生物化学-糖类知识点
- 格式:docx
- 大小:304.21 KB
- 文档页数:5
化学糖类的知识点总结一、糖类的基本概念糖类是一类含有可溶性羟基的碳水化合物,它们通常是由碳、氢、氧三种元素组成的,化学式一般为(CH2O)n,其中 n 为大于或等于 3 的整数。
糖类在自然界中广泛存在,包括蜂蜜、水果、蔬菜、奶制品等食物中,在生物体内则广泛存在于细胞膜、核酸、蛋白质等生物大分子中。
根据其分子结构和性质,糖类可以分为以下几类:1. 单糖:是由一个具有多个羟基的碳链所组成的糖类,最简单的单糖是三碳的甘油醛(Glyceraldehyde)和四碳的醣醇(Erythrose);2. 双糖:是由两个单糖分子通过糖苷键连接而成的化合物,如蔗糖(麦芽糖、大葡萄糖)、乳糖等;3. 多糖:是由多个单糖分子通过糖苷键连接而成的多聚糖,如淀粉、纤维素、糖原等。
在糖类中,单糖是最基本的单位,其他复杂的糖类都是由单糖经过酶催化反应而形成。
同时,单糖也是生物体内最重要的糖类之一,如葡萄糖、果糖、半乳糖等,它们是细胞内能量的重要来源,也是构成生物大分子如核酸、蛋白质等的基本结构单元。
二、糖类的结构特点糖类的结构特点主要体现在其碳骨架、立体构型和环结构上。
1. 碳骨架:糖类的碳骨架通常是由连续的碳原子所组成的,每个碳原子上都含有一个羟基和一个醛基或酮基,由于羟基和醛基/酮基的特性,糖类具有较强的亲水性,因此可以在水溶液中自发形成环状结构。
2. 立体构型:糖类分子的碳原子上的羟基与醛基或酮基之间的空间排列方式不同,导致糖类分子具有不同的立体构型,常见的有 D 型和 L 型两种构型,它们之间的转化是通过酶的催化反应来完成的。
3. 环结构:糖类在水溶液中通常以环状结构存在,环状结构常见的有六元环和五元环两种类型,其中六元环的糖称为吡喃糖,五元环的糖称为呋喃糖。
糖类的结构特点决定了它们的生物学功能和化学性质,同时也为糖类的合成、分离和分析提供了重要的依据。
三、糖类的代谢途径糖类在生物体内主要通过糖酵解、糖异生和糖原合成三种途径进行代谢。
糖类知识点总结笔记—生物化学一、概述1.糖类是多羟醛、多羟酮或其衍生物,或水解时能产生这些化合物的物质2.糖类的生物学作用●细胞的结构成分(纤维素、几丁质(壳多糖)和肽聚糖)●提供能量(植物淀粉,动物糖原)●在生物体内转变为其他物质(代谢的碳骨架)●作为细胞识别的信息分子(糖蛋白的糖链可能起着信息分子的作用)3.糖类的分类与命名●单糖:不能被水解成更小分子的糖类,也称简单糖,如葡萄糖、果糖和核糖等●寡糖:2-10个单糖分子缩合并且以糖苷键相连(定义具有争议)●多糖:水解时产生20个以上单糖分子的糖类●同多糖(均一性多糖):水解时只产生一种单糖或单糖衍生物,如糖原、淀粉、壳多糖等●杂多糖(不均一性多糖):水解时产生一种以上的单糖或单糖衍生物,如透明质酸、半纤维素等●复合糖或糖复合物:糖类与蛋白质、脂质等生物分子形成的共价结合物如糖蛋白、蛋白聚糖和糖脂等二、旋光异构1.D、L是一种相对构型,在氨基酸和糖类的构型标记中,一般采用这种方法,与旋光性无关2.旋光性用(+),(-)表示,物质的旋光性需要通过实验测得。
与D,L 构型无关3.手性指实物与镜像不能重合,具有手性的分子叫手性分子。
具有手性的分子具有旋光性4.手性碳原子,与四个不同基团相连的碳原子,与分子是否具有手性无关5.D、L构型由甘油醛(二羟丙酮)的构型决定(由其上的羟基位置决定)6.半缩醛碳原子称为异头碳原子,异头碳的羟基与末端手性碳原子的羟基具有相同取向的异构体称为α异头物。
7.差向异构体是非对映体8.开链单糖形成环状半缩醛时,最容易出现两种构型,吡喃型和呋喃型,一般两种构型都存在,D-葡萄糖主要以吡喃糖存在,更稳定。
三、单糖1.变旋现象:变旋现象是指许多单糖、新配制的溶液发生旋光度改变的现象。
变旋是由于分子立体结构发生某种变化的结果。
这是a和β异头物自发互变所导致2.α-D-葡萄糖和α-D-半乳糖是差向异构体3.单糖的性质●甜度通常用蔗糖作为参考物,以它为100,果糖几乎是它的两倍,其他天然糖均小于它●物理性质●几乎所有的单糖及其衍生物都有旋光性,许多单糖在水溶液中发生变旋现象。
糖类知识点总结化学一、糖的种类1. 单糖单糖是由3至7个碳原子连接在一起形成的分子,最常见的单糖有葡萄糖、果糖和半乳糖等。
单糖按照分子构造可以分为直链式单糖和环状单糖两类,其中环状单糖又可分为葡萄糖型和果糖型两类。
单糖还可以根据光学活性分为D-型和L-型两类。
2. 双糖双糖由两个单糖分子通过糖苷键连接在一起形成,常见的双糖有蔗糖、乳糖和麦芽糖等。
双糖的生成是通过两个单糖分子的缩合反应形成的。
3. 多糖多糖是由多个单糖分子经过缩合反应形成的大分子,常见的多糖有淀粉、纤维素和糖原等。
多糖的结构复杂,可以分为直链多糖和支链多糖两类。
多糖在生物体内有重要的生理作用,是植物细胞壁的主要组成部分,也是动物体内储存能量的主要形式。
二、糖的性质1. 化学性质糖类化合物是碳水化合物的一种,具有醇、醛或酮官能团。
单糖可以发生还原反应,产生醛糖和酮糖,而双糖和多糖则不具有还原性。
2. 物理性质糖类化合物大多为白色结晶性固体,溶解于水后呈甜味。
双糖和多糖在水溶液中能够产生旋光性,而单糖可以通过酶的作用将直链构象转变为环状构象。
三、糖的结构1. 单糖的结构单糖的一般式为(CH2O)n,n为3至7之间的整数。
单糖的结构中含有羟基和半乳糖基,不同的单糖之间在立体结构上存在差异,因此它们会呈现出不同的化学性质和生物作用。
2. 双糖和多糖的结构双糖和多糖是由多个单糖分子通过糖苷键连接在一起形成的大分子,它们的结构复杂,包括直链式和支链式两类。
双糖和多糖的结构决定了它们的生理功能和生物活性。
四、糖的生物作用糖类是生物体内的主要能量来源,通过代谢过程,葡萄糖可以被分解为丙酮酸和丙酸,产生大量的ATP分子,为细胞提供能量。
2. 糖原和淀粉的储存糖原是动物体内的主要能量储备物质,存储在肝脏和肌肉组织中,当体内需要能量时,糖原可以迅速被分解为葡萄糖进行能量代谢。
而淀粉是植物体内的能量储备物质,主要储存在种子、根茎和果实等部位。
3. 结构组成糖类是植物细胞壁的主要组成部分,纤维素是由葡萄糖分子通过β-1,4-糖苷键连接而成,它赋予植物细胞壁良好的稳定性和结构支撑。
糖类总结糖:基本概念、结构特征、生物功能、种类及资源性海洋多糖,研究方法;一.基本概念1.蛋白聚糖:一类特殊的糖蛋白,由一条或多条糖胺聚糖和一个核心蛋白共价连接而成。
:大量蛋白聚糖以连接蛋白连在透明质酸上形成的羽毛状或刷状结构。
3.糖胺聚糖:由含己糖醛酸(角质素除外)和己糖胺成分的重复二糖单位构成的不分枝长链聚合物。
4.糖蛋白:糖与蛋白质之间,以蛋白质为主,一定部位以共价键与若干糖分子相连构成的分子;总体性质更接近蛋白质,其上糖链不呈现双链重复序列。
5.多糖:由多个单糖分子缩合而成的化合物,同多糖为某一种单一的单糖或衍生物缩合而成,如淀粉、糖原、纤维素;杂多糖为由不同类型的单糖或衍生物组成如结缔组织中的透明质酸等。
:多指β-构型的N-乙酰葡糖胺一位碳与天冬酰胺的γ -酰胺N-原子共价连接而成的N-糖苷键;Asn多处于Asn-X-Thr/Ser序列,弱碱稳定,强碱水解;细菌中存在GalNAc-Asn;Glc-Asn连接形式。
::单糖的异头碳与羟基氨基酸的羟基O原子结合而成的糖苷键。
① Ser/Thr共价形成:碱不稳定;GalNAc-、GlcNAc-、Gal-、Man-、Xyl-、Ara②羟赖氨酸共价形成:碱稳定;β-Gal-Hyl和β-Ara(阿拉伯糖)-Hyl8.自然界中常见的单糖为D-葡萄糖。
二.结构特征1.麦芽糖由α-D-葡萄糖以α-1,4糖苷键构成蔗糖由α-D-葡萄糖和β-D-果糖以α-1,2糖苷键构成乳糖由α-D-葡萄糖和β-D-半乳糖以β-1,4糖苷键构成淀粉由D-葡萄糖构成直链由α-1,4糖苷键(加碘变蓝溶于热水),支链由α-1,6-糖苷键(加碘紫红不溶于水).糖原由α-D-葡萄糖以α-1,4糖苷键和α-1,6糖苷键构成(加碘红紫)纤维素由β-D-葡萄糖以β-1,4糖苷键构成(无分支)几丁质(甲壳素,壳多糖)由N-乙酰-D-氨基葡萄糖以β-1,4糖苷键构成PS:α-1,4糖苷键形成的为直链;α-1,6-糖苷键形成支链;α-1,2糖苷键会缩掉两个糖的醛基,使其失去还原性。
糖类生物知识点总结糖类的分类糖类可分为单糖、双糖、多糖三大类。
1. 单糖单糖是由一个分子组成的简单糖,包括葡萄糖、果糖、半乳糖等。
单糖的通式为(CH2O)n,n为3~7。
单糖有两种旋光型,即右旋型和左旋型。
常见的单糖有葡萄糖(右旋)、果糖(左旋)、半乳糖(右旋)等。
2. 双糖双糖是由两个单糖分子经缩合反应形成的二糖,包括蔗糖、乳糖、麦芽糖等。
双糖的结构是由两个单糖分子通过糖苷键连接而成。
其中,蔗糖由葡萄糖和果糖缩合而成,乳糖由葡萄糖和半乳糖缩合而成。
3. 多糖多糖是由多个单糖或双糖分子组成的聚合物,包括淀粉、糖原、纤维素等。
多糖在生物体内主要作为能量储备物质或结构材料存在。
其中,淀粉是植物体内的主要能量储备物质,糖原是动物体内的主要能量储备物质,纤维素是植物细胞壁的重要成分。
糖类的生物合成糖类在生物体内的合成过程主要包括糖异生和糖原生。
1. 糖异生糖异生是指从非糖源物质合成糖类的生物合成途径。
在植物体内,光合作用是最主要的糖异生途径,通过光合作用中的光合磷酸化和光合醛反应,植物可以将二氧化碳和水转化为葡萄糖等糖类物质。
在动物体内,糖异生是通过糖异生途径,包括糖异生途径和异糖异生途径,将非糖源物质如脂肪酸、蛋白质等转化为糖类。
2. 糖原生糖原生是指从糖源物质合成糖类的生物合成途径。
植物体内的糖原生是通过糖原生酶,将葡萄糖转化为淀粉或纤维素等多糖物质;动物体内,则是通过糖原生酶,将葡萄糖合成为糖原。
糖类的生理作用糖类在生物体内具有多种生理作用,主要包括能量来源、碳源、结构材料等方面。
1. 能量来源糖类是生物体内主要的能量来源之一。
生物体在代谢过程中,通过糖类的有氧呼吸和乳酸发酵,将糖类分解为能量和二氧化碳,供给细胞代谢活动。
葡萄糖是细胞内主要的能量物质,通过糖酵解途径,葡萄糖可以产生大量的ATP(三磷酸腺苷)分子,为细胞提供能量。
2. 碳源糖类也是生物体内重要的碳源物质。
在细胞分裂和生长发育过程中,糖类是细胞分裂和细胞壁合成的重要原料。
生物化学笔记---第二章--糖---类第二章糖类提要一、定义糖、单糖、寡糖、多糖、结合糖、呋喃糖、吡喃糖、糖苷、手性二、结构1.链式:Glc、Man、Gal、Fru、Rib、dRib2.环式:顺时针编号,D型末端羟甲基向下,α型半缩醛羟基与末端羟甲基在两侧。
3.构象:椅式稳定,β稳定,因其较大基团均为平键。
三、反应1.与酸:莫里斯试剂、西里万诺夫试剂。
2.与碱:弱碱互变,强碱分解。
3.氧化:三种产物。
4.还原:葡萄糖生成山梨醇。
5.酯化6.成苷:有α和β两种糖苷键。
7.成沙:可根据其形状与熔点鉴定糖。
四、衍生物氨基糖、糖醛酸、糖苷五、寡糖蔗糖、乳糖、麦芽糖和纤维二糖的结构六、多糖淀粉、糖原、纤维素的结构粘多糖、糖蛋白、蛋白多糖一般了解七、计算比旋计算,注意单位。
第一节概述一、糖的命名糖类是含多羟基的醛或酮类化合物,由碳氢氧三种元素组成的,其分子式通常以Cn(H2O)n 表示。
由于一些糖分子中氢和氧原子数之比往往是2:1,与水相同,过去误认为此类物质是碳与水的化合物,所以称为"碳水化合物"(Carbohydrate)。
实际上这一名称并不确切,如脱氧核糖、鼠李糖等糖类不符合通式,而甲醛、乙酸等虽符合这个通式但并不是糖。
只是"碳水化合物"沿用已久,一些较老的书仍采用。
我国将此类化合物统称为糖,而在英语中只将具有甜味的单糖和简单的寡糖称为糖(sugar)。
二、糖的分类根据分子的聚合度分,糖可分为单糖、寡糖、多糖。
也可分为:结合糖和衍生糖。
1.单糖单糖是不能水解为更小分子的糖。
葡萄糖,果糖都是常见单糖。
根据羰基在分子中的位置,单糖可分为醛糖和酮糖。
根据碳原子数目,可分为丙糖,丁糖,戊糖,己糖和庚糖。
2.寡糖寡糖由2-20个单糖分子构成,其中以双糖最普遍。
寡糖和单糖都可溶于水,多数有甜味。
3.多糖多糖由多个单糖(水解是产生20个以上单糖分子)聚合而成,又可分为同聚多糖和杂聚多糖。
糖类基础知识点总结一、糖类的分类糖类是一类碳水化合物,主要包括单糖、双糖和多糖三大类。
单糖是由简单的碳水化合物分子组成的,例如葡萄糖、果糖、半乳糖等。
双糖是由两个单糖分子通过酶反应而形成的,例如蔗糖(由葡萄糖和果糖组成)、乳糖(由葡萄糖和半乳糖组成)等。
多糖是由多个单糖分子通过酶反应而形成的,例如淀粉(由α-葡萄糖分子组成)、纤维素(由β-葡萄糖分子组成)等。
二、糖类的结构糖类的分子结构包括碳、氧、氢三种元素,通常以化学式(CH2O)n 表示,其中 n 为一个整数。
单糖的分子结构主要由一个环状的六碳或五碳骨架构成,它们的结构不同主要取决于羟基的位置。
双糖和多糖则由多个单糖分子通过酶反应而形成,它们的分子结构通常比较复杂。
三、糖类的代谢糖类在人体内的代谢过程主要包括消化、吸收和利用三个过程。
在消化过程中,食物中的淀粉和糖类会被唾液和胃液中的酶分解为单糖,然后在小肠中被吸收进入血液循环。
在吸收过程中,单糖通过小肠黏膜上的细胞膜转运蛋白被吸收到血液中,然后在利用过程中,单糖在细胞内经过一系列酶反应被氧化分解,产生能量和二氧化碳。
四、糖类的应用糖类在食品工业、医药工业和生物工业中有着广泛的应用。
在食品工业中,糖类是一种重要的食品添加剂,可以增加食品的甜味、口感和保存时间,同时也被用于食品加工和饲料生产。
在医药工业中,葡萄糖和果糖等单糖被用于制备口服补液和输液等,而多糖则被用于制备口服补液和糖皮质激素等。
在生物工业中,糖类被用于生物发酵和细胞培养等,例如利用葡萄糖作为细胞培养基的碳源。
总之,糖类是一类重要的碳水化合物,它们在食品工业、医药工业和生物工业中都有着重要的应用。
通过对糖类的分类、结构、代谢和应用等方面的了解,可以更好地掌握糖类基础知识,为相关领域的研究和应用奠定基础。
总结糖类知识点一、糖类的分类糖类是碳水化合物的一种,是由碳、氢、氧三种原子组成的有机化合物。
按照分子大小和结构,可以将糖类分为单糖、双糖和多糖三种类型。
1. 单糖单糖是由3~7个碳原子组成的简单糖类,如葡萄糖、果糖、半乳糖等。
单糖在生物体内是最基本的糖类成分,几乎所有的营养物质都必须先转化成单糖才能被吸收和利用。
2. 双糖双糖是由两个单糖分子通过缩合反应而形成的,如蔗糖、乳糖、麦芽糖等。
双糖在食物中的含量很丰富,人体通过酶的作用将其分解成单糖,再吸收利用。
3. 多糖多糖是由多个单糖分子经过缩合反应而形成的长链状分子,如淀粉、纤维素、聚果糖等。
多糖在食物中的含量也很丰富,它们是人体主要的能量来源之一,同时也对胃肠道有益。
二、糖类在食物中的来源糖类在食物中的来源非常广泛,不仅存在于甜食和甜饮料中,也存在于主食、水果、蔬菜等各种食物中。
1. 主食主食是人们日常饮食的主要组成部分,其中含有丰富的淀粉类食物,如米、面、土豆等。
淀粉在食物中的消化过程中会转化成葡萄糖,为人体提供能量。
2. 水果水果中的糖类主要是果糖和葡萄糖,它们是水果的主要营养成分,也是水果甜味的来源。
适量摄入水果可以为人体提供能量,同时也具有丰富的维生素和矿物质。
3. 蔬菜蔬菜中的糖类含量较低,主要是纤维素和淀粉,也有少量的果糖和葡萄糖。
蔬菜是人体必须的膳食纤维来源,同时也含有丰富的维生素和矿物质。
4. 甜食和甜饮料甜食和甜饮料中的糖类主要是蔗糖、葡萄糖、果糖等,它们属于双糖和单糖。
过量摄入甜食和甜饮料会导致体重增加、糖尿病等健康问题。
三、糖类在人体内的代谢糖类在人体内经过消化、吸收、运输和利用等环节,最终被转化为能量或者储存起来。
1. 消化食物中的糖类在胃和小肠中被分解成单糖、双糖和多糖。
单糖和少量的双糖会被小肠上皮细胞吸收,然后进入血液循环,被转运到各个组织细胞中。
2. 吸收糖类主要在小肠中吸收,其中单糖和少量的双糖通过细胞膜上的携带膜蛋白进入细胞,再通过血液循环输送到身体各个组织细胞中,为细胞提供能量。
生物糖类知识点总结归纳1. 糖类的基本结构生物糖类是由碳、氢和氧元素组成的单糖或多糖,其化学结构一般为一个或多个醛基或酮基与多个羟基组成的化合物。
根据单糖的醛基或酮基不同,单糖可分为醛糖和酮糖两类。
常见的单糖包括葡萄糖、果糖、半乳糖等,它们的分子式为(CH2O)n,其中n为3至7。
多糖是由多个单糖分子通过糖苷键连接而成,常见的多糖包括淀粉、纤维素、糖原等。
2. 糖类的分类根据单糖的结构,糖类可分为单糖、双糖、寡糖和多糖四类。
单糖是由一个简单的糖分子组成,包括葡萄糖、果糖等;双糖是由两个单糖分子通过糖苷键连接而成,包括蔗糖、乳糖等;寡糖是由3至10个单糖分子组成的多糖,包括低聚糖等;多糖是由10个以上的单糖分子组成的多糖,包括淀粉、纤维素等。
3. 糖类的生理功能糖类在生物体内担当着多种重要的生理功能,主要包括提供能量、结构支持和信号传导等。
首先,糖类是维持生命活动所必需的主要能量来源,通过糖类新陈代谢过程产生三酸甘油酯和磷酸酯等高能化合物,从而提供能量。
其次,糖类是构成生物体结构的重要组成部分,如葡萄糖是细胞结构的重要组成物质。
此外,糖类还参与了细胞信号传导、细胞黏附和免疫调节等生理过程。
4. 糖类的研究领域糖类的研究领域涵盖了多个学科领域,包括生物化学、分子生物学、生物医学、营养学等。
在生物化学领域,研究人员主要关注糖类的合成、降解和代谢途径,以及糖类与其他生物分子的相互作用。
在分子生物学领域,研究人员主要关注糖类合成酶、底物特异性以及糖类在基因调控中的作用等。
在生物医学领域,研究人员主要关注糖类与疾病的相关性,如糖尿病、肿瘤等。
在营养学领域,研究人员主要关注糖类的摄入量对健康的影响,如过多摄入糖类可能导致肥胖、糖尿病等疾病。
总之,糖类作为生物体内最基本的营养物质之一,拥有多种重要的生理功能。
研究者们通过多个学科领域的努力,不断加深对糖类的理解,为疾病治疗、营养保健和生命科学研究等领域提供了重要的理论基础和实践指导。
第一章糖类物质
1. 糖的定义、功能及分类
1)糖:由碳、氢、氧三种元素组成的碳水化合物;糖类是多羟基酮、多羟基醛及其
聚合物和衍生物的总称。
2)生物学功能:①生物体的结构成分;②生物体内主要能源物质(氧化供能);③可
转化为其它物质;④细胞识别的信息分子(糖蛋白)。
3)糖蛋白:生物体内分布极广的复合糖;糖链起信息分子作用。
4)细胞识别:黏着、接触抑制、归巢行为,免疫保护、代谢调控、受精机制、形态
发生、发育、癌变等衰老都与糖蛋白有关。
5)糖的分类:单糖、寡糖、多糖。
2. 单糖:不能再水解的糖,糖的基本单位。
易溶于水的无色晶体,具有旋光性,难溶于乙醇,不溶于乙醚。
※所有单糖都具有还原性。
1)根据含醛基或酮基:醛糖、酮糖;
2)根据含碳数:三碳糖(丙)、四碳糖(丁)、五碳糖(戊)、六碳糖(己)等。
D型、L型单糖以甘油醛(最简单的醛糖)为基准:
D型-甘油醛(羟基在碳骨架右侧)L型-甘油醛(羟基在碳骨架左侧)3)单糖分子内既有醛基又有酮基、羟基,条件允许即可发生可逆的亲核反应,形成
半缩醛,最终形成一个环状化合物(五元环呋喃、六元环吡喃)。
4)信封式的构想最稳定。
5)环椅式、环船式的葡萄糖:β型比α型更稳定。
6)核糖、脱氧核糖都是戊醛糖,以五环呋喃糖形成存在。
7)果糖为己酮糖,以:①游离型的六环吡喃糖②结合型的五环呋喃糖。
8)半乳糖为己醛糖,成环方式与葡萄糖相同,但是C4位上的-OH不同。
9)Fischer投影式的碳链骨架:C1位置上的CHO与C5位置上的-OH形成缩醛反应成环
状,使C1具有手性结构(不对称)。
C1上新生成的-OH为半缩醛羟基:左边的β-D-葡萄糖,右边的α-D-葡萄糖)。
10)Haworth透视式将糖环横写,缩略成环碳原子;朝向自己的键用粗线表示,碳键右
边的基团写在环下方,碳键左边的基团写在环上方。
11)聚合反应:单糖→寡糖、多糖。
12)还原反应:单糖→糖醇;葡萄糖(醛基)→山梨醇(羧甲基生成)。
13)氧化反应:①Br(溴水)+醛→-COOH(羧基);Br+酮—不反应。
②葡萄糖→葡萄糖酸→葡萄糖醛酸(解毒剂)。
14)异构反应:醛糖、酮糖在碱的催化下易经过烯二醇中间体发生重排(葡萄糖转化
为果糖、甘露糖)。
15)成酯反应:-OH(羧基)+酸→酯(羧酸酯、磷酸酯)。
16)成苷反应:环状的半缩醛羧基+其他分子的-OH、-NH、亚氨基脱水缩合→糖苷/配
糖体(缩醛、缩酮);脱水时形成的键为苷键。
※糖——糖基,非糖——苷元,连接的化学键——糖苷键。
3. 寡糖/低聚糖:能水解成10个以下的单糖分子,一种单糖的半缩醛/酮/羟基与另一个单糖的羟基脱水缩合而成。
1)根据水解时产生几分子单糖:二糖/双糖(麦芽糖、乳糖、蔗糖),三糖等。
2)二糖/双糖:最常见的寡糖,两个单糖通过糖苷键结合而成的,根据连接的共价键
分为:①N-糖甘键型②O-糖苷键型。
3)麦芽糖(具有游离的半缩醛羟基):还原糖,由两分子α-D-葡萄糖+α-1,4-糖苷
键结合而成。
※含半缩醛羟基的糖多为还原糖。
4)乳糖(十二碳):还原糖,半乳糖的半缩醛羟基+D-葡萄糖C4的羟基+β-1,4-糖苷
键结合而成。
5)蔗糖(不含半缩醛羟基):非还原糖,由α-D-葡萄糖的C1+β-D-果糖的C2+1,2-糖
苷键结合而成。
6)转化糖:蔗糖+稀酸/酶→1果糖和1葡萄糖(两种产物合称为转化糖)。
※转化:
旋光度的变化过程。
7)乳糖不耐症/乳糖酶缺乏症:乳糖酶分泌较少导致无法完全消化母乳或牛乳中的乳
糖引起的非感染性腹泻。
4. 多糖/缩聚糖:能水解成10个以上的单糖分子,单糖高聚合物。
1)均一多糖:由同一种单糖组成(淀粉、糖原、纤维素);
a淀粉:植物细胞能源的储藏形式。
分为直链淀粉与支链淀粉。
b直链淀粉:1000个以上α-D-葡萄糖脱水缩合而成,以α-D-葡萄糖为结构单位,通过α-1,4-糖苷键结合形成。
溶于热水,遇碘成蓝紫色。
c支链淀粉:多达百万个α-D-葡萄糖脱水缩合而成,以直链淀粉的结构为基础,每隔20~30单位的葡萄糖单位出现分支,分支以α-1,6-糖苷键连接。
支链越多,惰
d糖原/动物淀粉:存于肝脏(肝糖原)、肌肉(肌糖原)。
糖原的结构与支链淀粉相似,分支更多,每隔3~4单位的葡萄糖就出现一个分支;12~18单位的葡萄糖形成一个非还原端。
溶于热水,室温下与碘呈紫红色或红棕色沉淀。
e纤维素:植物细胞的主要组分,一种非还原性多糖,无分支,由β-1,4-糖苷键结合的高聚物。
不溶于水和一般有机溶剂。
2)非均一/杂多糖:多种单糖及其衍生物组成(果胶质、甲壳素、粘多糖)。
a果胶质:结构未定的多糖类化合物,是细胞壁间的粘连物质。
b粘多糖/糖胺聚糖:含氨基多糖的杂多糖的总称,有肝素(抗凝血剂)、透明质酸等。
5. 糖复合物/复合糖:与蛋白质、脂质等共价连接成糖蛋白、蛋白聚糖、糖脂、脂多糖等。