4-多级及运算放大电路
- 格式:pptx
- 大小:1.38 MB
- 文档页数:110
第1篇一、实验目的1. 理解多级运算电路的工作原理及特点。
2. 掌握多级运算电路的设计方法。
3. 学习使用电子实验设备,如信号发生器、示波器、数字万用表等。
4. 培养实验操作能力和数据分析能力。
二、实验原理多级运算电路是由多个基本运算电路组成的,通过级联多个基本运算电路,可以实现对信号的放大、滤波、调制、解调等功能。
本实验主要涉及以下几种基本运算电路:1. 反相比例运算电路:该电路可以实现信号的放大或衰减,放大倍数由反馈电阻RF和输入电阻R1的比值决定。
2. 同相比例运算电路:该电路可以实现信号的放大,放大倍数由反馈电阻RF和输入电阻R1的比值决定。
3. 加法运算电路:该电路可以将多个信号相加,输出信号为各输入信号的代数和。
4. 减法运算电路:该电路可以实现信号的相减,输出信号为输入信号之差。
三、实验仪器与设备1. 信号发生器:用于产生实验所需的输入信号。
2. 示波器:用于观察实验过程中信号的变化。
3. 数字万用表:用于测量电路的电压、电流等参数。
4. 电阻、电容、二极管、运放等电子元器件。
5. 电路板、导线、焊接工具等。
四、实验内容与步骤1. 设计并搭建反相比例运算电路,测量并记录放大倍数、输入电阻等参数。
2. 设计并搭建同相比例运算电路,测量并记录放大倍数、输入电阻等参数。
3. 设计并搭建加法运算电路,测量并记录输出信号与输入信号的关系。
4. 设计并搭建减法运算电路,测量并记录输出信号与输入信号的关系。
5. 分析实验数据,验证实验结果是否符合理论计算。
五、实验结果与分析1. 反相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。
分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。
实验结果与理论计算基本一致。
2. 同相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。
分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。
实验结果与理论计算基本一致。
模电第四版习题解答 YUKI was compiled on the morning of December 16, 2020模拟电子技术基础第四版清华大学电子学教研组编童诗白华成英主编自测题与习题解答目录第1章常用半导体器件‥‥‥‥‥‥‥‥‥‥3第2章基本放大电路‥‥‥‥‥‥‥‥‥‥‥14 第3章多级放大电路‥‥‥‥‥‥‥‥‥‥‥31 第4章集成运算放大电路‥‥‥‥‥‥‥‥‥41 第5章放大电路的频率响应‥‥‥‥‥‥‥‥50 第6章放大电路中的反馈‥‥‥‥‥‥‥‥‥60 第7章信号的运算和处理‥‥‥‥‥‥‥‥‥74 第8章波形的发生和信号的转换‥‥‥‥‥‥90 第9章功率放大电路‥‥‥‥‥‥‥‥‥‥‥114 第10章直流电源‥‥‥‥‥‥‥‥‥‥‥‥‥126第1章常用半导体器件自测题一、判断下列说法是否正确,用“×”和“√”表示判断结果填入空内。
(1)在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。
( √ )(2)因为N 型半导体的多子是自由电子,所以它带负电。
( ×)(3)PN 结在无光照、无外加电压时,结电流为零。
( √ )(4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。
( ×)(5)结型场效应管外加的栅一源电压应使栅一源间的耗尽层承受反向电压,才能保证其R大的特点。
( √)GSU大于零,则其输入电阻会明显变小。
(6)若耗尽型N 沟道MOS 管的GS( ×)二、选择正确答案填入空内。
(l) PN 结加正向电压时,空间电荷区将 A 。
A.变窄B.基本不变C.变宽(2)稳压管的稳压区是其工作在 C 。
A.正向导通B.反向截止C.反向击穿(3)当晶体管工作在放大区时,发射结电压和集电结电压应为 B 。
A.前者反偏、后者也反偏B.前者正偏、后者反偏C.前者正偏、后者也正偏(4) U GS=0V时,能够工作在恒流区的场效应管有 A 、C 。
什么是多级放大电路一般情况下,单个三极管构成的放大电路的放大倍数是有限的,只有几十倍,这就很难满足我们的实际需要,在实际的应用中,一般是使用多级放大电路。
多级放大电路,其实也是由多个单个三极管构成的,把单个三极管放大电路进行级联,就能组成多级放大电路。
那么问题来了,这些放大电路每级之间怎么进行连接?这里就涉及到一个叫“耦合方式”的专业术语了,耦合方式是指多级放大电路各级之间的连接方式。
多级放大电路常用的耦合方式主要有三种:阻容耦合、变压器耦合、直接耦合。
1、阻容耦合放大电路下图所示电路就是一个阻容耦合方式连接成的一个多级放大电路,电路的第一级和第二级之间通过电容相连接。
阻容耦合方式的主要优点是,由于前后级放大电路是通过电容相连接,所以各级之间的直流通路是相互断开的,各级的静态工作点之间互不影响。
如果电容容量足够大,那么在一定频率范围内,输入信号是可以几乎无衰减的传送到后一级电路的。
但是,阻容耦合方式的缺点也很显著,因为电容有“隔直”的作用,所以直流成分不能通过电容器,其次,电容器对变化缓慢的信号也会有比较大的阻碍作用,所以当变化缓慢的信号通过电容时会造成比较大的衰减。
更重要的是,大容量的电容器很难集成到集成电路中,所以,阻容耦合电路不适合运用在集成的放大电路中。
2、变压器耦合放大电路变压器能够将信号转换成磁能的形式进行传送,所以所以变压器也能作为多级放大电路的耦合元件来使用。
如下图所示就是一个变压器耦合放大电路,变压器T1将第一级的输出信号传送给第二级,变压器T2将第二级的输出信号传送给负载。
变压器耦合放大电路的重要优点是具有阻抗变换作用,因而可以应用在分立元件功率放大电路中;另外,电路前后级是通过磁能来实现耦合,所以各级之间的静态工作点相对独立,互不影响。
阻抗变换:当负载阻抗和传输线特性阻抗不等,或两段特性阻抗不同的传输线相连接时均会产生反射,会使损耗增加、功率容量减小、效率降低;只要在两段所需要匹配的传输线之间,插入一段或多段传输线段,就能完成不同阻抗之间的变换,以获得良好匹配。
第五章多级放大电路第一节多级放大电路在实际工作中,为了放大非常微弱的信号,需要把若干个基本放大电路连接起来,组成多级放大电路,以获得更高的放大倍数和功率输出。
多级放大电路内部各级之间的连接方式称为耦合方式。
常用的耦合方式有三种,即阻容耦合方式、直接耦合方式和变压器耦合方式。
1.多级放大电路的耦合方式阻容耦合通过电容和电阻将信号由一级传输到另一级的方式称为阻容耦合。
图所示电路是典型的两级阻容耦合放大电路。
优点:耦合电容的隔直通交作用,使两级Q相互独立,给设计和调试带来了方便;缺点:放大频率较低的信号将产生较大的衰减,不适合传递变化缓慢的信号,更不能传递直流信号;加之不便于集成化,因而在应用上也就存在一定的局限性。
直接耦合多级放大电路中各级之间直接(或通过电阻)连接的方式,称为直接耦合。
直接耦合放大电路具有结构简单、便于集成化、能够放大变化十分缓慢的信号、信号传输效率高等优点,在集成电路中获得了广泛的应用。
直接耦合放大电路存在的最突出的问题是零点漂移问题。
所谓零点漂移是指把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。
变压器耦合变压器耦合放大电路如图所示。
这种耦合电路的特点是:级间无直流通路,各级Q独立;变压器具有阻抗变换作用,可获最佳负载;变压器造价高、体积大、不能集成,其应用受到限制。
级间耦合的优、缺点及应用比较耦合方式优点缺点应用直接耦合·可放大直流及缓慢变化的信号,低频响应好。
·便于集成·各级Q不独立,使设计、计算、调试不便。
·有严重的零点漂移问题。
直流或交流放大,分立或集成电路2.直接耦合放大电路的特殊问题——零点漂移零点漂移所谓零点漂移是指当把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。
产生零点漂移的原因很多。
如晶体管的参数随温度的年华、电源、电压的波动等,其中,温度的影响是最重要的。
第4章多级放大电路和集成运算放大器例题【例4-1】 已知电路如图4-1所示,V 12CC +=V Ω='100b b r ,6021==ββ,Ω=k 300B1R ,Ω=k 2C1R ,Ω=k 200B2R ,Ω=k 2E R ,Ω=k 2L R ,V 7.0BE =U ,1C 、2C 、3C 对交流看作短路。
(1)估算静态工作点1B I 、1C I 、2B I 、2C I ;(2)计算总的电压放大倍数;(3)求放大电路的输入电阻和输出电阻。
图4-1 例4-1电路【解4-1】 【解题思路】本题是阻容耦合两级放大电路,故前后两级静态工作点独立;第一级为共发射极电路,故输入电阻即第一级放大电路的输入电阻;第二级为共集电极接法的射极跟随器,输出电阻尽管是第二级的输出电阻,但是在计算过程中要考虑前一级放大电路的影响。
【解题过程】(1)静态工作点μA 383003.11B1BEQ1CC 1≈=-=R U V I B 2.3mA μA 3860B11C1≈⨯==I I βμA352612003.11)1(E2B2BEQ2CC B2=⨯+=++-=R R U V I β 2.1mAμA 3560B22C2≈⨯==I I β(2)总的电压放大倍数是各级放大电路电压放大倍数的乘积。
采用教材P127页的方法1:在计算第一级的电压放大倍数时,把第二级的输入电阻作为第一级的负载考虑,然后单独计算第二级的放大倍数。
kΩ8.03.22661100mV 26)1(EQ11b b be1≈⨯+=++='I r r βkΩ8.01.22661100mV 26)1(EQ22b b be2≈⨯+=++='I r r βkΩ47)]2//2(618.0//[200)]//)(1(//[L E 2be2B2i2≈⨯+=++=R R r R R β1440.8)47//2(60)//(be1i2C11.i.o1u1.≈⨯-=-==r R R U U A β99.08.6161)//)(1()//)(1(L E 2be2L E 2.i2.o u2.≈-=+++==R R r R R U U A ββ143u2.u1.u .≈⋅=A A A (3)输入电阻和输出电阻kΩ8.08.0//300//be1B1i1i ≈===r R R R Ω450612//2008.0//21////2C1B2be2o2o ≈+=++==βR R r R R R E 【点 评】本题的难点是输出电阻的计算,由于输出级采用的是射极跟随器,故一方面输出电阻的计算应考虑前一级的影响;另外,在计算过程中,以发射极作为参照基准,在基极回路的电阻要等比缩小21β+倍。
第五章多级放大电路第一节多级放大电路在实际工作中,为了放大非常微弱的信号,需要把若干个基本放大电路连接起来,组成多级放大电路,以获得更高的放大倍数和功率输出。
多级放大电路内部各级之间的连接方式称为耦合方式。
常用的耦合方式有三种,即阻容耦合方式、直接耦合方式和变压器耦合方式。
1.多级放大电路的耦合方式1.1阻容耦合通过电容和电阻将信号由一级传输到另一级的方式称为阻容耦合。
图所示电路是典型的两级阻容耦合放大电路。
优点:耦合电容的隔直通交作用,使两级Q相互独立,给设计和调试带来了方便;缺点:放大频率较低的信号将产生较大的衰减,不适合传递变化缓慢的信号,更不能传递直流信号;加之不便于集成化,因而在应用上也就存在一定的局限性。
1.2直接耦合多级放大电路中各级之间直接(或通过电阻)连接的方式,称为直接耦合。
直接耦合放大电路具有结构简单、便于集成化、能够放大变化十分缓慢的信号、信号传输效率高等优点,在集成电路中获得了广泛的应用。
直接耦合放大电路存在的最突出的问题是零点漂移问题。
所谓零点漂移是指把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。
1.3变压器耦合变压器耦合放大电路如图所示。
这种耦合电路的特点是:级间无直流通路,各级Q独立;变压器具有阻抗变换作用,可获最佳负载;变压器造价高、体积大、不能集成,其应用受到限制。
1.4级间耦合的优、缺点及应用比较2.直接耦合放大电路的特殊问题——零点漂移2.1零点漂移所谓零点漂移是指当把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。
产生零点漂移的原因很多。
如晶体管的参数随温度的年华、电源、电压的波动等,其中,温度的影响是最重要的。
在多级放大电路中,又已第一、第二级的漂移影响最为严重。
因此,抑制零点漂移着重点在第一、第二级。
2.2差分式放大电路(观看视频)在直接耦合多级放大电路中抑制零点漂移最有效的电路结构是差动放大电路。
多级放大电路的放大倍数等于各级放大倍数的乘积
摘要:
一、多级放大电路简介
1.多级放大电路的定义
2.多级放大电路的作用
二、多级放大电路的放大倍数计算
1.放大倍数等于各级放大倍数的乘积
2.实际应用中的多级放大电路
三、多级放大电路的优势与局限
1.优势:放大倍数高,信号传输距离远
2.局限:级数过多导致的性能下降
四、多级放大电路在实际应用中的案例
1.通信系统中的应用
2.音频放大器中的应用
正文:
多级放大电路是一种电子电路,通过将多个放大器级联,实现对输入信号的放大。
这种电路具有放大倍数高、信号传输距离远等优点,被广泛应用于通信系统、音频放大器等领域。
多级放大电路的放大倍数计算非常简单,只需将各级放大倍数相乘即可。
这一特性使得多级放大电路在需要高放大倍数的场景中具有显著优势。
然而,需要注意的是,多级放大电路也存在一定的局限性。
当级数过多时,电路的性
能可能会受到影响,导致信号失真等问题。
在实际应用中,多级放大电路有广泛的应用。
例如,在通信系统中,通过多级放大电路可以实现信号在长距离传输过程中的放大。
而在音频放大器中,多级放大电路则可以使得音频信号得到更高的放大倍数,从而提高音质。
总之,多级放大电路是一种具有广泛应用的电路,其放大倍数的计算简单明了,为各种电子设备的信号放大提供了可能。