确配置端口后使用ping命令进行测试,可以发现PC1与LoopbackA不连通,PC2与LoopbackB不连通。
(3)在RouterA和RouterB上查看路由表[RouterA]display ip routing-table(4)配置静态路由a) 在路由器RouterA上,设置动态路由:[RouterA]rip[RouterA -rip]network 1.1.1.0[RouterA -rip]network 10.0.0.0[RouterA -rip]network 192.168.0.0在路由器RouterB上,设置动态路由:[RouterB]rip[RouterB-rip]network 2.2.2.0[RouterB-rip]network 10.0.0.0[RouterB -rip]network 192.168.0.0(5)在RouterA和RouterB上查看路由表[RouterA]display ip routing-table(6)使用ping测试PC1与LoopbackA连通性,PC2与LoopbackB连通性。
动态路由协议实验报告篇一:动态路由配置实验报告实验名称:姓名:专业:班级:学号:指导教师:实验日期:动态路由的配置【实验目的】1. 学会用配置静态路由;2.学会用RIP协议配置动态路由。
【实验原理】动态路由是网络中的路由器之间相互通信,传递路由信息,利用收到的路由信息更新路由器表的过程。
它能实时地适应网络结构的变化。
如果路由更新信息表明发生了网络变化,路由选择软件就会重新计算路由,并发出新的路由更新信息。
这些信息通过各个网络,引起各路由器重新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑变化。
动态路由适用于网络规模大、网络拓扑复杂的网络。
RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。
路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。
同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。
这样,正确的路由信息逐渐扩散到了全网。
【实验步骤】1. 在Packet Tracer 软件环境当中搭建实验环境,并画出如下拓扑图,共使用 4台路由器,5台PC机,1台交换机,其中两个路由器之间用交叉线连接,交换机与其他设备都用直通线连接。
图一网络拓扑图2. 按照事先想好的如上图中标示的地址在计算机中设置好IP地址,子网掩码,默认网关。
如设置PC1的相关截图如下:图二PC1的IP地址图三PC1的网关3. 利用ping命令测试同一网段的两台 PC机之间的连通性,若出现Reply from语句则表示两台 PC机之间相互连通了,若出现 Request timed out 则表示还没有连通,如下图所示是测试同一网段的PC0和PC4之间的连通性,出现Reply from 语句,表示两台计算机之间连通了。
图四用ping命令测试连通性4. 在路由器中分别添加与之相连的网段的网络号,相关截图如下:图五路由器设置5. 利用ping命令测试不同网段的 PC机(PC1和PC3)之间的连通性,测试结果如下,结果表明连通了。
动态路由配置实验报告本实验旨在通过配置动态路由实现网络通信的拓扑结构变化。
实验环境采用了GNS3仿真软件和3台虚拟机。
实验步骤:1、拓扑结构设计设计拓扑结构如下图所示:在该拓扑结构中,R1、R2、PC1在同一子网中,IP地址分别为192.168.1.1、192.168.1.2、192.168.1.3;R2、R3、PC2在同一子网中,IP地址分别为192.168.2.1、192.168.2.2、192.168.2.3。
PC1到PC2之间通过R1、R2、R3进行通信。
2、配置路由器配置路由器R1如下:Router>enableRouter#configure terminalEnter configuration commands, one per line. End with CNTL/Z.Router(config)#interface FastEthernet0/0Router(config-if)#ip address 192.168.1.1 255.255.255.0Router(config-if)#no shutdownRouter(config-if)#exitRouter(config)#interface Serial0/0Router(config-if)#ip address 10.0.10.1 255.255.255.252Router(config-if)#no shutdownRouter(config-if)#exitRouter(config)#router ripRouter(config-router)#version 2Router(config-router)#network 192.168.1.0Router(config-router)#network 10.0.10.0Router(config-router)#exit上述配置中,RIP(Routing Information Protocol)是一种基于距离向量的路由协议,用于路由选择和距离度量。