线性回归方程——非线性方程转化为线性方程.docx
- 格式:docx
- 大小:238.50 KB
- 文档页数:7
编号032 §9.1.2 线性回归方程目标要求1、结合具体实例,了解一元线性回归模型的含义.2、结合具体实例,了解模型参数的统计意义.3、结合具体实例,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.4、结合具体实例,会使用相关的统计软件.5、针对实际问题,会用一元线性回归模型进行预测.学科素养目标本章内容是在学生已经学习过必修课程中的统计知识和概率知识的基础上,通过对典型案例的研究,了解和使用一些常用统计分析方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用,从而形成运用统计的观点认识客观事物的习惯.在本章教学中,应突出对学生应用意识的培养,不能只限于要求学生会解书本上的习题,还要关注学生应用与解决实际问题的能力.应引导、鼓励学生从现实生活中发现问题,并能自觉地运用所学的统计方法加以理解,应尽量给学生提供一定的实践活动机会,可结合数学建模活动,选择一个案例,要求学生亲自实践.重点难点重点:一元线性回归模型参数的最小二乘估计方法; 难点:用一元线性回归模型进行预测.教学过程基础知识点 1.线性回归模型我们将y =___________称为线性回归模型. 2.线性回归方程与最小二乘法(1)线性回归方程:直线=__________称为线性回归方程.其中__称为回归截距,__称为回归系数,__称为回归值. (2),的计算公式=∑i =1n(x i -x)(y i -y )∑i =1n(x i -x )2=________________ ,=______________.【课前小题演练】题1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,响应变量在y 轴 C .回归模型中一定存在随机误差 D .散点图能明确反映变量间的关系题2.根据如下样本数据:x2 3 4 5 6Y 4 2.5 -0.5 -2 -3得到的经验回归方程为=x+,则( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0题3.已知变量x,Y之间具有线性相关关系,其散点图如图所示,则其经验回归方程可能为( )A.=1.5x+2 B.=-1.5x+2C.=1.5x-2 D.=-1.5x-2题4.若某地财政收入x与支出Y满足经验回归方程=x++e i(单位:亿元)(i=1,2,…),其中=0.8,=2,|e i|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿元B.9亿元C.10.5亿元D.9.5亿元题5.若施肥量x(kg)与水稻产量Y(kg)的经验回归方程为=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.题6.某种产品的广告费用支出x与销售额Y(单位:百万元)之间有如下的对应数据:x/百万元 2 4 5 6 8Y/百万元30 40 60 50 70(1)画出散点图;(2)求经验回归方程;(3)试预测广告费用支出为10百万元时,销售额多大?【当堂巩固训练】题7.已知x,y的取值如表所示:x234 5y 2.2 3.8 5.5m若y与x线性相关,且回归直线方程为=1.46x-0.61,则表格中实数m的值为( )A.7.69 B.7.5 C.6.69 D.6.5题8.某药厂为了了解某新药的销售情况,将2019年2至6月份的销售额整理如下:月份 2 3 4 5 6 销售额(万元)1925353742根据2至6月份的数据可求得每月的销售额y 关于月份x 的线性回归方程=x +为( )(参考公式及数据:=∑i =1nx i y i -n x y∑i =1n x 2i -n (x )2,=y -x ,∑i =15x i y i =690,∑i =15x 2i =90)A .=5.8x +8.4B .=8.4x +5.8C .=6x -9D .=4x +31.6题9.登山族为了了解某山高y (km )与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (℃) 18 13 10 -1 山高y (km )24343864由表中数据,得到线性回归方程=-2x +()∈R ,由此请估计出山高为72(km )处气温的度数为( )A .-10B .-8C .-4D .-6题10.根据如下的样本数据:x 1 2 3 y2.133.9得到的回归方程为=bx +a ,则直线ax +by -3=0经过定点( ) A .(-1,-2) B .(-1,2) C .(1,-2)D .(1,2)题11.某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如表所示:x (月份) 1 2 3 4 5 y (万盒)55668若x ,y 线性相关,线性回归方程为=0.7x +,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加0.7个单位长度 B .x 每增加1个单位长度,则y 必减少0.7个单位长度C.当x=6时,y的预测值为8.1万盒D.线性回归直线=0.7x +经过点(2,6)题12.下列说法:①设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;②线性回归方程=x+必过()x,y;③设某地女儿身高y对母亲身高x的一个回归直线方程是=34.92+0.78x,则方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分.其中正确的个数是( )A.0 B.1 C.2 D.3题13.(多选题...)两个相关变量x,y的5组对应数据如表:x8.3 8.6 9.9 11.1 12.1y 5.9 7.8 8.1 8.4 9.8根据表格,可得回归直线方程=x+,求得=0.78.据此估计,以下结论正确的是( )A.x=10 B.y=9C.=0.2 D.当x=15时,=11.95题14.(多选题...)已知x与y之间的几组数据如表:x 1 2 3 4 5 6y0 2 1 3 3 4假设根据表格数据所得线性回归直线方程为=x+,若某同学根据上表中的前两组数据()1,0和()2,2求得的直线方程为y=b′x+a′,则以下结论正确的是( )参考公式:=∑i=1nx i y i-n x y∑i=1nx2i-n(x)2,=y-b x .A.a′=-2 B.b′=2 C.>b′ D.>a′【综合突破拔高】题15.对于指数曲线y=ae bx,令U=ln y,c=ln a,经过非线性回归分析后,可转化的形式为( ) A.U=c+bx B.U=b+cxC.y=c+bx D.y=b+cx题16.若一函数模型为y =sin 2α+2sinα+1,为将y 转化为t 的经验回归方程,则需作变换t 等于( ) A .sin 2αB .(sinα+1)2C .⎝ ⎛⎭⎪⎫sin α+12 2D .以上都不对题17.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62 kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58 kg 、64 kg 、58 kg 、60 kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量的回归方程为=x +,其中=0.5,据此模型预测他的孙子的体重约为( ) A .58 kgB .61 kgC .65 kgD .68 kg题18.(多选题...)月亮公转与自转的周期大约为30天,阴历是以月相变化为依据.人们根据长时间的观测,统计了月亮出来的时间y (简称“月出时间”,单位:小时)与天数x (x 为阴历日数,x ∈N *,且0≤x ≤30)的有关数据,如表,并且根据表中数据,求得y 关于x 的线性回归方程为=0.8x +.x 2 4 7 10 15 22 y8.19.41214.418.524其中,阴历22日是分界线,从阴历22日开始月亮就要到第二天(即23日0:00)才升起.则( ) A .样本点的中心为()10,14.4 B .=6.8C .预报月出时间为16时的那天是阴历13日D .预报阴历27日的月出时间为阴历28日早上4:00题19.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润Y 的统计分析知x ,Y 具备线性相关关系,经验回归方程为=10.47-1.3x ,估计该台机器最为划算的使用年限为______年.题20.以模型y =ce kx 去拟合一组数据时,为了求出非经验回归方程,设z =ln y ,其变换后得到经验回归方程=0.3x +4,则c =________.题21.为了响应中央号召,某日深圳环保局随机抽查了本市市区汽车尾气排放污染物x (单位:ppm )与当天私家车路上行驶的时间y (单位:小时)之间的关系,从某主干路随机抽取10辆私家车,已知x 与y 之间具有线性相关关系,其回归直线方程为=0.3x -0.4,若该10辆车中有一辆私家车的尾气排放污染物为6(单位:ppm ),据此估计该私家车行驶的时间为________小时.题22.某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下数据:日期 12月1日12月2日12月3日12月4日温差 11 13 12 8 发芽数(颗)26322617根据表中12月1日至12月3日的数据,求得线性回归方程=x +中的=-8,则求得的=________;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程________(填“可靠”或“不可靠”).题23.如表为收集到的一组数据:x 21 23 25 27 29 32 35 Y711212466115325试建立Y 与x 之间的回归方程.题24.宿州市公安局交警支队依据《中华人民共和国道路交通安全法》第90条规定:所有主干道路凡机动车途经十字路口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以100元罚款,记3分的行政处罚.如表是本市一主干路段监控设备所抓拍的5个月内,机动车驾驶员“不礼让行人”行为统计数据:月份x 1 2 3 4 5 违章驾驶员人数y1151101009085(1)若x 与y 之间具有很强的线性相关关系,请利用所给数据求违章驾驶员人数y 与月份x 之间的回归直线方程=x +;(2)预测该路段8月份的“不礼让行人”违章驾驶员的人数.参考公式:=∑i =1nx i y i -n x ·y∑i =1nx 2i -n (x)2,=y -x ,参考数据:∑i =15x i y i =1 420.编号032 §9.1.2 线性回归方程目标要求1、结合具体实例,了解一元线性回归模型的含义.2、结合具体实例,了解模型参数的统计意义.3、结合具体实例,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.4、结合具体实例,会使用相关的统计软件.5、针对实际问题,会用一元线性回归模型进行预测.学科素养目标本章内容是在学生已经学习过必修课程中的统计知识和概率知识的基础上,通过对典型案例的研究,了解和使用一些常用统计分析方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用,从而形成运用统计的观点认识客观事物的习惯.在本章教学中,应突出对学生应用意识的培养,不能只限于要求学生会解书本上的习题,还要关注学生应用与解决实际问题的能力.应引导、鼓励学生从现实生活中发现问题,并能自觉地运用所学的统计方法加以理解,应尽量给学生提供一定的实践活动机会,可结合数学建模活动,选择一个案例,要求学生亲自实践.重点难点重点:一元线性回归模型参数的最小二乘估计方法; 难点:用一元线性回归模型进行预测.教学过程基础知识点 1.线性回归模型我们将y =a +bx +ε称为线性回归模型. 2.线性回归方程与最小二乘法(1)线性回归方程:直线=+x 称为线性回归方程.其中称为回归截距,称为回归系数,称为回归值.(2),的计算公式=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=___∑i =1nx i y i -n x y∑i =1nx 2i -n (x)2___ ,=__y -x __.【课前小题演练】题1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,响应变量在y 轴 C .回归模型中一定存在随机误差 D .散点图能明确反映变量间的关系【解析】选D .用散点图反映两个变量间的关系时,存在误差. 题2.根据如下样本数据:x 2 3 4 5 6Y 4 2.5 -0.5 -2 -3得到的经验回归方程为=x+,则( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0【解析】选B.由题干表中的数据可得,变量Y随着x的增大而减小,则<0,又回归方程为=x+经过(2,4),(3,2.5),可得>0.题3.已知变量x,Y之间具有线性相关关系,其散点图如图所示,则其经验回归方程可能为( )A.=1.5x+2 B.=-1.5x+2C.=1.5x-2 D.=-1.5x-2【解析】选B.设经验回归方程为=x+,由题干中散点图可知变量x,Y之间负相关,经验回归直线在Y轴上的截距为正数,所以<0,>0,因此方程可能为=-1.5x+2.题4.若某地财政收入x与支出Y满足经验回归方程=x++e i(单位:亿元)(i=1,2,…),其中=0.8,=2,|e i|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿元B.9亿元C.10.5亿元D.9.5亿元【解析】选C.=0.8×10+2+e i=10+e i,因为|e i|<0.5,所以9.5<<10.5.题5.若施肥量x(kg)与水稻产量Y(kg)的经验回归方程为=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.【解析】把x=80代入经验回归方程可得其预测值=5×80+250=650(kg).答案:650题6.某种产品的广告费用支出x与销售额Y(单位:百万元)之间有如下的对应数据:x/百万元 2 4 5 6 8Y/百万元30 40 60 50 70(1)画出散点图;(2)求经验回归方程;(3)试预测广告费用支出为10百万元时,销售额多大?【解析】(1)散点图如图所示:(2)列出下表,并用科学计算器进行有关计算:i 1 2 3 4 5 合计 x i 2 4 5 6 8 25 y i 30 40 60 50 70 250 x i y i 60 160 300 300 560 1 380 x 2i416253664145所以x =255 =5,y =2505=50,∑i =15x 2i =145,∑i =15x i y i =1 380.于是可得=∑i =15x i y i -5x y∑i =15x 2i -5x 2=1 380-5×5×50145-52×5=6.5,=y -x =50-6.5×5=17.5. 所以所求的经验回归方程为=6.5x +17.5.(3)根据上面求得的经验回归方程,当广告费用支出为 10百万元时,=6.5×10+17.5=82.5(百万元),即广告费用支出为10百万元时,销售额大约为82.5百万元. 【当堂巩固训练】题7.已知x ,y 的取值如表所示:x 2 3 4 5 y2.23.85.5m若y 与x 线性相关,且回归直线方程为=1.46x -0.61,则表格中实数m 的值为( ) A .7.69 B .7.5 C .6.69 D .6.5 【解析】选D .因为x =2+3+4+54 =72, y =2.2+3.8+5.5+m 4 =11.5+m 4,所以11.5+m 4 =1.46×72-0.61,解得m =6.5.题8.某药厂为了了解某新药的销售情况,将2019年2至6月份的销售额整理如下:月份 2 3 4 5 6 销售额(万元)1925353742根据2至6月份的数据可求得每月的销售额y 关于月份x 的线性回归方程=x +为( )(参考公式及数据:=∑i =1nx i y i -n x y∑i =1n x 2i -n (x )2,=y -x ,∑i =15x i y i =690,∑i =15x 2i =90)A .=5.8x +8.4B .=8.4x +5.8C .=6x -9D .=4x +31.6【解析】选A .由表格中的数据得x =2+3+4+5+65=4,y =19+25+35+37+425=31.6,所以=∑i =15x i y i -5x y∑i =15x 2i -5(x)2=690-5×4×31.690-5×42=5.8, =31.6-5.8×4=8.4,因此,y 关于x 的线性回归方程为=5.8x +8.4.题9.登山族为了了解某山高y (km )与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (℃) 18 13 10 -1 山高y (km )24343864由表中数据,得到线性回归方程=-2x +()∈R ,由此请估计出山高为72(km )处气温的度数为( )A .-10B .-8C .-4D .-6【解析】选D .由题意可得x =10,y =40,所以=y +2x =40+2×10=60.所以=-2x +60,当=72时,有-2x +60=72,解得x =-6. 题10.根据如下的样本数据:x 1 2 3 y2.133.9得到的回归方程为=bx +a ,则直线ax +by -3=0经过定点( ) A .(-1,-2)B .(-1,2)C .(1,-2)D .(1,2)【解析】选D .由所给数据得x =2,y =3,3i 1=∑(x i -x )(y i -y )=1.8,3i 1=∑(x i -x )2=2,所以b =0.9,a =3-0.9×2=1.2,所以直线ax +by -3=0方程为1.2x +0.9y -3=0,过点(1,2). 题11.某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如表所示:x (月份) 1 2 3 4 5 y (万盒)55668若x ,y 线性相关,线性回归方程为=0.7x +,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加0.7个单位长度 B .x 每增加1个单位长度,则y 必减少0.7个单位长度 C .当x =6时,y 的预测值为8.1万盒 D .线性回归直线=0.7x +经过点(2,6)【解析】选C .由=0.7x +,得x 每增(减)一个单位长度,y 不一定增加(减少)0.7,而是大约增加(减少)0.7个单位长度,故选项A ,B 错误;由已知表中的数据,可知x =1+2+3+4=55 =3,y =5+5+6+6+85=6,则回归直线必过点(3,6),故D 错误;将(3,6)代入回归直线=0.7x +,解得=3.9,即=0.7x +3.9,令x =6,解得=0.7×6+3.9=8.1万盒. 题12.下列说法:①设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ②线性回归方程=x +必过()x ,y ;③设某地女儿身高y 对母亲身高x 的一个回归直线方程是=34.92+0.78x ,则方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分. 其中正确的个数是( ) A .0 B .1 C .2 D .3【解析】选C .设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均减少5个单位,故①错;线性回归方程=x +必过样本中心点()x ,y ,故②正确;设某地女儿身高y 对母亲身高x 的一个回归直线方程是=34.92+0.78x ,当x =0时,=34.92, 方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分,故③正确. 题13.(多选题...)两个相关变量x ,y 的5组对应数据如表:x 8.3 8.6 9.9 11.1 12.1 y5.97.88.18.49.8根据表格,可得回归直线方程=x +,求得=0.78.据此估计,以下结论正确的是( )A .x =10B .y =9C .=0.2D .当x =15时,=11.95【解析】选AC .易求得x =10,y =8⇒=y -x =8-0.78×10=0.2,所以=0.78x +0.2. x =15⇒=0.78×15+0.2=11.90.题14.(多选题...)已知x 与y 之间的几组数据如表:x 1 2 3 4 5 6 y21334假设根据表格数据所得线性回归直线方程为=x +,若某同学根据上表中的前两组数据()1,0 和()2,2 求得的直线方程为y =b ′x +a ′,则以下结论正确的是()参考公式:=∑i =1nx i y i -n x y∑i =1nx 2i -n (x)2,=y -b x . A .a ′=-2 B .b ′=2 C .>b ′ D .>a ′【解析】选ABD .因为某同学根据前两组数据()1,0 和()2,2 求得的直线方程为y =b ′x +a ′,所以b ′=2,a ′=-2,根据题意得:x =3.5,y =136,∑i =16x i y i =0+4+3+12+15+24=58,∑i =16x 2i =1+4+9+16+25+36=91,所以=∑i =16x i y i -6x y∑i =16x 2i -6(x)2=57 ,=y -x =136 -57 ×72 =-13 ,所以<b ′,>a ′. 【综合突破拔高】题15.对于指数曲线y =ae bx ,令U =ln y ,c =ln a ,经过非线性回归分析后,可转化的形式为( ) A .U =c +bx B .U =b +cx C .y =c +bxD .y =b +cx【解析】选A .由y =ae bx 得ln y =ln (ae bx ), 所以ln y =ln a +ln e bx ,所以ln y =ln a +bx ,所以U =c +bx .题16.若一函数模型为y =sin 2α+2sinα+1,为将y 转化为t 的经验回归方程,则需作变换t 等于( ) A .sin 2αB .(sinα+1)2C .⎝⎛⎭⎪⎫sin α+12 2D .以上都不对 【解析】选B .因为y 是关于t 的经验回归方程,实际上就是y 是关于t 的一次函数,又因为y =(sin α+1)2,若令t =(sin α+1)2,则可得y 与t 的函数关系式为y =t ,此时变量y 与变量t 是线性相关关系. 题17.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62 kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58 kg 、64 kg 、58 kg 、60 kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量的回归方程为=x +,其中=0.5,据此模型预测他的孙子的体重约为( ) A .58 kgB .61 kgC .65 kgD .68 kg【解析】选B .由于体重是隔代遗传,且呈线性相关, 则取数据(58,58),(64,62),(58,60),得x =58+64+583 =60,y =58+62+603 =60,即样本点的中心为(60,60),代入=x +, 得=60-0.5×60=30,则=0.5x +30, 取x =62,可得=0.5×62+30=61 kg . 故预测他的孙子的体重约为61 kg .题18.(多选题...)月亮公转与自转的周期大约为30天,阴历是以月相变化为依据.人们根据长时间的观测,统计了月亮出来的时间y (简称“月出时间”,单位:小时)与天数x (x 为阴历日数,x ∈N *,且0≤x ≤30)的有关数据,如表,并且根据表中数据,求得y 关于x 的线性回归方程为=0.8x +.x 2 4 710 15 22 y8.19.41214.418.524其中,阴历22日是分界线,从阴历22日开始月亮就要到第二天(即23日0:00)才升起.则( ) A .样本点的中心为()10,14.4 B .=6.8C .预报月出时间为16时的那天是阴历13日D .预报阴历27日的月出时间为阴历28日早上4:00 【解析】选AD .x =2+4+7+10+15+226=10,y =8.1+9.4+12+14.4+18.5+246=14.4,故样本点的中心为()10,14.4 ,选项A 正确;将样本点的中心()10,14.4 代入=0.8x +得=6.4,故选项B 错误;因为=0.8x +6.4,当y =16时,求得x =12,月出时间为阴历12日,选项C 错误;因为阴历27日时,即x =27,代入=0.8×27+6.4=28,日出时间应该为28日早上4:00,选项D 正确. 题19.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润Y 的统计分析知x ,Y 具备线性相关关系,经验回归方程为=10.47-1.3x ,估计该台机器最为划算的使用年限为______年. 【解析】当年利润小于或等于零时应该报废该机器, 当y =0时,令10.47-1.3x =0,解得x ≈8, 故估计该台机器最为划算的使用年限为8年. 答案:8题20.以模型y =ce kx 去拟合一组数据时,为了求出非经验回归方程,设z =ln y ,其变换后得到经验回归方程=0.3x +4,则c =________. 【解析】由题意,得ln (ce kx )=0.3x +4,所以ln c +kx =0.3x +4,所以ln c =4,所以c =e 4. 答案:e 4题21.为了响应中央号召,某日深圳环保局随机抽查了本市市区汽车尾气排放污染物x (单位:ppm )与当天私家车路上行驶的时间y (单位:小时)之间的关系,从某主干路随机抽取10辆私家车,已知x 与y 之间具有线性相关关系,其回归直线方程为=0.3x -0.4,若该10辆车中有一辆私家车的尾气排放污染物为6(单位:ppm ),据此估计该私家车行驶的时间为________小时.【解析】由=0.3x -0.4,令x =6,代入可得=0.3×6-0.4=1.4.所以估计该私家车行驶的时间为1.4小时. 答案:1.4题22.某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下数据:日期 12月1日 12月2日12月3日12月4日温差 11 13 12 8 发芽数(颗)26322617根据表中12月1日至12月3日的数据,求得线性回归方程=x +中的=-8,则求得的=________;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程________(填“可靠”或“不可靠”).【解析】由题得x =11+13+123 =12,y =26+32+263 =28,所以样本中心点为(12,28),所以28=×12-8,所以=3;因为=3x -8,所以12月4日的估计值为=3×8-8=16,又|17-16|=1,没有超过2,所以求得的线性回归方程可靠. 答案:3 可靠题23.如表为收集到的一组数据:x 21 23 25 27 29 32 35 Y711212466115325试建立Y 与x【解析】作出散点图,如图.从散点图中可以看出x 与Y 不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线的周围.令Z =ln Y ,则变换后的样本点分布在直线=x +的周围,这样就可以利用线性经验回归模型来建立非线性经验回归方程了,数据可以转化为:x 21 232527 29 32 35 Z1.9462.3983.0453.1784.1904.7455.784求得经验回归方程为=0.272x -3.849, 所以=e0.272x -3.849.题24.宿州市公安局交警支队依据《中华人民共和国道路交通安全法》第90条规定:所有主干道路凡机动车途经十字路口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以100元罚款,记3分的行政处罚.如表是本市一主干路段监控设备所抓拍的5个月内,机动车驾驶员“不礼让行人”行为统计数据:月份x 1 2 3 45 违章驾驶员人数y1151101009085(1)若x 与y 之间具有很强的线性相关关系,请利用所给数据求违章驾驶员人数y 与月份x 之间的回归直线方程=x +;(2)预测该路段8月份的“不礼让行人”违章驾驶员的人数.参考公式:=∑i =1nx i y i -n x ·y∑i =1nx 2i -n (x)2,=y -x ,参考数据:∑i =15x i y i =1 420.【解析】(1)由表中数据得:x =15()1+2+3+4+5 =3,y =15()115+110+100+90+85 =100,=∑i =15x i y i-5x·y∑i=15x2i-5(x)2=1 420-5×3×10055-45=-8,=y-x=100+8×3=124.所以y与x之间的回归直线方程为=-8x+124;(2)由(1)得,=-8x+124,令x=8,得=-8×8+124=60,预测该路段8月份的“不礼让行人”违章驾驶员人数为60人.。
线性回归方程——非线性方程转化为线性方程例1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费x i 和年销售量y i (i =1,2,⋯,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x̅ y ̅ w ̅46.6 563 6.8289.81.61469108.8表中w i =√x i ,w ̅ =18 ∑w i 8i=1,,I )根据散点图判断,y =a +bx 与y =c +d √x ,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);,II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为z =0.2y −x ,根据(II )的结果回答下列问题: (i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1) (u 2,v 2) ,…,(u n ,v n ) 其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为:β̂=∑(u i −u)(v i −v)ni=1∑(u i −u)2ni=1,α̂=v −β̂u . 【答案】(Ⅰ)y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型;(Ⅱ)y ̂=100.6+68√x ;(Ⅲ)(i)答案见解析;(ii)46.24千元.【解析】(I )由散点图可以判断,y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型. (II )令w =√x ,先建立y 关于w 的线性回归方程,由于d̂=∑(w i −w)(y i −y)8i=1∑(w i −w)28i=1=108.81.6=68,∴ĉ=y −d ̂w =563−68×6.8=100.6, ∴y 关于w 的线性回归方程为y ̂=100.6+68w , 因此y 关于x 的回归方程为y ̂=100.6+68√x .(III )(ⅰ)由(II )知,当x =49时,年销售量y 的预报值y ̂=100.6+68√49=576.6, 年利润z 的预报值为ẑ=576.6×0.2−49=66.32.,ⅱ)根据(II )的结果知,年利润z 的预报值ẑ=0.2(100.6+68√x)−x =−x +13.6√x +20.12, 所以当√x =13.62=6.8,即x =46.24时,ẑ取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.例2.某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。
(整理)计量经济学第四章⾮线性回归模型的线性化第四章⾮线性回归模型的线性化以上介绍了线性回归模型。
但有时候变量之间的关系是⾮线性的。
例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述⾮线性回归模型是⽆法⽤最⼩⼆乘法估计参数的。
可采⽤⾮线性⽅法进⾏估计。
估计过程⾮常复杂和困难,在20世纪40年代之前⼏乎不可能实现。
计算机的出现⼤⼤⽅便了⾮线性回归模型的估计。
专⽤软件使这种计算变得⾮常容易。
但本章不是介绍这类模型的估计。
另外还有⼀类⾮线性回归模型。
其形式是⾮线性的,但可以通过适当的变换,转化为线性模型,然后利⽤线性回归模型的估计与检验⽅法进⾏处理。
称此类模型为可线性化的⾮线性模型。
下⾯介绍⼏种典型的可以线性化的⾮线性模型。
4.1 可线性化的模型⑴指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。
显然x t 和y t 的关系是⾮线性的。
对上式等号两侧同取⾃然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。
其中u t 表⽰随机误差项。
010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =t+, (b < 0)⑵对数函数模型y t = a + b Ln x t+ u t(4.4)b>0和b<0两种情形的图形分别见图4.3和4.4。
x t和y t的关系是⾮线性的。
令x t* = Lnx t, 则y t = a + b x t* + u t(4.5)变量y t和x t* 已变换成为线性关系。
图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶幂函数模型y t= a x t b t u e(4.6) b取不同值的图形分别见图4.5和4.6。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载线性回归方程——非线性方程转化为线性方程地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容线性回归方程——非线性方程转化为线性方程例1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z (单位:千元)的影响,对近8年的宣传费xi和年销售量yii=1,2,⋯,8数据作了初步处理,得到下面的散点图及一些统计量的值.表中wi=xi ,w =18 i=18wi.(I)根据散点图判断,y=a+bx与y=c+dx,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;(III)已知这种产品的年利润z与x,y的关系为z=0.2y-x ,根据(II)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为:β=i=1n(ui-u)(vi-v)i=1n(ui-u)2,α=v-βu.【答案】(Ⅰ)y=c+dx适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)y=100.6+68x;(Ⅲ)(i)答案见解析;(ii)46.24千元.【解析】(I)由散点图可以判断,y=c+dx适宜作为年销售量y关于年宣传费x的回归方程类型.(II)令w=x,先建立y关于w的线性回归方程,由于d=i=18(wi-w)(yi-y)i=18(wi-w)2=108.81.6=68,∴c=y-dw=563−68×6.8=100.6,∴y关于w的线性回归方程为y=100.6+68w,因此y关于x的回归方程为y=100.6+68x.(III)(ⅰ)由(II)知,当x=49时,年销售量y的预报值y=100.6+6849=576.6,年利润z的预报值为z=576.6×0.2-49=66.32.(ⅱ)根据(II)的结果知,年利润z的预报值z=0.2(100.6+68x)-x=-x+13.6x+20.12,所以当x=13.62=6.8,即x=46.24时,z取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.例2.某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。
第2章 辅导机械系统机械旋转系统如图所示。
为一圆柱体被轴承支撑并在黏性介质中转动。
当力矩作用于系统时,产生角位移。
求该系统的微分方程式。
解 根据牛顿第二定律,系统的诸力矩之和为22s )()()(T -T (t)dtt d J t T t d θ=- 式中:J ——转动系统的惯性矩;扭矩)()(T s t K t θ=, K ——扭簧的弹性系数; 黏性摩擦阻尼力矩dtt d B t T d )()(θ=,B因此该系统的运动方程式为)()()()(22t T tK dt t d B dt td J =++θθθ (2-2)电气系统电气系统的基本元件是电阻、电容、电感以及电动机等,支配电气系统的基本定律是基尔霍夫电路定律。
图为一具有电阻-电感-电容的无源网络,求以电压u 为输入,u c 为输出的系统微分方程式。
解 根据基尔霍夫电路定律,有 C u R i dtdiL t u +⋅+⋅=)( 而 dtdu Ci c=,则上式可写成如下形式 22u dt du RC dt u d LCC cc =++ (2-3)上式表示了RLC 电路的输入量和输出量之间的关系。
编写控制系统微分方程的一般步骤为:(l) 首先确定系统的输入量和输出量;(2) 将系统划分为若干个环节,确定每一环节的输入量和输出量。
确定输入量和输出量时,应使前一环节的输出量是后一环节的输入量。
(3) 写出每一环节(或元件)描述输出信号和输入信号相互关系的运动方程式;找出联系输出量与输入量的内部关系,并确定反映这种内在联系的物理规律。
而这些物理定律的数学表达式就是环节(或元件)的原始方程式。
在此同时再做一些数学上的处理,如非线性函数的线性化。
考虑忽略一些次要因素。
使方程简化的可能性和容许程度。
(4) 消去中间变量,列出各变量间的关系式。
设法消去中间变量,最后得到只包含输入量和输出量的方程式。
于是,就得到所要建立的元件或系统的数学模型了。
非线性数学模型的线性化1、一般运动方程式化为增量方程式的步骤 以下式为例)()()()(22t ky dt t dy B dtt y d M t F ++= (1) 确定额定点,写出静态方程式:设额定点为(F 。
线性回归方程——非线性方程转化为线性方程例1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费x i 和年销售量y i (i =1,2,⋯,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x̅ y ̅ w ̅46.6 563 6.8289.81.61469108.8表中w i =√x i ,w ̅ =18∑w i 8i=1.(I )根据散点图判断,y =a +bx 与y =c +d √x ,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为z =0.2y −x ,根据(II )的结果回答下列问题: (i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为:β̂=∑(u i −u)(v i −v)ni=1∑(u i −u)2ni=1,α̂=v −β̂u . 【答案】(Ⅰ)y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型;(Ⅱ)y ̂=100.6+68√x ;(Ⅲ)(i)答案见解析;(ii)46.24千元.【解析】(I )由散点图可以判断,y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(II )令w =√x ,先建立y 关于w 的线性回归方程,由于d ̂=∑(w i −w)(y i −y)8i=1∑(w i −w)28i=1=108.81.6=68, ∴ĉ=y −d ̂w =563−68×6.8=100.6, ∴y 关于w 的线性回归方程为y ̂=100.6+68w , 因此y 关于x 的回归方程为y ̂=100.6+68√x .(III )(ⅰ)由(II )知,当x =49时,年销售量y 的预报值y ̂=100.6+68√49=576.6, 年利润z 的预报值为ẑ=576.6×0.2−49=66.32.(ⅱ)根据(II )的结果知,年利润z 的预报值ẑ=0.2(100.6+68√x)−x =−x +13.6√x +20.12, 所以当√x =13.62=6.8,即x =46.24时,ẑ取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.例2.某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。
第九章 非线性模型的线性化标准线性模型:因变量与自变量以及参数均呈线性关系。
非标准线性模型:因变量与自变量不呈线性关系,但与参数呈线性关系。
非线性模型:因变量与参数都不呈线性关系。
§5.1 非标准线性模型的线性化因变量与自变量不呈线性关系,但与参数呈线性关系。
一. 多项式函数模型:形如2012k k y x x x u ββββ=+++⋅⋅⋅⋅⋅++的模型可通过代换s z x s =, 1,2,,s k =⋅⋅⋅⋅ 线性化(标准化)后,得01122k k y z z z u ββββ=+++⋅⋅⋅⋅⋅++二. 双曲函数模型:形如011y u x ββ=++的模型可通过代换1z x=线性化,得 01y z u ββ=++三. 半对数函数模型和双对数函数模型:形如01ln y x u ββ=++或01ln y x u ββ=++的模型称为半对数模型; 形如01ln ln y x u ββ=++的模型称为双对数模型。
可分别采用变换 ln y y *=或ln x x *=进行标准化,01y x u ββ*=++;01y x u ββ*=++;01y x u ββ**=++§5.2 非线性模型的标准化一. 非线性模型的变换(间接代换):对某些非线性模型施以适当的变换,可化为标准线性模型。
研究柯布-道格拉斯生产函数模型:1. 柯布-道格拉斯生产函数模型:u Q AL K e βα=其中Q 代表产出,L 表示劳动力投入,K 表示资本的投入。
L 和K 是生产要素;u 是随机干扰项,A ,α和β是参数。
对于道格拉斯生产函数,一般要求满足“规模报酬不变”。
所谓规模报酬是指:在一定技术水平条件下,由生产规模的变动(要素投入量的变动)引起的产出量变动。
“规模报酬不变”是所有要素投入量按同比例变动,产出量也按相同比例变动。
一般, 设生产函数(,)Q f L K =,0λ> (,)f L K λλ(,)f L K λ= 不变规模报酬(又称为一阶齐次性)(,)f L K λλ(,)f L K λ> 递增规模报酬(,)f L K λλ(,)f L K λ< 递减规模报酬对于柯布-道格拉斯生产函数模型,有()()u u Q A L K AL K e e βαββααλλλλ+==所以,当 1αβ+= 不变规模报酬 (1βα=-)1αβ+> 递增规模报酬1αβ+< 递减规模报酬2.标准化:模型 u Q AL K e βα=首先,两边取对数ln ln ln ln Q A L K u αβ=+++然后作如下变换ln y Q =,1ln L x =,2ln x K =,ln a A =(要求u 满足假定,且1x ,2x 无多重共线性)则,12y a x x u αβ=+++,并且可用OLS 估计其参数,这样原模型的样本回归方程为Q A L K αβ∧∧∧∧=,其中,α∧和β∧是参数α和β的无偏估计量;y Q e ∧∧=,a A e ∧∧=,不是无偏估计量。
非线性系统的线性化处理方法,√j}/Z非线性系大连晨光科技开发邮王士和Tp~?/,2.在各种电气设备,自动控制装置,检查与测线段联结,用于分f与”0,则得到分段线性量用仪器仪表中经常碰到线性或近似线性系统.但是,在很多情况下,也会碰到非线性系统问题关于线性系统的理论分析与计算方法在许多文献中已有讨论但是,非线性系统的理论分析与计算方法在近二十年来一直引起人们的关注还有许多线性系统问题尚待讨论.本文试图就非线性系统中一些分支问题,探讨若干处理方法这里讨论的是稳态情况下若干种非线性问题的处理方法:1.线性化法(或分段线性化法);2.函数化法(或分段函数化法),或称经验公式法;3.数字化法等等.‘一,线性化法(或分段线性化法)假设有一含非线性铁心的电路.其磁化曲线具有图1a所示形状.由图可以看出,这是非线性的但是,如果通过原点至急剧弯曲部分画一条斜线oa代替oa弯曲线时,在理论分析与计算上可以得到符合工程实际需要的分析结论与计算结果.这一类处理工程计算的方法.称谓线性化法.H图1如果将磁化曲线画分成若干段.如图1b所……示.将O1,12,23,34,蛎,56各弯曲段甩近似直线n《■气开曩》(199鼍蹄Io-●)化法显然.它比线性化法更逼真一步.在工程分析与计算上将给出更满意的结果.二,函数化法(或分段函数化法)函数化法是将非线性特性曲线近似地用一个经验公式表达,用来分析各种工程技术问题. 显然,它能够给出的计算精确度决定于经验公式与实际曲线逼近程度例如.图l给出的磁化曲线可以用下式表示,即B:,(H)(1)或H一()(2)详见参考文献1中表1—1所示由各作者给出的磁化曲线经验公式.分段函数法是将非线性曲线分割成若干段,然后对各小段分别用某一函数表示.用这些表达式分析与处理各种技术问题.显然,比前一种方法更逼真一步.但是,应用上会带来许多麻烦.计算机的出现,给解决这类工程问题带来了方便.可以看出,分段线性化方法可视作分段函数法的一个特倒.三,数字化方法数字化方法实际上是将一连续变化的非线性特性曲线实施离散化,将其储存在计算机内, 根据计算程序需要随时调用(详见文献2)以上讨论了非线性系统的直接处理方法.主要用于:非线性元件,非线性线路非线性控制,测量与检查等系统的分析与计算.下面讨论若干间接处理方法四,非线性系统的线性变换法图2中的A环节是一个非线性元件或网路,B环节是另一个非线性元件或网络.此方法的基本思想是A环节在系统中无法直接应用其非线性输入一输出特性用B环节具有另一种非线性输入输出特性来补偿.如果B环节设一25—._,●计合理.可使总的输入一输出特性线性化,如图3所示.因此B环节称作对-A环节的整直环节(或元件).设A环节具有非缉眭函数关系X2= f.(x),B环节具有另_非线性爵数关系Xa—f(x).经过综合后.得到总的输入一输出特性为X.一c.X+线性关系.这就是通过整直环节(或元件)B将非线性环节(或元件)A的菲线性系统实现线性化的线性变换法.如果得到图3的直线,再进行技术处理就很方便.例如.如欲得到X一O时.xf一0{在x正向增加时x也正向增加.只需要在B环节后再增设一级移位倒向环节C就可H实现如图4,5趼示,网?I警l3—26I4瞄5五,非线性系统的补偿网路法非线性元件(或装置)采用线性R,L,C或非线性半导体器件等组成元件或网路可以对其非线性逐段地进行朴偿,以l达到更精确的变换, 例如,目前工业上应用的热电偶上采用的各种温度一电压线性变换网路等.六,非线性系统的数字化处理方法此方法与第四章相似,只是将非线性元件(或装置)输出的模拟量用集成电路(模片)交换成数字量,即进行A/D转换.但此数字量尚须经过专用单片机(例如EPROM或EEPR0M)处理之后,才能整直,送给数字显示器或其他控制部件.这时显示器的指示量与非线性元件(或装置)的输入量呈线性关系,关于其它特殊类型的非线性元件(或装胃=)的非线性特性需要根据要求进行线性化,例如, 开关控制元件对发电机进行电压自动调整等需要特殊处理,而不一定要求对其作线性化处理, 关于这些问题,可参考文献3,4.综上所述.在遇到非线性系统问题时.可以参考上面提出的方法进行处理当然.还可根据不同的具体问题提出新的处理方法,对于这方面的具体理论和技术工作,不仅需要对控制系统及其控制的对象有深刻的了解.而且还要有丰富的元器件的理论与实际知识.参考文献[1]王士和缩自动电礁装置,大连铁道学院, 1985[2:张冠生主编电器学,规被】:业m版社】980_l3]扬自厚主编自动控制原理,精金1:业出暖社,198O[4]蔡尚峰主编.自动控制理沧,机被业m版社,198l[5]尤德裴主编数字化酬量技术眨但器.机械】= 业出版社1980[6]常健生缩.捡j羹I与转换技术.机被丁=业m版社,1981[7]王士和郭永波带热电阻捡渊播的解舟折法电杂志】99o3[8]王士和孝章武王常有智艟化湿度控制倥●气开善》(1995N0_4)。
非线性回归方程公式详解一、非线性回归的定义和方程1、非线性回归非线性回归是回归函数关于未知回归系数具有非线性结构的回归。
常用的处理方法有回归函数的线性迭代法、分段回归法、迭代等。
非线性回归分析的主要内容与线性回归分析相似。
2、回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析。
其基本步骤是:(1)画散点图;(2)求回归直线方程;(3)用回归直线方程作预报。
3、回归直线如果具有相关关系的两个变量的一组数据(x1,y1)(x1,y1),(x2,y2)(x2,y2),⋯⋯,(xn,yn)(xn,yn)大致分布在一条直线附近,那么我们称这样的变量之间的关系为线性相关关系,这条直线就是回归直线,记为yˆ=bˆx+aˆy^=b^x+a^。
4、回归直线方程的求法——最小二乘法设具有线性相关关系的两个变量xx,yy的一组观察值为(xi,yi)(xi,yi)(i=1,2,⋯,n)(i=1,2,⋯,n),则回归直线方程yˆ=bˆx+aˆy^=b^x+a^的系数为bˆ=b^=∑ni=1(xi−x¯¯¯)(yi−y¯¯¯)∑ni=1(xi−x¯¯¯)2=∑ni=1(xi−x¯)(yi−y¯)∑ni=1(xi−x¯)2=∑ni=1xiyi−nx¯¯¯y¯¯¯∑ni=1x2i−nx¯¯¯2∑ni=1xiyi−nx¯ y¯∑ni=1xi2−nx¯2,aˆ=y¯¯¯−bˆx¯¯¯a^=y¯−b^x¯,其中(xi,yi)(xi,yi)为样本数据,x¯¯¯=x¯=1n∑ni=1xi1n∑ni=1xi,y¯¯¯=y¯=1n∑ni=1yi1n∑ni=1yi为样本平均数。
物理图像中从‘非线性’到‘线性’的转化•线性关系和非线性关系
物理量y随x的变化规律若是一次函数,则y-x图像就是直线,也就是说y随x线性变化,如匀变速直线运的速度公式中
v和t就是线性的,而匀变速直线运动的位移公式中
x和t之间是二次函数关系,x-t图像是抛物线,也就是说x随t的变化是非线性的。
•从非线性到线性的转化
为便于分析和研究,物理学中常把物理量之间的非线性关系转化为线性关系,如---探究加速和质量的关系---实验中,为便于直观的探究加速度a和质量m的定量关系,我们往往根据数据画a-(1/m)图象,而不是画a-m图象。
分析相关问题时,首先要根据物理规律写出两个量之间的原始函数关系,然后通过数学变换,把非线性的关系转化为相应的线性关系,找出直线的斜率、截距等代表的物理意义,最后结合图象数据即可求解相关问题。
•应用示例
例题1 利用函数图象是一种解决物理问题的常用方法。
某同学利用传感器探究一玩具车沿某一路段做直线运动的性质,从t=0时刻开始计时得到了(x/t)一t的图象如图所示,由此可知()
A.玩具车做速度为﹣3m/s的匀速直线运动
B.玩具车做变加速直线运动
C.玩具车做匀加速直线运动,初速度大小为2m/s
D.玩具车做匀加速直线运动,加速度大小为1.5m/s2
例题2 某实验小组设计了如图甲所示的电路测量某电池的电动势E 和内阻r,图中R为电阻箱(0﹣999.9Ω),电流表A可看做理想电表。
根据测量数据作出(1/I)—R象如图乙所示。
若该图线的斜率为k,纵轴截距为b,则该电池的电动势E=____;内阻r=____(用k和b表示)。
性回方程——非性方程化性方程
例 1.(2015 ·高考全国卷Ⅰ )某公司确定下一年度投入某种品的宣
,需了解年宣 x(位:千元)年售量 y(位: t )和年利 z(位:千元)的影响,
近 8 年的宣和年售量
数据作了初步理,得到下面的散点及一些量
的 .
5631469
表中 =,=.
( I)根据散点判断,与,哪一个适宜作年售量y 关于年宣x 的回方程型(出判断即可,不必明理由);
( II)根据( I)的判断果及表中数据,建立y 关于 x 的回方程;
( III)已知种品的年利z 与 x, y 的关系,根据( II )的果回答下列:
( i)年宣,年售量及年利的是多少
( ii)年宣何,年利的最大
附:于一数据,,⋯,, 其回直的斜率和截距的最小二乘估分:
,.
【答案】 (Ⅰ )适宜作年售量关于年宣的回方程型; (Ⅱ ); (Ⅲ )(i)答案解析; (ii)千元 .
【解析】( I)由散点可以判断,适宜作年售量关于年宣的回方程型 .
( II)令,先建立关于的性回方程,由于=68,
∴=563-68 ×=,∴ 关于的性回方程,
因此关于的回方程.
( III) (ⅰ )由( II)知,当 =49 ,年售量的=,
年利 z 的.
(ⅱ)根据( II)的果知,年利 z 的,
所以当,即,取得最大 .故年宣千元,年利的最大.
例 2.某地级市共有200000 中小学生,其中有7%学生在 2017 年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2 ,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000 元、 1500 元、 2000 元。
经济学家调查发现,当地人均可支配年收入较上一年每增加,一般困难的学生中
有会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有转为一
般困难,特别困难的学生中有转为很困难。
现统计了该地级市2013 年到2017
年共 5 年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中
统计量的值,其中年份取 13 时代表2013 年,与(万元)近似满足关系式
,其中为常数。
( 2013 年至 2019 年该市中学生人数大致保持不变)
其中,
(Ⅰ)估计该市2018 年人均可支配年收入;
(Ⅱ)求该市2018 年的“专项教育基金”的财政预算大约为多少
附:对于一组具有线性相关关系的数据,其回归直线方程的斜率和截距的最小二乘估计分别为
【答案】(Ⅰ)(万) ;(Ⅱ) 1624 万 .
【详解】(Ⅰ)因为,所以.
由得,所以,,
所以,所以.当时,2018年人均可支配年收入
(Ⅱ)由题意知2017 年时该市享受“国家精准扶贫”政策的学生共200000×7%=14000人
一般困难、很困难、特别困难的中学生依次有7000 人、 4200 人、 2800 人,2018 年人均可支配收入比(万)2017 年增
长
所以 2018 年该市特别困难的中学生有 2800×(1-10%)=2520人,很困难的学生有 4200×(1-20%)+2800×10%=3640人
一般困难的学生有7000×(1-30%)+4200×20%=5740人 .
所以 2018 年的“专项教育基金”的财政预算大约为5740×1000+3640×1500+2520×2000=1624万 .
例3.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内
优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支
付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表l 所示:表1
根据以上数据,绘制了如右图所示的散点图.
(1)根据散点图判断,在推广期内,(c,d均为大于零的常数)
哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型(给出判断
即可,不必说明理由);
(2)根据 (1)的判断结果及表 1 中的数据,求y 关于x 的回归方程,并预测活动推出
第8 天使用扫码支付的人次;
参考数据:
其中
参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.
【答案】( 1)(2)
【详解】( 1)根据散点图判断,适宜作为扫码支付的人数( 2),两边同时取常用对数得:关于活动推出天数
;
的回归方程类型;
设
,,
把样本中心点
,代入,得 :
,
,
关于的回归方程式:
把代入上式,;活动推出第
;
天使用扫码支付的人次为;
例 4.近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017 年成交的
二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
图 1图2
( 1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;
( 2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年 )表示二手车的使用时间,(单位:万
元 )表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限
的回归方程,相关数据如下表(表中,):
① 根据回归方程类型及表中数据,建立关于的回归方程;
②该汽车交易市场对使用8 年以内 (含 8 年 )的二手车收取成交价格的佣金,对使用时间8 年以上 (不含 8 年 )的二手车收取成交价格的佣金.在图 1 对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:① 对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为
;② 参考数据:.
【答案】( 1);( 2)万元
【详解】( 1)由频率分布直方图得,该汽车交易市场2017 年成交的二手车使用时间在的频率为,在的频率为,所以.
( 2)①由得,即关于的线性回归方程为.
因为,
所以关于的线性回归方程为
② 根据① 中的回归方程和图
,即关于的回归方程为1,对成交的二手车可预测:
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为
所以该汽车交易市场对于成交的每辆车可获得的平均佣金为
万元
例 5.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时
需要用清水清洗干净,下表是用清水 x(单位:千克 )清洗该蔬菜 1 千克后,蔬菜上残留的农药 y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值.
y(微克)
x(千克)
3381110374- 121-751
其中
( I)根据散点图判断,与,哪一个适宜作为蔬菜农药残量与用水量的回归方程类型(给出判
断即可,不必说明理由);
(Ⅱ )若用解析式作为蔬菜农药残量与用水量的回归方程,求出与的回归方程.(c, d 精确到
(Ⅲ )对于某种残留在蔬菜上的农药,当它的残留量低于20 微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜(精确到,参考数据)
附:参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:
【答案】( 1)见解析;(2);(3)需要用4. 5 千克的清水清洗一千克蔬菜.
【详解】
( I)根据散点图判断适宜作为蔬菜农药残量与用水量的回归方程类型;
(Ⅱ)令,先建立y 关于 w 的线性回归方程,
由于,∴.∴ y 关于w 的线性回归方程为,
∴ y 关于x 的回归方程为.
(Ⅲ)当时,,
∴ 为了放心食用该蔬菜,估计需要用4.5千克的清水清洗一千克蔬菜。