概率论习题课1
- 格式:ppt
- 大小:736.50 KB
- 文档页数:45
习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’;(2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。
解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。
(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。
(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。
2.1.习题1.设随机变量ξ的分布函数为)(x F ,证明ξηe =也是随机变量,并求η的分布函数.证明:由定理2.1.3随机变量的Borel 函数仍为随机变量, 故ξηe =也是随机变量.η的分布函数为}{}{)(y e P y P y F <=<=ξηη当0≤y 时,φξ=<}{y e ,故0)(=y F η;当>y 时,)(ln }ln {}{}{)(y F y P y e P y P y F ξξηξη=<=<=<=因此,η的分布函数为⎩⎨⎧≤>=00),(ln )(y y y F y F ξη. 3.假定一硬币抛出正面的概率为(01)p p <<,反复抛这枚硬币直至正面与反面都出现过为止,试求:(1)抛掷次数ξ的密度阵;(2)恰好抛偶数次的概率.解:(1)}{k =ξ表示前1k -次都出现正(反)面,第k 次出现反(正)面,据题意知,p p p p k P k k 11)1()1(}{---+-==ξ, ,4,3,2=k所以,抛掷次数ξ的密度阵为22112322(1)(1)k k kp p p p p p p p--⎛⎫ ⎪ ⎪---+-⎝⎭(2) 恰好抛掷偶数次的概率为:+=++=+=+=}2{}6{}4{}2{n P P P P ξξξξ+++++++++=--p q q p p q q p p q q p qp pq n n 12125533)1()1(4242 +++++++=q q qp p p pq221111q qp p pq -⋅+-⋅=)1(1)1(1q p qp q p pq +⋅++⋅=qq p p +++=114.在半径为R 的圆内任取一点(二维几何概型),试求此点到圆心之距离ξ的分布函数及}32{RP >ξ. 解:此点到圆心之距离ξ的分布函数为}{)(x P x F <=ξ当0x ≤时,φξ=<}{x ,()0F x =;当0x R <<时,2222}{)(R x R x x P x F ==<=ππξ;当x R ≥时, ()1F x =故ξ的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<<≤=R x R x Rxx x F ,10,0,0)(22.95941)3/2(1)32(1}32{22=-=-=-=>R R R F R P ξ.5.在半径为1的车轮边缘上有一裂纹,求随机停车后裂纹距地面高度ξ的分布函数.解:当0x ≤时,φξ=<}{x ,()0F x =;当裂纹距离地面高度为1时,分布函数为1x =R()(){}{}1arccos(1),1122R x F x F P R ππξππ--=-∞=<===;当裂纹距离地面高度为x()01x <<时,分布函数为()(){}{}()2arccos 1,2x RF x F x P x R ξπ-=-∞=<=()arccos 1x π-=()arccos 1x ππ--=;当裂纹距离地面高度为(12)x x <<时,分布函数为()(){}{}()()22arccos 1arccos 1,2x R x F x F x P x R ππξππ--⎡⎤--⎣⎦=-∞=<==; 当2>x时, ()1F x =;则ξ的分布函数为()()00arccos 10212x x F x x x ππ≤⎧⎪--⎪=<≤⎨⎪>⎪⎩6.已知随机变量ξ的密度函数为(),01,2,1 2.xx p x x x <≤⎧=⎨-<≤⎩试求:(1)ξ的分布函数,(2){}0.2 1.2P ξ<<.解:(1)当0≤x 时,00)()(===⎰⎰∞-∞-dt dt t p x F xx;当01x <≤时,2021)()(x dt t dt t p x F xx ===⎰⎰∞-; 当12x <≤时,12212)()(2110-+-=-+==⎰⎰⎰∞-x x dt t dt t dt t p x F xx;当2x>时,12)()(2110=-+==⎰⎰⎰∞-dt t dt t dt t p x F x ;则ξ的分布函数为()220,0,1,01,2121,12,21,2.x x x F x x x x x ≤⎧⎪⎪<≤⎪=⎨⎪-+-<≤⎪⎪>⎩(2){}0.2 1.2P ξ<<{}{}1.20.2P P ξξ=<-<=()()1.20.20.66F F -=7.设)()(a x e e x p --=,0x >(1)求a 使()p x 为密度函数;(2)若ξ以此()p x 为密度函数,求b 使b b P =>}{ξ.解:(1)由密度函数的性质,知ea a x e a x e e e e edx e dx x p 101)(1)(0)(=∞-===--∞--∞∞-⎰⎰解得,1a e=. (2)【法一】根据概率的非负性,0≥b ,当0=b 时,1}{=>b P ξ,显然b b P =>}{ξ不成立;当>b 时,()1()1(11)(}{be e x e bex e bee b e edx edx x p b P ---∞--∞=∞-===>⎰⎰ξ而b b P =>}{ξ,即b eee b e =--)1(1, 解得,1be=. 【法二】ξ的分布函数为()10,0,111,.e x e x F x e e x ee ⎛⎫-- ⎪⎝⎭≤⎧⎪=⎨++>⎪⎩{}{}()11P b P b F b b ξξ>=-<=-=当0b ≤时,()0Fb =,上式不成立.当0b ≥时,()111e b e F b ee ee⎛⎫-- ⎪⎝⎭=-+ 则1111e b e ee b ee⎛⎫-- ⎪⎝⎭+-=, 解得,1b e=. 8.设()F x 是连续型分布函数,试证对任意a b <有[]()()F x b F x a dx b a +∞-∞+-+=-⎰.证:等式左边=()x bx ap t dtdx +∞+-∞+⎰⎰=(())x bx ad F t dx +∞+-∞+⎰⎰因()F x 是连续的分布函数则上式积分可以交换.则上式交换积分次序得(())x bx ad F t dx +∞+-∞+⎰⎰(())x b x a d F t dx ++∞+-∞=⎰⎰(()())x bx aF F dx ++=+∞--∞⎰1x bx a dx ++=⎰b a =-.2.2习题1.向目标进行20次独立的射击,假定每次命中率均为0.2.试求:(1)至少命中1次的概率;(2)至多命中2次的概率;(3)最可能命中次数.解:令ξ表示命中次数,这是n =20重Bernoulli 试验,每次命中率p =0.2,命中次数ξ服从B(20,0.2)分布.(1) 至少命中一次的概率200020)1(1}0{1}1{1}1{p p C P P P --==-=<-=≥ξξξ988.0)2.01(2.01200020≈--=C .(2) 至多命中两次的概率}2{}1{}0{}2{=+=+==≤ξξξξP P P P182220191120200020)1()1()1(p p C p p C p p C -+-+-=191120200020)2.01(2.0)2.01(2.0+-+-=C C 206.0≈.(3) 在二项分布中,])1[(p n k +=时,}{k P =ξ最大,故]2.0)120[(⨯+=k=4时最大,即最可能命中的次数为4次. 2.同时掷两枚骰子,直到某个骰子出现6点为止,求恰好掷n 次的概率.解:掷一枚骰子出现6点的概率是16,同时出现6点的情况有两种:都是6点概率为16×16,其中一个是6点的概率为2×16×56.因此掷两枚骰子出现6点的概率是1136. 以ξ表示某骰子首次出现6点时的投掷次数,题目要求恰好掷n次则前1-n 次都没有出现6点,于是所求概率为1)36111)(3611(}{--==n n P ξ. 3.某公司经理拟将一提案交董事代表会批准,规定如提案获多数代表赞成则通过.经理估计各代表对此提案投赞成票的概率为0.6,且各代表投票情况相互独立.为以较大概率通过提案,试问经理请3名董事代表好还是请5名好?解:即求请3名董事获多数赞成通过的概率大还是请5名董事通过的概率大.令ξ表示3名董事代表对提案的赞成数,则)6.0,3(~B ξ分布.多数赞成,即}3{}2{}2{=+==≥ξξξP P P03331223)6.01(6.0)6.01(6.0-+-=C C648.0≈令η表示5名董事代表对提案的赞成数,则)6.0,5(~B η分布.多数赞成,即}5{}4{}3{}3{=+=+==≥ηηηηP P P P55514452335)6.01(6.0)6.01(6.0)6.01(6.0-+-+-=C C C68256.0≈因此,请5名董事代表好.4.甲、乙二队比赛篮球.假定每一场甲、乙队获胜的概率分别为0.6与0.4,且各场胜负独立.如果规定先胜4场者为冠军,求甲队经i 场(i =4,5,6,7)比赛而成为冠军的概率i p .再问与赛满3场的“三场两胜”制相比较,采用哪种赛制甲队最终夺得冠军的概率较小?解:令ξ表示甲成为冠军所经过比赛的场数. 对甲先胜四场为冠军:}{i =ξ表示前1-i 场中胜三场,第i 场必胜.则1296.0)6.01(6.0}4{0444≈-==C P ξ20736.0)6.01(6.0}5{1434≈-==C P ξ20736.0)6.01(6.0}6{2435≈-==C P ξ165888.0)6.01(6.0}7{3436≈-==C P ξ因此,4431)6.01(6.0}{---==i i C i P ξ,i =4,5,6,7对甲先胜四场成为冠军的概率是7.0}7{}6{}5{}4{}4{==+=+=+==≥ξξξξξP P P P P .对赛满3场的“三场两胜”制:甲前两场中胜一场,第三场必胜 则288.0)6.01(6.0}3{1212≈-==C P ξ.因此,进行甲先胜4场成为冠军的概率较大.5.对n 重Bernoulli 试验中成功偶数次的概率n P . 解:记p 为一次Bernoulli 试验中事件成功的概率,q 为失败的概率.++=-22200n n n n n q p C q p C P由11100)(1qp C q p C q p C q p n n n n n n n n +++=+=-①1100)()(q p C pq C q p C p q n nn n n n n n -++-=--②(①-②)/2得:2)(1nn p q P --=7.在可列重Bernoulli 试验中,以i ξ表第i 次成功的等待时间,求证12ξξ-与1ξ有相同的概率分布.解:这是一个几何分布.12ξξ-表示第一次成功到第二次成功的等待时间.如果第一次成功到第二次成功进行了m 次试验,而第一次成功进行了n 次 试验.根据几何分布的无记忆性可得:p p m P m 112)1(}{--==-ξξ,p p n P n 11)1(){--==ξ因此,12ξξ-与1ξ有相同的概率分布.8.(广义Bernoulli 试验)假定一试验有r个可能结果r A A ,,1 ,并且0)(>=i i p A P ,121=+++r p p p .现将此试验独立地重复n 次,求1A 恰出现1k 次,……,r A 恰出现r k 次(0>i k ,n k k k r =+++ 21)的概率.解:设一次试验的可能结果为r A A ,,1 ,它们构成一完备事件组,()i i P A p =,1i ip =∑,则在n 次重复独立试验中rA A ,,1 分别出现12,,,rk k k 次的概率为r k k k r p p p k k k n 21!!!!21 .(1A 恰出现1k 次,……,r A 恰出现r k 次,则i A 组成n 元序列,上述n 次试验结果由分成r 组,共有rr k k kkn kn C C C 211-种结果,每种结果出现的概率是rk k k pp p 21,则n 次Bernoulli 试验中1A 恰出现1k 次,……,rA 恰出现rk 次(0>i k ,nk k k r =+++ 21)的概率概率是r rk k k k n k nCCC 211-rk k k pp p 21r k k k r p p p k k k n 21!!!!21=)2.3 Poisson 分布1.假定螺丝钉的废品率015.0=p ,试求一盒应装多少只才能保证每盒中正品在100只以上的概率不小于80%.解:设每盒应装100+k 只,为使每盒有100只以上的好钉,则每盒次品的个数ξ应≤k-1,故8.0)1(}1{100101001≥-=-≤=-+-=+∑ik i k i i k p p C k P p ξ 由于k 值不大,有)100(k +015.0⨯≈1.5,5.110!5.1--=∑e i k i i ≥0.80,查表,当11=-k时, 1p =0.557825;当21=-k 时, 1p =0.8,则k =3时,满足题设条件,故每盒中应装103只.2.据以往的记录,某商店每月出售的电视机台数服从参数7=λ的 Poisson 分布.问月初应库存多少台电视机,才能以0.999的概率保证满足顾客对电视机的需求.解:设月初应当库存电视机台数为η,则每月出售的电视机台数ξ,要满足顾客的要求,则999.0)1(0=--=∑i n i ni i np p C,即999.0!0=-=∑λλe i ni i.查表得: 当n =15时,997553.0!0=-=∑λλe i n i i;当n =16时,999001.0!0=-=∑λλe i ni i;因此,月初应当库存16台电视机才能以0.999的概率保证满足顾客对电视机的需求.3.保险公司的资料表明,持有某种人寿保险单的人在保险期内死亡的概率为0.005.现出售这种保险单1200份,求保险公司至多赔付10份的概率.解:保险公司赔付的份数ξ服从n =1200,p =0.005的二项分布.根据Poisson 定理,ξ服从参数为6005.01200=⨯=λ的Poisson 分布.=≤}10{ξP ∑=-106!k ke k λ查表,得95738.0}10{=≤ξP .4.假定每小时进入某商店的顾客服从200=λ的 Poisson 分布,而进来的顾客将购买商品的概率均为0.05,且各顾客是否购物相互独立,求在一小时中至少有6位顾客在此商店中购物的概率.解:记每小时进入某商店的顾客数为ξ,则ξ服从200=λ的Poisson 分布.记每小时在商店中购物的顾客数为η,顾客购物概率为p .以事件{}n =ξ, ,3,2,1=n 为分割,由全概率公式得,对于非负整数k , 有{}k P =η={}{}n k P n P n ===∑+∞=ξηξ|0=kn k knkn kqp C en --+∞=∑λλ!=k k n k n p e k k n q )(!)!()(λλλ-+∞=-∑- =()p k e p k λλ-!1{}pk k e k p P λλη-+∞=∑=≥6!)(6满足101==p λλ的Poisson 分布,查表,得{}93214.06=≥ηP .8.假定非负整值离散型分布的密度{}k p 满足条件1-k kp p =kλ,k ≥1,其中常数λ>0,试证明分布是以λ为参数的Poisson 分布.解:1201p p p p ·····211λλ=-k k p p ·····kλ=!k kλ由此得:0!p k p kkλ=,并且00!p k k k∑+∞=λ=1,可得0p =λ-e ,故λλ-=e k p kk !.因此,此分布是以λ为参数的Poisson 分布.2.4 重要的连续性分布1.设ξ服从区间(0,5)上的均匀分布,求二次方程24420x x ξξ+++=有实根的概率.解:由题意知,ξ的概率密度函数为105()5x p x ⎧<<⎪=⎨⎪⎩其它 若方程有实根,则2(4)44(2)0ξξ∆=-⨯⨯+≥,即220ξξ--≥, 解得,12ξξ≤-≥或.则}2{}1{}{≥+-≤=ξξP P P 方程有实根}2{1}1{<-+-≤=ξξP P2130155dx =+-=⎰. 3.假定随机变量ξ只取区间(0,1)中的值,且对任何10<<<y x ,ξ落在子区间(,)x y 内的概率仅与y x -有关.求证ξ服从区间(0,1)上的均匀分布.证法一:定义⎪⎩⎪⎨⎧∞∈∈<≤-∞∈=),1(,1]1,0(},0{]0,(,0)(x x x P x x F ξ则)(x F 是ξ的分布函数.由题设得对任意)1,0(2∈x 有}2{}0{x x P x P <≤=<≤ξξ,即有}0{2}20{x P x P <≤=<≤ξξ.由此得)(2)2(x F x F =.逐一类推可得,若)1,0(∈nx ,则)()(x nF nx F =,或者)()(1n x F x F n =.从而对有理数nm ,若x n m 与x 都属于(0,1),则有)(x F nmx n m F =⎪⎭⎫ ⎝⎛.再由)(x F 的左连续性可得,对任意无理数a ,若ax 与x 都属于(0,1),则)()(x aF ax F =.因为区间(0,1)与]1,0[的长度相等,由题设得1}10{}10{)1(=≤≤=<≤=ξξP P F .由此及上段证明得,对任意)1,0(∈x 有x xF x F ==)1()(,即)(x F 为⎪⎩⎪⎨⎧≥<<≤=1,110,0,0)(x x x x x F∴ξ服从(0,1)上均匀分布.证法二:如同证法一中定义ξ的分布函数)(x F ,由)(x F 单调知它对(0,1)上的L -测试几乎处处可微.设)1,0(,21∈x x ,当)2,1)(1,0(=∈∆+i x x i时,由题设得}{)()(1111x x x P x F x x F ∆+<≤=-∆+ξ)()(}{2222x F x x F x x x P -∆+=∆+<≤=ξ等式两端都除以x ∆,再令0→∆x 可得,由)('1x F 存在可推得)('2x F 也存在,而且)('2x F )('1x F =.从而对任意)1,0(∈x 有c x F ≡)('.当)1,0(∈x 时,显然有0)('=x F .一点的长度为0,由题设得0}1{}0{====ξξP P .由上所述可知ξ是连续型随机变量,)('x F 是其密度函数,从而定出1=c .至此得证ξ服从(0,1)均匀分布. 4.设ξ服从(3,4)N 分布.(1)求a使{}{}2P a P a ξξ>=<;(2)求b 使{}30.95P b ξ-<=.解:由题意知,3μ=,2σ=(1){}{}{}{}112P a P a P a P a ξξξξ>=-≤=-<=<得,{}31P a ξ<= {}13P a ξ<=即31()23μ-Φ=,311()23μ--Φ=, 即32()23μ-Φ= 查表,得6664.0)43.0(=Φ,解得 2.14a =。
第一章(A)A、AB互斥B、A、B互斥C A、B互斥D A、B互斥2、以A表示事件“甲种产品畅销,乙种产品滞销”,则A表示(C)A甲种产品滞销,乙种产品畅销B、甲乙两种产品均畅销C甲产品滞销或乙产品畅销D甲乙两种产品均滞销3、设A、B为两个事件,若AB,则一定有(B)A P(AB)=P(B)B、P(AB)=RB)CP(B|A)=P(B)D、P(A|B)=P(B)4、设AB为两个随机事件,则p(AB),P(AB),P(A)+P(B)由小到大的顺序是(A) AP(AB)<p(AB)<P(A)+P(B)BP(A)+P(B)<P(AB)<p(AB)Cp(AB»<P(AB)<P(A)+P(B)DP(AB)<P(A)+P(B)<p(AB)5、设AB为两个事件,且0<P(A)<1,RB)>0,P(B|A)=P(B|A),则必有(C)A、P(A|B)=P(A|B)RP(A|B)乎P(A|BCP(A|B)=P(A)D、P(A|B)=P(B)6、设A、B、C为三个相互独立的随机事件,且有0<P(C)<1,则下列事件不相互独立的是(A)A AC与CB AB与C C A B与CD A B与C7、在一次实验中,事件A发生的概率为p(0<p<1),进行n次独立重复试验,则事件A 之多发生一次的概率为(D)A1p n B p n C11P N D1p n np1p n18、对飞机连续射击三次,每次发射一枚炮弹,事件A(i=1,2,3)表示第i次射击击中飞机,则“至少有一次击中飞机”可表示为A,A2A3,“至多击中一次”表示为A〔A2A3A,2A3A1A2A3AA2A39、设A、B为随机事件,则ABAB=B10、若事件A、B互不相容,则PAB=P(A),PBA=RB),若事件A、B相互独立,则PAB=P(A)P(B),PBA=P(B)P(A)11、已知P(A)=0.5,P(B)=0.4,P(B|A)=0.6,则PAB=0.6,PAB0.75.12、已知P(A)=0.5,P(B)=0.4,若A、B相互独立,则PAB=0.7.13、根据调查所知,一个城镇居民三口之家每年至少用600元买粮食的概率是0.5,至少用4000元买副食的概率是0.64,至少用600元买粮食同时用4000元买副食的概率为0.27,则一个三口之家至少用600元买粮食或至少用4000元买副食的概率为。
概率论与数理统计第一章习题课1. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件,则125.08121)(3====n n A P A .2. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =, 467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P因此, 533.0467.01)(1)(=-=-=A P A P .3. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(510049711510059700=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C n n A P00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(51002973351003972322=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P4. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率.解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A5. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n , 有利于A 的基本事件数422=⨯=A n , 有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B . 6. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率 (2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A ∪B , 其对立事件为两个系统都失效, 即B A B A = , 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-==⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 7. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2, P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P8. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组.设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(312162633123933121527231213292312142813122319131213290312330=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P9. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率. 解: (1) 设B 为任取一箱, 从中任取一个为废品的事件. 设A 为取到甲厂的箱, 则A 与A 构成完备事件组4.05020)(,6.05030)(====A P A P 05.0)|(,06.0)|(==AB P A B P 056.005.04.006.06.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个, 因此...055555555.0540030024003000120180)(==++=B P10. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球. 则P (A )=2/3, P (A )=1/3, P (B |A )=2/4=1/2, P (B |A )=1/4, 则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P11. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.12. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组. 易知P (A 1)=P (A 2)=P (A 3)=1/3. 设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P13. 发报台分别以概率0.6和0.4发出信号“·”和“—”。