第四章 放大电路基础(4)放大电路的频率响应2013
- 格式:pdf
- 大小:1.34 MB
- 文档页数:27
放大电路的频率响应(1)频率响应的基本概念a)影响放大电路频率响应的主要因素放大电路中电抗性元件的阻抗是频率的函数,它们使电路的放大倍数随信号频率的变化而变化。
其中耦合电容和旁路电容影响放大电路的低频特性;晶体管的结电容和分布电容影响放大电路的高频特性。
b)频率响应及其主要指标频率响应是放大电路输入正弦波小信号的条件下,测量或分析其Au ~ f、~ f的关系,并用fL、fH、fbw定量描述其频率特性的方法。
其中Au ~ f为幅频特性,~ f为相频特性。
它是在频率的范畴内讨论放大电路的频率特性,所以称为频域法,也称为稳态法。
上限截止频率fH和下限截止频率fL定义为信号频率变化时,电路增益的幅值下降到0.707Aum所对应的频率,其中Aum为中频时电路增益的幅值。
当信号频率上升时,增益下降到0.707Am所对应的频率称为上限频率fH;当信号频率降低时,增益下降到0.707Am所对应的频率称为下限频率fL。
频带宽度fbw定义为上、下限截止频率之差值,即fbw=fH-fL。
当fHfL 时,fbw≈fH。
增益带宽积GBP定义为中频增益与带宽乘积,即GBP=Aumfbw≈AumfH。
该指标综合表征了增益与频带宽度的指标。
c)线性失真当放大电路输入非正弦波信号,且电路无非线性失真(饱和、截止失真)时,由于放大电路对输入信号中不同频率重量具有不同的放大力量和相移,产生输出波形的失真,称为线性失真,也称为频率失真。
线性失真包括幅度失真和相位失真。
d)瞬态响应及其主要指标当放大电路输入阶跃信号时,放大电路输出信号随时间变化的特性就是瞬态响应,也称为阶跃响应。
它是以时间作参量来描述放大电路的频率特性,所以又称为时域法。
上升时间tr和平顶降落率δ是表征瞬态响应的指标。
在单极点的状况下,理论和实践均证明上升时间tr与上限频率fH之间的关系可近似表述为fH tr≈0.35。
(2)频率响应的分析计算方法a)晶体管高频等效电路h参数微变等效电路是晶体管的低频等效电路,仅适用低频小信号分析;混合π型等效电路是考虑了晶体管结电容效应的物理模型,具有较大的通用性,可适用于高频信号的分析。
放大电路频率响应放大电路频率响应是指放大电路对输入信号频率的响应程度。
在实际应用中,我们通常会使用放大电路来放大特定频率范围内的信号。
因此,了解和研究放大电路的频率响应对于电子工程师来说至关重要。
1. 频率响应的定义放大电路的频率响应是指输出信号的幅度和相位与输入信号幅度和相位之间的关系。
频率响应通常以幅频特性和相频特性来描述。
幅频特性表示了放大电路在不同频率下的增益变化情况,而相频特性则表示了输出信号与输入信号之间的相位差随频率变化的情况。
2. 低频放大电路的频率响应低频放大电路通常是指对低频信号进行放大的电路,如音频放大器。
在低频范围内,放大电路的增益通常是比较高的,且相位差变化较小,可以近似认为是线性的。
因此,在低频范围内,放大电路的频率响应一般是比较平坦的。
这也是为什么音频放大器可以将输入信号的音频频率范围放大到可听的范围。
3. 高频放大电路的频率响应高频放大电路通常用于对高频信号进行放大,如射频放大器。
在高频范围内,放大电路的增益会随着频率的增加而下降,并且相位差也会随之变化。
这是因为高频信号的传输特性会受到电感、电容和电阻等因素的影响。
因此,在设计和应用高频放大电路时,需要考虑这些因素,以获得所需的频率响应。
4. 频率响应测量与分析为了准确测量和分析放大电路的频率响应,常用的方法包括频率响应曲线测量和Bode图分析。
在频率响应曲线测量中,会对放大电路输入不同频率的测试信号,然后测量输出信号的幅度和相位差。
通过将这些数据绘制成曲线,可以得到放大电路在不同频率下的频率响应特性。
而Bode图则将频率响应的幅度和相位差以对数坐标的形式绘制出来,更直观地反映了放大电路的频率响应情况。
总结:放大电路的频率响应对于实际应用具有重要意义。
了解放大电路的频率响应可以帮助我们选择适合的放大电路来满足特定的需求。
通过频率响应测量和分析,我们可以更好地研究和设计放大电路,以实现所需的频率响应特性。