专题4.7:平面向量与三角形四心问题的研究与拓展
- 格式:doc
- 大小:161.50 KB
- 文档页数:2
解题技巧与方法JIETI JIQIAO YU FANGFA 121平面向量与三角形“四心”◎胡建勋刘健( 永吉实验高中132200)平面向量是高中数学的重要工具之一,它不仅可以把几何问题转化为代数问题求解,也可以把代数问题转化为几何问题求解. 它与高中数学的许多模块( 三角函数,平面解析几何,立体几何,数列,不等式等) 都有紧密联系. 借助平面向量研究三角形“四心”问题更会起到意想不到的效果. 本文仅从几个方面加以说明,以餐读者.一、“三角形四心”的向量表示1. 三角形重心的向量表示→ → →G 是△ABC 重心 GA + GB + GC = 0 若 D ,E ,F 分别为→ → → → → →AB ,BC ,CA 中点则CG = 2 GD ( 或AG = 2 GE ,BG = 2GF ) 2. 三角形外心的向量表示 →→ →O 是 △ABC 外 心,==OB OC ( → →→ → →→ → →→OA + OB )·AB = ( OB + OC )·BC = ( OA + OC ) ·AC = 0.3. 三角形内心的向量表示 (→ → )→ →I 是 △ABC 内 心IA ·= IB ·( → → ( →→= IC·= 0.4. 三角形垂心的向量表示H 是 △ABC→→ → → → →垂心 HA ·BC = HB ·AC = HC ·AB→ → → → → →HA·HB = HB·HC = HC·HA .二、“三角形四心”相关问题 1.“三角形四心”的判定解题策略 利用向量运算化简题干中的向量等式,再据“三角形四心”的向量表示判定. 例,(→→)1 点 O 为 △ABC 所在平面内一点OA + OB ·→ ( → →) → ( → →) →AB = OB + OC ·BC = OA + OC ·OB = 0,则 O 是△ABC() .A . 重心B . 外心C . 内心D . 垂心→解析 设 D 为 AB→ →边中点,( OA + OB ) = 2 OD ,由→ →→ → →( OA + OB )·AB = 0,∴ OD·AB = 0,O 在 AB 垂直平分线上,同理 O 应在 BC ,AC 垂直平分线上.∴ O 是△ABC 外心. 应选 B .例 2 点 O 为△ABC 所在平面内一点,且满足→2 +OA BC → 2 = OB → 2 + AC → 2 = OC → 2 +AB →2 ,则 O 是 △ABC的( ) . A . 重心 B . 外心 C . 内心 D . 垂心解析由→2 +→2 = → 2 +→ 2得,OABC OB AC → → → →→ → →→→ ( AC - BC ) ( AC + BC ) + ( OB - OA ) ( OB + OA ) =0, AB( → →) →( → →)AC + BC + AB OB + OA = 0.→ →2 AB·OC = 0,则 O 是△ABC 中 AB 边的高上,同理 O 应在△ABC 中 AC ,BC 边的高上, ∴O 是△ABC 垂心. 应选 D .2.“三角形四心”与动点轨迹解题策略: 探究动点经过特殊点问题,首先据题干给出的向量等式,利用向量运算化简后,结合向量运算的几何意义,判定动点轨迹特征. 例 3 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →( → → ),则 P 点轨在平面内一动点,若OP = OA + λ 迹一定通过△ABC 的() .A . 重心B . 外心C . 内心D . 垂心( → → )解析由若+ →OP = OA + λ→→AP =→→→→分别为→,→同向的单位向λ量,AP 与∠A 平分线所在直线共线, ∴ P 过△ABC 内心,应选 C .例 4 点 O 是△ABC 所在平面内一定点,P 是△ABC 所( → →) ( → →)在平面内一动点,若 OP - OA · AB - AC = 0,则 P 点轨迹一定通过△ABC 的A . 重心B . 外心C . 内心D . 垂心解析→ → → → → →→ →AB - AC = CB ,OP - OA = AP ,又∵ ( OP - OA )·( → →)AB - AC= 0,→ →→ →∴ AP·CB = 0,AP ⊥BC . ∴ P 在过 A 点且垂直于 BC 的垂线上,点 P 轨迹过 △ABC 的垂心应选 D .例 5 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →→→,则 P 点轨迹一定通过△ABC 的() . A . 重心 B . 外心C . 内心 D.垂心→ → →→得:解析由OA = OP + λ+→→,→ →= λ= 0.→ →∴ PA ⊥BC .∴ P 在过 A 点且垂直于 BC 的直线上,( 转下页)数学学习与研究 2016. 9解题技巧与方法122 JIETI JIQIAO YU FANGFA数列{ n2 }和 S n 的新求法◎郑晶晶 ( 永嘉县东瓯街道办事处消防办,浙江温州 325100) 【摘要】介绍数列{ n2}和 S n的新求法.【关键词】数列; 初等数学= 4 + 4 + 4 + 4笔者在文中介绍了数列{ n2}和 S n的新求法.其很好的= 3 + 3 + 3 = 2 + 2展现了数学之美且易懂.= 1.即: T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]一式: n2 = 1 + 3 + 5 + 7 + … + ( 2n - 3) + ( 2n - 1) +[1 + 2 + 3 + 4 + … + ( n - 1) + n]= 2 + 4 + 6 + 8 + … + ( 2n - 2) + 2n - n=[1 + 2 + 3 + 4 + … + ( n - 1) + n]·2 - n.+[1 + 2 + 3 + 4 + … + ( n - 1) + n]得到三式:( n2 + n) /2 = 1 + 2 + 3 + 4 + … + ( n - 1) + n +[1 + 2 + 3 + 4 + … + ( n - 1) + n](在这里我们把等号的右边部分看作数列{ n( n + 1) /2}其+[1 + 2 + 3 + 4 + … + ( n - 1) + n].和 T n.(上共有( n + 1)个[1 + 2 + 3 + 4 + … + ( n - 1) + n]相T n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]+ 加)[1 + 2 + 3 + … + ( n - 1)]所以容易得出T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]·( n + 1) + ( 1 + 2 + 3 + 4) = n·( n + 1) /2·( n + 1)+ ( 1 + 2 + 3) =[n·( n + 1)2]/2.+ ( 1 + 2) 又因为 T n为数列{ n( n + 1) /2}和,+ 1.因为 n( n + 1) /2 = ( n2 + n) /2,二式: n2 = n + n + n + … + n + n.(此处共有 n 个 n 相所以 Tn=[n( n + 1) /2 + S ]/2.加) 所以 T n + S n =[n( n + 1) /2 + S n]/2 + S n.所以所以[n( n + 1) /2 + S n]/2 + S n =[n·( n + 1)2]/2.S n = n + n + n + … + n + n.(此处共有 n 个 n 相加) 最后得出 S n = n( n + 1) ( 2n + 1) /6.= n + n + n + … + n(此处共有 n - 1 个 n - 1 相加)( 接上页)∴ P 在 BC 边高上,应过△ABC 的垂心,应选 D.→例 6 在△ABC 中,动点 M →2 -→2 →满足AC AB = 2 AM·BC,则点 M 一定通过△ABC 的( ) .A.重心B.外心C.内心→2-→2D.垂心→ →→→解析由 AC AB = 2 AM · BC 得: ( AC - AB )→ →→→( AC + AB) = 2 AM·BC→→→→→→设 D 为 BC 中点,AC + AB = 2 AD,2 BC·AD = 2 AM·→ → →BC,BC·MD = 0.M 点应在 BC 的垂直平分线上.应选B.3.“三角形四心”的应用解题策略: 利用向量法解决有关“三角形四心”相关问题,首先确定一组基底,再根据“三角形四心”的向量表示,用向量线性运算,模的运算,向量数量积运算等简化( 经常利用正弦定理和余弦定理) 题干条件.例 7 G 是△ABC 的重心,AB,AC 的边长为 2 和 1,→→) .∠BAC = 60°,则AG·BG等于(A.8 B.-1099C.5 -槡3 D.-5 + 槡39 9→ 1 → →解析AG = ( AB + AC),3→ 1 →→ 1 →→BG = ( BC + BA) = ( AC - 2 AB).3 3→ → 1 →→ 1 →→AG·BG = ( AB + AC) ×( AC - 2 AB)3 31 →2 →→→2)8= ( AC - AB·AC - 2 AB = -.9 9→例 8 O 是外接圆半径为 1 的△ABC 外心,且满足了 3 →→→→OA + 4 OB + 5 OC = 0,则OA·BC =→→→→→→解法 1 →→→OA·BC = OA ( OC - OB) = ,OA ·OC - OA ·→= →= →,OB又∵OA OB OC→→→3 OA +4 OB +5 OC = 0,∴ 9 → 2 →→→= 25 → 2OA + 12 OA·OB + 16 OB OC→→→→→→ 2 →→OA·OB = 0,3 OA + 5 OC = - 4 OB,9 OA + 30 OA·→ 2 = 16 → 2OC + 25 OC OB→ → 3 → → 3∴ OA·OC = -,∴ OA·BC = -.5 5→→解法 2 →→→→由 3 OA + 4 OB + 5 OC = 0,则以 3 OA,4 OB,5 →→OC为边可构成一个边长为3,4,5 的三角形,OA ·BC =→·→cos ∠AOC -→·→cos ∠AOB = cos OA OC OA OB∠AOC - cos∠AOB.∵ cos∠AOB = ,cos∠AOC = -3 →→ 3,∴ OA·BC = -.5 5数学学习与研究2016. 9。
三角形的四心与平面向量知识点总结
三角形的四心与平面向量是一个关于平面几何的较为深奥的概念,它的概念要求学生
具备一定的几何知识,掌握这一概念对于学习几何领域的深入学习是十分有用的。
三角形的四心指的是在特定三角形ABC内构成特殊位置
三个点I(三角形BC边AB中点),J(三角形AC边BC中点),K(三角形AB边AC
中点),四点ABCIK组成的四边形,四边形的面积等于三角形的三分之一,此四边形称为BCIK三角形的四心.
此外,三角形的四心还有一个与平面向量密切相关的概念,在三角形的四心中,任
意三个角的夹角均为60°,在三角形四心ABCIK任意三点构成的三角形内构成平行四边形,平行四边形内两条边构成的三角形含有相同的角,平行四边形内两条边所在平面垂直于BCIK三角形的两条边,BCIK三角形的两条边构成的平面是BCIK三角形的平面向量.
三角形的四心与平面向量让学生熟悉一些它不同于其他几何图形所具有的形态特征,
有助于更深入地了解几何相关的知识,学习者不仅可以学习三角形的四心,还可以将其结
合实际的问题,学习如何用四心确定三角形的面积等相关的实际问题.。
专题:平面向量与三角形四心问题三角形四心指的是三角形的垂心、重心、内心和外心,在高考中常常结合平面向量的知识进行考察,是高中数学的一个难点.很多学生对三角形四心总是产生混淆,面对与四心有关的问题也常常束手无策,为了解决广大学子的困扰,本文以四心的常见结论出发,借助几道经典的例题,对三角形四心问题进行系统梳理,希望能够为读者提供帮助.如果读者是在校高中生,则标注了星号的内容可作为拓展知识. 一、三角形的内心(1)定义:三角形内切圆的圆心,即三角形三条角平分线的交点(如图1). (2)向量表示:若O 为△ABC 的内心→→→→=⋅+⋅+⋅⇔0OC c OB b OA a . (注:本文中的边a ,b ,c 分别表示BC ,AC ,AB .角A ,B ,C 分别表示BAC ∠,ABC ∠,ACB ∠.)证明:→→→→→→→→→→=+⋅++⋅+⋅⇔=⋅+⋅+⋅0)()(0AC OA c AB OA b OA a OC c OB b OA a→→→→=⋅+⋅+⋅++⇔0)(AC c AB b OA c b a →→→⋅+⋅=⋅++⇔AC c AB b AO c b a )(||||||||)(→→→→→→→⋅⋅+⋅⋅=⋅++⇔AC AC AC c AB AB AB b AO c b a)||||()(→→→→→+⋅=⋅++⇔AC ACAB ABbc AO c b a)||||(→→→→→+⋅++=⇔AC ACAB AB c b a bc AO (图1)⇔点O 在角A 的角平分线上,同理点O 也在角B 、C 的角平分线上. ⇔O 为△ABC 的内心.(3)常用性质性质1:))(||||(R AC ACAB AB∈+⋅→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).证明:如图所示,||→→AB AB 表示→AB 上的单位向量,不妨记作→AD ,||→→AC AC 表示→AC 上的单位向量,不妨记作→AE .设→→→+=AE AD AP ,由平行四边形法则知,四边形ADPE 为菱形, 故直线AP 为A ∠的角平分线.))(||||(RAC ACAB AB∈+⋅∴→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).性质2:r c b a S ABC ⋅++=∆)(21(r △ABC 内切圆的半径). 证明:由等面积法易证.性质3:O 为△ABC 的内心c b a S S S OAB OAC OBC ::::=⇔∆∆∆. 证明:由面积公式易证. (4)典例剖析例1-1:在△ABC 中,O 为平面内一个定点,动点P 满足)||||(→→→→→→++=AC ACAB ABOA OP λ,),0(+∞∈λ.则动点P 的轨迹经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由性质1知,答案为A .例1-2:已知O 是△ABC 所在平面上的一点,若cb a PCc PB b PA a PO ++++=→→→→(其中P 是△ABC 所在平面内任意一点),则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题意知→→→→→→++=++PC c PB b PA a PO c PO b aPO ,即+-→→)(PO PA a→→→→→=-+-0)()(PO PC c PO PB b ,化简得→→→→=⋅+⋅+⋅0OC c OB b OA a .根据内心的向量表示知,O 是△ABC 的内心,答案为A .例1-3:已知O 是△ABC 内的一点,且满足0)||||(=-⋅→→→→→AC ACAB ABOA ,则OA 所在的直线一定经过三角形的( )A .内心B .外心C .垂心D .重心解析:||→→AB AB 表示→AB 上的单位向量,不妨记作→1e ,||→→AC AC 表示→AC 上的单位向量,不妨记作→2e .故0)(21=-⋅→→→e e OA ,即→→→→⋅=⋅21e OA e OA ,即>>=<<→→→→21,,e OA e OA .∴直线OA 与A ∠的角平分线重合,故OA 所在的直线一定经过三角形的内心,答案A .二、三角形的外心(1)定义:三角形外接圆的圆心,即三角形三边中垂线的交点(如图2). (2)向量表示:若O 为△ABC 的外心||||||→→→==⇔OC OB OA . (3)常用性质:奔驰定理*:已知O 为△ABC 内的一点(不一定为外心), 则→→∆→∆→∆=⋅+⋅+⋅0OC S OB S OA S OAB OAC OBC .(该定理反之也成立)证明:不妨延长AO 到D (如下图),则 (图2)=++===∆∆∆∆∆∆∆∆ACD ABD OAC OAB ACD OAC ABD OAB S S S S S S S S AD AO ABC OACOAB S S S ∆∆∆+, 即→∆∆∆→+=AD S S S AO ABCOAC OAB .且根据B ,D ,C 三点共线知,→∆∆∆→∆∆∆→+++=AB S S S AC S S S AD OAC OAB OACOAC OAB OAB ,故→∆∆→∆∆→+=AB S S AC S S AO ABC OAC ABC OAB ,即)()(→→∆∆→→∆∆→-+-=-OA OB S S OA OC S S OA ABCOAC ABC OAB . →→∆→∆→∆=⋅+⋅+⋅∴0OC S OB S OA S OAB OAC OBC (反之易证)性质1*:O 为△ABC 的外心C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆.证明:如图2所示,O 为△ABC 的外心A R BOC R S OBC 2sin 212sin 2122=∠=⇔∆,B R AOC R S OAC 2sin 212sin 2122=∠=∆,C R AOB R S OAB 2sin 212sin 2122=∠=∆ C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆(R 为△ABC 外接圆半径).性质2*:O 为△ABC 的外心→→→→=⋅+⋅+⋅⇔0)2(sin )2(sin )2(sin OC C OB B OA A . 证明:结合性质1与奔驰定理易证.(4)典例剖析例2-1:在△ABC 中,O 为平面内一个定点,动点P 满足++=→→→2OCOB OP )cos ||cos ||(CAC AC BAB AB →→→→+λ,),0(+∞∈λ.则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:设线段BC 的中点为D ,故)cos ||cos ||(C AC AC BAB AB OD OP →→→→→→++=λ,即)cos ||cos ||(CAC AC BAB AB DP →→→→→+=λ,而)cos ||cos ||(CAC BC AC BAB BC AB BC DP →→→→→→→→⋅+⋅=⋅λ,即)cos ||cos ||||cos ||)cos(||||(CAC CBC AC B AB B BC AB BC DP →→→→→→→→⋅+-⋅=⋅πλ0|)|||(=+-=→→BC BC λ 即→→⊥BC DP ,故点P 在线段BC 的垂直平分线上. ∴动点P 的轨迹一定经过△ABC 的外心,答案B .例2-2:在△ABC 中,动点O 满足→→→→⋅=-BC AO AB AC 222,则点O 一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:由题知→→→→→→⋅=+-BC AO AB AC AB AC 2))((,设D 为BC 的中点,则=⋅→→AD BC 2→→⋅BC AO 2,故0=⋅→→OD BC ,即→→⊥OD BC ,O ∴在BC 的垂直平分线上,故点O 一定经过△ABC 的外心,答案B .例2-3:已知O 为△ABC 所在平面内的一点,满足→→→→⋅=⋅BA OB AB OA ,=⋅→→BC OB→→⋅CB OC ,则O 为△ABC 的( )A .内心B .外心C .垂心D .重心解析:由→→→→⋅=⋅BA OB AB OA 知0)(=+⋅→→→OA OB AB ,即0)()(=+⋅-→→→→OA OB OA OB ,即||||→→=OA OB ,同理可得:||||→→=OC OB ,O ∴为△ABC 的外心,答案B .三、三角形的垂心(1)定义:三角形三条高的交点(如图3).(2)向量表示:若O 为△ABC 的垂心→→→→→→⋅=⋅=⋅⇔OC OB OC OA OB OA . 证明:→→→→→→→→→→→⊥⇔=⋅=-⋅⇔⋅=⋅BC OA BC OA OB OC OA OC OA OB OA 0)(.同理→→⊥AC OB ,O AB OC ⇔⊥→→为△ABC 的垂心.(3)常用性质性质1*:O 为锐角△ABC 的垂心⇔=∆∆∆OAB OAC OBC S S S ::C B A tan :tan :tan . (图3)证明:ACDOC b BCDOC a OF b OE a S S OAC OBC ∠⋅⋅∠⋅⋅=⋅⋅=∆∆sin sin ,且在直角△BCD 和直角△ACD 中有 B BCD cos sin =∠,A ACD cos sin =∠.故BAA B B A A b B a S S OAC OBC tan tan cos sin cos sin cos cos =⋅⋅=⋅⋅=∆∆. 同理,CBS S OAB OAC tan tan =∆∆. C B A S S S OAB OAC OBC tan :tan :tan ::=∴∆∆∆,反之易证.性质2*:当O 为锐角△ABC 的垂心→→→→=⋅+⋅+⋅⇔0tan tan tan C OC B OB A OA .证明:利用性质1和“奔驰定理”易证. (4)典例剖析例3-1:在△ABC 中,O 为平面内一个定点,动点P 满足)cos ||cos ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知)cos ||cos ||(CAC AC BAB AB AP →→→→→+=λ,得=⋅+-⋅=⋅+⋅=⋅→→→→→→→→→→→→→→)cos ||cos ||||cos ||)cos(||||()cos ||cos ||(CAC CBC AC B AB B BC AB CAC BC AC BAB BC AB BC AP πλλ0|)|||(=+-→→BC BC λ,即→→⊥BC AP .P ∴在BC 边上的高上,过垂心,答案C .例3-2:已知O 为△ABC 所在平面内的一点,且满足=+=+→→→→2222||||||||AC OB BC OA22||||→→+AB OC ,则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知2222||||||||→→→→-=-BC AC OB OA ,即=+⋅-→→→→)()(OB OA OB OA)()(→→→→+⋅-BC AC BC AC ,即0)()(=+⋅++⋅→→→→→→OB OA AB BC AC AB ,即02=⋅→→OC AB ,故→→⊥OC AB ,同理→→⊥OB AC ,→→⊥OA BC∴O 是△ABC 的垂心,答案C .例3-3:设O 是△ABC 的外心,点P 满足→→→→=++OP OC OB OA ,则P 是△ABC 的( )A .内心B .任意一点C .垂心D .重心 解析:由题知→→→→→=-=+CP OC OP OB OA ,由于O 是△ABC 的外心,故→→→=+OD OB OA 2(D 为线段AB 的中点)且→→⊥AB OD ,即→→=OD CP 2,→→⊥∴AB CP ,同理→→⊥AC BP ,→→⊥BC AP ,故P 是△ABC 的垂心,答案C .四、三角形的重心(1)定义:三角形三条中线的交点(如图4).(2)向量表示:若O 为△ABC 的重心→→→→=++⇔0OC OB OA . (3)常用性质 ( 图4 )性质1:若O 为△ABC 的重心ABC OBC OAC OAB S S S S ∆∆∆∆===⇔31性质2:若O 为△ABC 的重心→→=⇔AF AO 32,→→=BD BO 32,→→=CF CO 32性质3:已知),(11y x A ,),(22y x B ,),(33y x C .若O 为△ABC 的重心)3,3(321321y y y x x x O ++++⇔.(4)典例剖析例4-1:在△ABC 中,O 为平面内一个定点,动点P 满足)sin ||sin ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC的( )A .内心B .外心C .垂心D .重心 解析:由题知)sin ||sin ||(CAC AC BAB AB AP →→→→→+=λ,其中hC AC B AB ==→→sin ||sin ||(h 表示BC 边上的高),故)(hACh AB AP →→→+=λ→=AF h λ2(F 为线段BC 的中点). P ∴在BC 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-2:在△ABC 中,O 为平面内一个定点,动点P 满足])21()1()1[(31→→→→++-+-=OC OB OA OP λλλ,R ∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:设AB 的中点为D ,故])21()1(2[31→→→++-=OC OD OP λλ,由于+-3)1(2λ1321=+λ,即点P ,C ,D 三点共线. P ∴在AB 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-3:已知O 在△ABC 内,且满足→→→→=++0432OC OB OA ,现在到△ABC 内随机取一点,次点取自△OAB ,△OAC ,△OBC 的概率分别记为1P 、2P 、3P ,则( )A .321P P P ==B .123P P P >>C .321P P P >>D .312P P P >> 解析:法一:如图,延长OA ,OB ,OC 使得OA OD 2=,OB OE 3=,OC OF 4=, 故→→→→=++0OF OE OD ,即O 是△DEF 的重心,即△OED 、△ODF 、 △OEF 的面积相等,不妨令它们的面积都为1. 61=∴∆OAB S ,81=∆OAC S ,121=∆OBC S ,故321P P P >>,答案C . 法二:由“奔驰定理”知,k S OBC 2=∆,k S OAC 3=∆,kS OAB 4=∆(k 为比例系数),故321P P P >>,答案C .法三:根据三角形内心的向量表示,不妨设O 是以2k ,3k ,4k (k 为比例系数)为边长的三角形的内心,所以OBC OAC OAB S S S ∆∆∆>>,即321P P P >>,答案C .五、等腰(边)三角形的四心 (1)等腰三角形等腰三角形只有顶角的角平分线与中线、高三线重合,其余的线不重合.另外,等腰三角形的四心不重合. (2)等边三角形性质1:若△ABC 为等边三角形⇔△ABC 四心合一. 性质2:若△ABC 为等边三角形⇔△ABC 三线合一. 六、欧拉线*瑞士数学家欧拉(1707~1783)于1765年在他的著作《三角形 的几何学》中首次提出:(如图5)任意△ABC (非等边三角形)的垂心D 、重心E 、外心F 三点共线,即欧拉线. (图5)特别地,(如图6)当△ABC 为直角三角形时(A 为直角),垂心D 与A 重合,外心F 在BC 的中点上,欧拉线为直角△ABC 的外接圆半径(或BC 边上的中线).(图6)性质1:在任意三角形中,垂心与重心的距离是重心与外心距离的2倍,即EF DE 2=.。
专题:平面对量中三角形“四心”问题题型总结在三角形中,“四心”是一组特别的点,它们的向量表达形式具有很多重要的性质,在近年高考试题中,总会出现一些新奇新颖的问题,不仅考查了向量等学问点,而且培育了考生分析问题、解决问题的实力.现就“四心”作如下介绍:1.“四心”的概念与性质(1)重心:三角形三条中线的交点叫重心.它到三角形顶点距离与该点到对边中点距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA+GB +GC =0或PG =13(PA +PB +PC )(其中P 为平面内随意一点).反之,若GA +GB +GC =0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33.(2)垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA ·HB =HB ·HC =HC ·HA 或HA 2+BC 2=HB 2+CA 2=HC 2+AB 2.反之,若HA ·HB =HB ·HC =HC ·HA ,则H 是△ABC 的垂心. (3)内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC |·IA +|CA |·IB +|AB |·IC =0.反之,若|BC |·IA +|CA |·IB +|AB |·IC =0,则点I 是△ABC 的内心.(4)外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA +OB )·BA =(OB +OC )·CB =(OC +OA )·AC =0或|OA |=|OB |=|OC |.反之,若|OA |=|OB |=|OC |,则点O 是△ABC 的外心.2.关于“四心”的典型例题[例1] 已知O 是平面上的肯定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满意OP =OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹肯定通过△ABC 的________心.[解析] 由原等式,得OP -OA =λ(AB +AC ),即AP =λ(AB +AC ),依据平行四边形法则,知AB +AC 是△ABC 的中线所对应向量的2倍,所以点P 的轨迹必过△ABC 的重心.[答案] 重[点评] 探求动点轨迹经过某点,只要确定其轨迹与三角形中的哪些特别线段所在直线重合,这可从已知等式动身,利用向量的线性运算法则进行运算得之.[例2] 已知△ABC 内一点O 满意关系OA +2OB +3OC =0,试求S △BOC ∶S △COA ∶S △AOB 之值.[解] 延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1,如图所示,则1OB =2OB ,1OC =3OC ,由条件,得OA +1OB +1OC =0,所以点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积, 所以S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S . 于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3. [点评] 本题条件OA +2OB +3OC =0与三角形的重心性质GA +GB +GC =0非常类似,因此我们通过添加协助线,构造一个三角形,使点O 成为协助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.[引申推广] 已知△ABC 内一点O 满意关系λ1OA +λ2OB +λ3OC =0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3.[例3] 求证:△ABC 的垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[证明] 对于△ABC 的重心G ,易知OG =OA +OB +OC 2,对于△ABC 的垂心H ,设OH =m (OA +OB +OC ),则 AH =AO +m (OA +OB +OC )=(m -1) OA +m OB +m OC .由AH ·BC =0,得[(m -1) OA +m OB +m OC ](OC -OB )=0,(m -1) OA ·(OC -OB )+m (OC 2-OB 2)=0, 因为|OC |=|OB |,所以(m -1) OA ·(OC -OB )=0.但OA 与BC 不肯定垂直,所以只有当m =1时,上式恒成立.所以OH =OA +OB +OC ,从而OG =13OH ,得垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[引申推广]重心G 与垂心H 的关系:HG =13(HA +HB +HC ). [点评] 这是闻名的欧拉线,提示了三角形的“四心”之间的关系.我们选择恰当的基底向量来表示它们,当然最佳的向量是含顶点A 、B 、C 的向量.[例4] 设A 1,A 2,A 3,A 4,A 5 是平面内给定的5个不同点,则使1MA +2MA +3MA +4MA +5MA =0成立的点M 的个数为( )A .0B .1C .5D .10[解析] 依据三角形中的“四心”学问,可知在△ABC 中满意MA +MB +MC =0的点只有重心一点,利用类比的数学思想,可知满意本题条件的点也只有1个.[答案] B[点评] 本题以向量为载体,考查了类比与化归,归纳与猜想等数学思想.本题的具体解答过程如下:对于空间两点A,B来说,满意MA+MB=0的点M是线段AB的中点;对于空间三点A,B,C来说,满意MA+MB+MC=0,可认为是先取AB的中点G,再连接CG,在CG上取点M,使MC=2MG,则M满意条件,且唯一;对于空间四点A,B,C,D来说,满意MA+MB+MC +MD=0,可先取△ABC的重心G,再连接GD,在GD上取点M,使DM=3MG,则M满意条件,且唯一,不妨也称为重心G;与此类似,对于空间五点A,B,C,D,E来说,满意MA+MB+MC +MD+ME=0,可先取空间四边形ABCD的重心G,再连接GE,在GE上取点M,使EM=4MG,则M满意条件,且唯一.。
微专题平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0 .(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0 .(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0 .(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0 .【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +AC AC 所在的直线上. AB ⋅PC +BC ⋅PC +CA ⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB =PC ⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA ⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0 ⇔P 为△ABC 的重心.【典型例题】题型一:重心定理例1.(2023春·山东聊城·高一山东聊城一中校考阶段练习)已知点G 是三角形ABC 所在平面内一点,满足GA +GB +GC =0 ,则G 点是三角形ABC 的( )A.垂心B.内心C.外心D.重心【答案】D【解析】因为GA +GB +GC =0 ,所以GA +GB =-GC =CG .以GA 、GB 为邻边作平行四边形GADB ,连接GD 交AB 于点O .如图所示:则CG =GD ,所以GO =13CO ,CO 是AB 边上的中线,所以G 点是△ABC 的重心.故选:D例2.(2023春·山东·高一阶段练习)已知G 是△ABC 的重心,点D 满足BD =DC ,若GD =xAB +yAC ,则x +y 为( )A.13B.12C.23D.1【答案】A【解析】因为BD =DC ,所以D 为BC 中点,又因为G 是△ABC 的重心,所以GD =13AD ,又因为D 为BC 中点,所以AD =12AB +12AC ,所以GD =1312AB +12AC =16AB +16AC ,所以x =y =16,所以x +y =13.故选:A例3.(2023春·上海金山·高一上海市金山中学校考期末)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是△ABC 的重心,若BG ⊥CG ,5b =6c 则cos A 的取值是( )A.5975B.5775C.1115D.6175【答案】D【解析】依题意,作出图形,因为点G 是△ABC 的重心,所以M 是BC 的中点,故AM =12AB +AC ,由已知得BC =a ,AC =b ,AB =c ,因为BG ⊥CG ,所以GM =12BC =12a ,又因为点G 是△ABC 的重心,所以GM =12GA ,则AM =12a +a =32a ,又因为AM 2=14AB +AC 2,所以94a 2=14c 2+b 2+2bc cos A ,则9a 2=c 2+b 2+2bc cos A ,又由余弦定理得a 2=c 2+b 2-2bc cos A ,所以9c 2+b 2-2bc cos A =c 2+b 2+2bc cos A ,整理得2c 2+2b 2-5bc cos A =0,因为5b =6c ,令b =6k k >0 ,则c =5k ,所以2×5k 2+2×6k 2-5×6k ×5k cos A =0,则cos A =122150=6175.故选:D .题型二:内心定理例4.(2023春·江苏宿迁·高一沭阳县修远中学校考期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC ,则λ+μ=______.【答案】9-372【解析】在△ABC ,由余弦定理得BC =AC 2+AB 2-2AC ⋅AB cos ∠BAC =7,设O ,Q ,N 分别是边AB ,BC ,AC 上的切点,设AN =AO =x ,则NC =QC =2-x ,BO =BQ =1-x ,所以BC =BQ +QC =1-x +2-x =7⇒x =3-72,由AP =λAB +μAC 得,AP ⋅AB =λAB +μAC ⋅AB ,即AO ⋅AB =λAB 2+μAC ⋅AB ⇒AO =λ-μ,①同理由AP ⋅AC =λAB +μAC ⋅AC ⇒2AN =-λ+4μ,②联立①②以及AN =AO =x 即可解得:λ+μ=3x =3×3-72=9-372,故答案为:9-372例5.(2023春·陕西西安·高一陕西师大附中校考期中)已知O 是平面上的一个定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP =OA +λAB AB +AC ACλ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心【答案】C 【解析】因为AB AB 为AB 方向上的单位向量,AC AC 为AC 方向上的单位向量,则AB |AB |+AC |AC |的方向与∠BAC 的角平分线一致,由OP =OA +λAB AB +AC AC ,可得OP -OA =λAB AB +AC AC,即AP =λAB AB +AC AC,所以点P 的轨迹为∠BAC 的角平分线所在直线,故点P 的轨迹一定经过△ABC 的内心.故选:C .例6.(2023·全国·高一假期作业)已知I 为△ABC 所在平面上的一点,且AB =c ,AC =b ,BC =a .若aIA+bIB +cIC =0 ,则I 是△ABC 的( )A.重心B.内心C.外心D.垂心【答案】B 【解析】因为IB =IA +AB ,IC =IA +AC ,所以aIA +bIB +cIC =aIA +b IA +AB +c IA +AC =a +b +c IA +bAB +cAC =0 ,所以(a +b +c )IA =-(b ⋅AB +c ⋅AC ),所以IA =-(b ⋅AB +c ⋅AC )a +b +c =-b a +b +c ⋅AB +c a +b +c AC =-1a +b +c b ⋅AB +c ⋅AC=-bc a +b +c AB c +AC b=-bc a +b +c AB AB +AC AC ,所以IA 在角A 的平分线上,故点I 在∠BAC 的平分线上,同理可得,点I 在∠BCA 的平分线上,故点I 在△ABC 的内心,故选:B .例7.(2023春·四川成都·高一树德中学校考竞赛)在△ABC 中,cos A =34,O 为△ABC 的内心,若AO =xAB +yAC x ,y ∈R ,则x +y 的最大值为( )A.23B.6-65C.7-76D.8-227【答案】D【解析】如图:圆O 在边AB ,BC 上的切点分别为E ,F ,连接OE ,OF ,延长AO 交BC 于点D设∠OAB =θ,则cos A =cos2θ=1-2sin 2θ=34,则sin θ=24设AD =λAO =λxAB +λyAC∵B ,D ,C 三点共线,则λx +λy =1,即x +y =1λ1λ=AO AD =AO AO +OD ≤AO AO +OF =11+OF AO =11+OE AO=11+sin θ=11+24=8-227即x +y ≤8-227故选:D .题型三:外心定理例8.(2023春·湖北武汉·高一校联考期末)在△ABC 中,AB =2,AC =3,N 是边BC 上的点,且BN =NC ,O 为△ABC 的外心,则AN ⋅AO =( )A.3B.134C.92D.94【答案】B【解析】因为BN =NC ,则N 是BC 的中点,所以AN =12AB +12AC ,设外接圆的半径为r ,所以AO ⋅AN =AO ⋅12AC +12AB =12AO ⋅AC +12AO ⋅AB =12r ×3×cos ∠OAC +12r ×2×cos ∠OAB =12×3×32+12×2×1=134.故选:B .例9.(2023春·河南许昌·高一统考期末)已知P 在△ABC 所在平面内,满足PA =PB =PC ,则P 是△ABC 的( )A.外心B.内心C.垂心D.重心【答案】A 【解析】PA =PB =PC 表示P 到A ,B ,C 三点距离相等,P 为外心.故选:A .例10.(2023春·四川自贡·高一统考期末)直角△ABC 中,∠C =90∘,AB =4,O 为△ABC 的外心,OA ⋅OB +OB ⋅OC +OC ⋅OA =( )A.4B.-4C.2D.-2【答案】B 【解析】∵直角△ABC 中,∠C =90°,AB =4,O 为△ABC 的外心,∴O 为AB 的中点,即OA =OB =2,∴OA +OB =0 且OA ⋅OB =|OA |⋅|OB |⋅cos180°=-4,∴OA ⋅OB +OB ⋅OC +OC ⋅OA =-4+OC ⋅(OA +OB )=-4+0=-4,故选:B .例11.(2023春·辽宁丹东·高一凤城市第一中学校考阶段练习)已知O 为△ABC 的外心,若AB =1,则AB ⋅AO =( )A.-12B.12C.-1D.23【答案】B【解析】因为点O 为△ABC 的外心,设AB 的中点为D ,连接OD ,则OD ⊥AB ,如图所以AB ⋅AO =AB ⋅(AD +DO )=AB ⋅AD +AB ⋅DO =12AB 2+0=12×12=12.故选:B .题型四:垂心定理例12.(2023春·河南南阳·高一统考期中)若H 为△ABC 所在平面内一点,且HA 2+BC 2=HB 2+CA 2=HC 2+AB 2则点H 是△ABC 的( )A.重心B.外心C.内心D.垂心【答案】D 【解析】HA 2+BC 2=HB 2+CA 2⇒HA 2+BH +HC 2=HB 2+CH +HA 2,得BH ⋅HC =CH ⋅HA ⇒HC ⋅BA =0,即HC ⊥BA ;HA 2+BC 2=HC 2+AB 2⇒HA 2+BH +HC 2=HC 2+AH +HB 2,得BH ⋅HC =AH ⋅HB ⇒BH ⋅AC =0,即BH ⊥AC ;HB 2+CA 2=HC 2+AB 2⇒HB 2+CH +HA 2=HC 2+AH +HB 2,CH ⋅HA =AH ⋅HB ⇒HA ⋅CB =0,即HA ⊥CB ,所以H 为△ABC 的垂心.故选:D .例13.(多选题)(2023春·湖南长沙·高一长沙市明德中学校考期中)已知O ,N ,P ,I 在△ABC 所在的平面内,则下列说法正确的是( )A.若OA =OB =OC ,则O 是△ABC 的外心B.若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的垂心C.若NA +NB +NC =0,则N 是△ABC 的重心D.若CB ⋅IA =AC ⋅IB =BA ⋅IC =0,则I 是△ABC 的垂心【答案】ABCD【解析】对A ,根据外心的定义,易知A 正确;对B ,PB ⋅PA -PC =PB ⋅CA =0⇒PB ⊥CA ,同理可得:PA ⊥CB ,PC ⊥AB ,所以P 是垂心,故B 正确;对C ,记AB 、BC 、CA 的中点为D 、E 、F ,由题意NA +NB =2ND =-NC ,则|NC |=2|ND |,同理可得:|NA |=2|NE |,|NB |=2|NF |,则N 是重心,故C 正确;对D ,由题意,CB ⊥IA ,AC ⊥IB ,BA ⊥IC ,则I 是垂心,故D 正确故选:ABCD .例14.(2023春·河南商丘·高一商丘市第一高级中学校考阶段练习)设H 是△ABC 的垂心,且4HA +5HB +6HC =0 ,则cos ∠AHB =_____.【答案】-2211【解析】∵H 是△ABC 的垂心,∴HA ⊥BC ,HA ⋅BC =HA ⋅HC -HB =0,∴HA ⋅HB =HC ⋅HA ,同理可得,HB ⋅HC =HC ⋅HA ,故HA ⋅HB =HB ⋅HC =HC ⋅HA ,∵4HA +5HB +6HC =0 ,∴4HA 2+5HA ⋅HB +6HA ⋅HC =0,∴HA ⋅HB =-411HA 2,同理可求得HA ⋅HB =-12HB 2,∴cos ∠AHB =HB ⋅HA HB HA =-411HA 2HB HA ,cos ∠AHB =HB ⋅HA HB HA =-12HB 2HB HA,∴cos 2∠AHB =211,即cos ∠AHB =-2211.故答案为:-2211.【同步练习】一、单选题1.(2023·四川泸州·泸县五中校考二模)已知△ABC 的重心为O ,则向量BO =( )A.23AB +13ACB.13AB +23ACC.-23AB +13ACD.-13AB +23AC 【答案】C【解析】设E ,F ,D 分别是AC ,AB ,BC 的中点,由于O 是三角形ABC 的重心,所以BO =23BE =23×AE -AB =23×12AC -AB =-23AB +13AC .故选:C .2.(2023·全国·高三专题练习)对于给定的△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论不正确的是( )A.AO ⋅AB =12AB 2B.OA ⋅OB =OA ⋅OC =OB ⋅OCC.过点G 的直线l 交AB 、AC 于E 、F ,若AE =λAB ,AF =μAC ,则1λ+1μ=3D.AH 与ABAB cos B +AC ACcos C 共线【答案】B【解析】如图,设AB 中点为M ,则OM ⊥AB ,∴AO cos ∠OAM =AM ,∴AO ·AB =AO AB cos ∠OAB =AB AO cos ∠OAB =AB ⋅AB 2=12AB2,故A 正确;OA ·OB =OA ·OC 等价于OA ·OB -OC =0等价于OA ·CB =0,即OA ⊥BC ,对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中,若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直,故B 错误;设BC 的中点为D ,则AG =23AD =13AB +AC =131λAE +1μAF =13λAE +13μAF ,∵E ,F ,G 三点共线,∴13λ+13μ=1,即1λ+1μ=3,故C 正确;AB AB cos B +AC AC cos C ⋅BC =AB ⋅BC AB cos B +AC ⋅BC AC cos C=AB BC cos π-B AB cos B +AC BC cos C AC cos C =-BC +BC =0,∴AB AB cos B +AC AC cos C与BC 垂直,又∵AH ⊥BC ,∴AB AB cos B +AC AC cos C与AH 共线,故D 正确.故选:B .3.(2023·四川·校联考模拟预测)在平行四边形ABCD 中,G 为△BCD 的重心,AG =xAB +yAD ,则3x +y =( )A.73B.2C.83D.3【答案】C【解析】如图,设AC 与BD 相交于点O ,由G 为△BCD 的重心,可得O 为BD 的中点,CG =2GO ,则AG =AO +OG =AO +13OC =43AO =43×12AB +AD =23AB +23AD ,可得x =y =23,故3x +y =83.故选:C .4.(2023秋·河南信阳·高三校考阶段练习)过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =xAB ,AE =yAC ,且xy ≠0,则1x +1y=( )A.4B.3C.2D.1【答案】B【解析】设△ABC 的重心为点G ,延长AG 交BC 于点M ,则M 为线段BC 的中点,因为D 、G 、E 三点共线,设DG =λDE ,即AG -AD =λAE -AD ,所以,AG =1-λ AD +λAE =1-λ xAB +λyAC ,因为M 为BC 的中点,则AM =AB +BM =AB +12BC =AB +12AC -AB =12AB +12AC ,因为G 为△ABC 的重心,则AG =23AM =13AB +13AC ,所以,1-λ x =λy =13,所以,1x +1y=31-λ +3λ=3.故选:B .5.(2023秋·上海·高二专题练习)O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:OP =OA +λ(AB +AC ),λ>0,则直线AP 一定通过△ABC 的( )A.外心B.内心C.重心D.垂心【答案】C【解析】取线段BC 的中点E ,则AB +AC =2AE .动点P 满足:OP =OA +λ(AB +AC ),λ>0,则OP -OA =2λAE 则AP =2λAE .则直线AP 一定通过△ABC 的重心.故选:C .6.(2023秋·湖北·高二校联考期中)O 是△ABC 的外心,AB =6,AC =10,AO =xAB +yAC ,2x +10y=5,则cos ∠BAC =( )A.12B.13C.35D.13或35【答案】D【解析】当O 在AC 上,则O 为AC 的中点,x =0,y =12满足2x +10y =5,符合题意,∴AB ⊥BC ,则cos ∠BAC =AB AC =35;当O 不在AC 上,取AB ,AC 的中点D ,E ,连接OD ,OE ,则OD ⊥AB ,OE ⊥AC ,则AB ⋅AO =AB AO cos ∠OAD =AB ×AO ×AD AO =12AB 2=18,同理可得:AC ⋅AO =12AC 2=50∵AB ⋅AO =AB ⋅xAB +yAC =xAB 2+yAB ⋅AC =36x +60y cos ∠BAC =18,AC ⋅AO =AC ⋅xAB +yAC =xAC ⋅AB +yAC 2=60x cos ∠BAC +100y =50,联立可得36x +60y cos ∠BAC =1860x cos ∠BAC +100y =502x +10y =5,解得x =14y =920cos ∠BAC =13 ,故选:D .7.(2023·湖南·高考真题)P 是△ABC 所在平面上一点,若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的( )A.外心B.内心C.重心D.垂心【答案】D 【解析】因为PA ⋅PB=PB ⋅PC ,则PB ⋅PC -PA =PB ⋅AC =0,所以,PB ⊥AC ,同理可得PA ⊥BC ,PC ⊥AB ,故P 是△ABC 的垂心.故选:D .8.(2023·全国·高一专题练习)已知点O ,P 在△ABC 所在平面内,满OA +OB +OC =0 ,PA =PB=PC ,则点O ,P 依次是△ABC 的( )A.重心,外心B.内心,外心C.重心,内心D.垂心,外心【答案】A【解析】设AB 中点为D ,因为OA +OB +OC =0 ,所以OA +OB +OC =2OD +OC =0 ,即-2OD =OC ,因为OD ,OC有公共点O ,所以,O ,D ,C 三点共线,即O 在△ABC 的中线CD ,同理可得O 在△ABC 的三条中线上,即为△ABC 的重心;因为PA =PB=PC ,所以,点P 为△ABC 的外接圆圆心,即为△ABC 的外心综上,点O ,P 依次是△ABC 的重心,外心.故选:A9.(2023·全国·高一专题练习)已知O ,A ,B ,C 是平面上的4个定点,A ,B ,C 不共线,若点P 满足OP =OA +λAB +AC ,其中λ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心【答案】A【解析】根据题意,设BC 边的中点为D ,则AB +AC =2AD ,因为点P 满足OP =OA+λAB +AC ,其中λ∈R所以,OP -OA=AP =λAB +AC =2λAD ,即AP =2λAD ,所以,点P 的轨迹为△ABC 的中线AD ,所以,点P 的轨迹一定经过△ABC 的重心.故选:A10.(2023春·安徽安庆·高一安庆一中校考阶段练习)在△ABC 中,设O 是△ABC 的外心,且AO =13AB +13AC,则∠BAC 等于( )A.30°B.45°C.60°D.90°【答案】C【解析】依题意,因为AO =13AB +13AC ,所以O 也是△ABC 的重心,又因为O 是△ABC 的外心,所以△ABC 是等边三角形,所以∠BAC =60°.11.(2023·全国·高三专题练习)在△ABC 中,AB =2,∠ACB =45°,O 是△ABC 的外心,则AC ⋅BC +OC ⋅AB的最大值为( )A.1B.32C.3D.72【答案】C【解析】解:由题知,记△ABC 的三边为a ,b ,c ,因为O 是△ABC 的外心,记AB 中点为D ,则有OD ⊥AB ,所以OD ⋅AB =0且CD =12CA +CB ,所以AC ⋅BC +OC ⋅AB =CA ⋅CB +OD +DC ⋅AB =CA ⋅CB +OD ⋅AB +DC ⋅AB =CA ⋅CB -12CA +CB ⋅AB=CA ⋅CB -12CA +CB ⋅CB -CA=CA ⋅CB +12CA 2-CB 2=b ⋅a ⋅cos ∠ACB +12b 2-a 2=122ab +b 2-a 2 ①,在△ABC 中,由余弦定理得:cos ∠ACB =a 2+b 2-c 22ab =22,即a 2+b 2-c 2=2ab ,即a 2+b 2-2=2ab ,代入①中可得:AC ⋅BC +OC ⋅AB=b 2-1,在△ABC 中,由正弦定理得:a sin A=b sin B =csin C =222=2,所以b =2sin B ≤2,所以AC ⋅BC +OC ⋅AB=b 2-1≤3,当b =2,a =c =2,A =C =45∘,B =90∘时取等,故AC ⋅BC +OC ⋅AB的最大值为3.12.(2023·全国·高三专题练习)在△ABC 中,AB =3,AC =4,BC =5,O 为△ABC 的内心,若AO=λAB +μBC ,则λ+μ=( )A.23B.34C.56D.35【答案】C【解析】由AO =λAB +μBC 得AO =λOB -OA +μOC -OB ,则1-λ OA +λ-μ OB +μOC =0,因为O 为△ABC 的内心,所以BC OA +AC OB +AB OC =0,从而1-λ :λ-μ :μ=5:4:3,解得λ=712,μ=14,所以λ+μ=56.故选:C .13.(2023秋·四川绵阳·高二四川省绵阳南山中学校考开学考试)若O ,M ,N 在△ABC 所在平面内,满足|OA |=|OB |=|OC |,MA ⋅MB =MB ⋅MC=MC ⋅MA ,且NA +NB +NC =0 ,则点O ,M ,N 依次为△ABC 的( )A.重心,外心,垂心B.重心,外心,内心C.外心,重心,垂心D.外心,垂心,重心【答案】D【解析】因为|OA |=|OB |=|OC |,所以OA =OB =OC ,所以O 为△ABC 的外心;因为MA ⋅MB =MB ⋅MC=MC ⋅MA ,所以MB ⋅(MA-MC )=0,即MB ⋅CA=0,所以MB ⊥AC ,同理可得:MA ⊥BC ,MC ⊥AB ,所以M 为△ABC 的垂心;因为NA +NB +NC =0 ,所以NA +NB =-NC ,设AB 的中点D ,则NA +NB =2ND,所以-NC =2ND,所以C ,N ,D 三点共线,即N 为△ABC 的中线CD 上的点,且NC =2ND ,所以N 为△ABC 的重心.故选:D .14.(2023春·浙江绍兴·高二校考学业考试)已知点O ,P 在△ABC 所在平面内,且OA =OB=OC ,PA ⋅PB =PB ⋅PC =PC ⋅PA ,则点O ,P 依次是△ABC 的( )A.重心,垂心B.重心,内心C.外心,垂心D.外心,内心【答案】C【解析】由于OA =OB =OC ,所以O 是三角形ABC 的外心.由于PA ⋅PB =PB ⋅PC ,所以PA -PC ⋅PB =0,CA ⋅PB=0⇒CA ⊥PB ,同理可证得AB ⊥PC ,BC ⊥PA ,所以P 是三角形ABC 的垂心.故选:C二、多选题15.(2023春·河南·高一校联考期中)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法不正确的是( )A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BCD.OD +OE +OF =0【答案】BD【解析】对于A ,在△OAB 中,因为D 为AB 的中点,所以OD =12(OA +OB ),所以OA +OB =2OD ,所以A 正确,对于B ,因为△ABC 为正三角形,O 为△ABC 的重心,所以OA =OB =OC ,∠AOB =∠BOC =∠AOC =120°,设OA =OB =OC =a ,则OA ⋅OB +OB ⋅OC +OC ⋅OA =OA ⋅OB cos ∠AOB +OB ⋅OC cos ∠BOC +OC ⋅OAcos ∠AOC=a 2cos120°+a 2cos120°+a 2cos120°=-32a 2≠0,所以B 错误,对于C ,因为AO ⋅AB -AC =0,所以AO ⋅CB =0,所以AO ⊥CB,所以OA ⊥BC ,所以C 正确,对于D ,因为边AB ,BC ,CA 的中点分别为D ,E ,F ,所以OD =12(OA +OB ),OE =12(OB +OC ),OF =12(OA +OC),因为O 为△ABC 的重心,所以CO =2OD ,所以2OD =-OC,所以OD +OE +OF =12(OA +OB )+12(OC +OB )+12(OA+OC )=OA +OB +OC=2OD +OC=-OC +OC =0 ,所以D 错误,故选:BD16.(2023·全国·高三专题练习)如图,M 是△ABC 所在平面内任意一点,O 是△ABC 的重心,则( )A.AD +BE =CFB.MA +MB +MC=3MOC.MA +MB +MC =MD +ME +MFD.BC ⋅AD+CA ⋅BE +AB ⋅CF =0【答案】BCD【解析】对于A 选项,由题意可知,D 、E 、F 分别为BC 、AC 、AB 的中点,所以,AD =AB +12BC =AB +12AC -AB =12AB +AC ,同理可得BE =12BA +BC ,CF =12CA +CB,所以,AD +BE =12AB +AC +12BA +BC =12AC +BC =-CF ,A 错;对于B 选项,由重心的性质可知AD =32AO ,BE =32BO ,CF =32CO,由A 选项可知,AD +BE +CF =32AO +BO +CO =0,所以,MA +MB +MC =MO +OA +MO +OB +MO +OC =3MO -AO +BO +CO =3MO ,B 对;对于C 选项,由重心的性质可知OD =12AO ,OE =12BO ,OF =12CO ,所以,MD +ME +MF=MO +OD +MO +OE +MO +OF =3MO +12AO +BO +CO=3MO ,C 对;对于D 选项,BC ⋅AD =12AC -AB ⋅AC +AB =12AC 2-AB 2,同理可得CA ⋅BE =12BA 2-BC 2 ,AB ⋅CF =12CB 2-CA 2,因此,BC ⋅AD+CA ⋅BE +AB ⋅CF =0,D 对.故选:BCD .17.(2023秋·重庆渝北·高二重庆市两江育才中学校校考阶段练习)设O 为△ABC 的外心,且满足2OA+3OB +4OC =0 ,OA=1,则下列结论中正确的是( )A.OB ⋅OC =-78B.AB =62C.∠A =2∠CD.sin ∠A =14【答案】ABC【解析】有题意可知:OA =OB =OC =1.对于A :2OA +3OB +4OC =0 ⇒2OA =-3OB -4OC.两边同时平方得到:4OA 2=9OB 2+16OC 2+24OB ⋅OC.解得OB ⋅OC =-78,故A 正确.对于B :2OA +3OB +4OC =0 ⇒2OA -2OB =-5OB -4OC ⇒2AB =5OB +4OC.两边再平方得到:4AB 2=25OB 2+16OC 2+40OB ⋅OC.结合A 可得:AB =62.所以B 正确.对于C :2OA +3OB +4OC =0 ⇒3BO =2OA +4OC.两边平方得到:9BO 2=4OA 2+16OC 2+16OA OCcos ∠AOC .解得cos ∠AOC =-1116.同理可得cos ∠AOB =14,cos ∠BOC =-78.∵∠AOB =2∠C ,∠COB =2∠A .∴cos2∠C =14<12,所以π3<2∠C <π2,则2π3<4∠C <π,cos2∠A =-78<-22,所以3π4<2∠A <π,∵cos4∠C =2cos 22∠C -1=2×142-1=-78=cos2∠A ,2∠A =4∠C .∴∠A =2∠C .故C 正确;由cos2∠A =2cos 2∠A -1=-78,所以cos 2∠A =116,所以sin 2∠A =1516,所以sin ∠A =±154,显然sin ∠A =154,故D 错误.故选:ABC .18.(2023春·安徽淮北·高一淮北师范大学附属实验中学校考阶段练习)生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上.”这就是著名的欧拉线定理.在△ABC 中,O ,H ,G 分别是外心、垂心和重心,D 为BC 边的中点,下列四个选项中正确的是( )A.GH =2OGB.GA +GB +GC =0C.AH =2ODD.S △ABG =S △BCG =S △ACG【答案】ABCD【解析】在△ABC 中,O ,H ,G 分别是外心、垂心和重心,画出图形,如图所示.对于B 选项,根据三角形的重心性质由重心的性质可得G 为AD 的三等分点,且GA =-2GD ,又D 为BC 的中点,所以GB +GC =2GD ,所以GA +GB +GC =-2GD+GD =0 ,故选项B 正确;对于A 与C 选项,因为O 为△ABC 的外心,D 为BC 的中点,所以OD ⊥BC ,所以AH ∥OD ,∴△AHG ∽△DOG ,∴GH OG =AH OD =AGDG=2,∴GH =2OG ,AH =2OD ,故选项A ,C 正确;对于D ,过点G 作GE ⊥BC ,垂足为E ,∴△DEG ∽△DNA ,则GE AN =DG DA=13,∴△BGC 的面积为S △BGC =12×BC ×GE =12×BC ×13×AN =13S △ABC ;同理,S △AGC =S △AGB =13S △ABC ,选项D 正确.故选:ABCD19.(2023·全国·模拟预测)在△ABC 中,点D ,E 分别是BC ,AC 的中点,点O 为△ABC 内的一点,则下列结论正确的是( )A.若AO =OD ,则AO =12OB +OCB.若AO =2OD ,则OB =2EOC.若AO =3OD ,则OB =58AB +38ACD.若点O 为△ABC 的外心,BC =4,则OB ⋅BC=-4【答案】AB【解析】选项A :因为AO =OD ,所以O 为AD 中点,由题易知AO =OD =12OB +OC ,故A 正确.选项B :若AO =2OD ,则点O 为△ABC 的重心,(三角形重心的性质)则OB =2EO,故B 正确.选项C :若AO =3OD ,则OB =OD +DB =14AD +12CB =14×12AB +AC +12AB -AC=58AB -38AC,故C 错误.选项D :若点O 为△ABC 的外心,BC =4,则OD ⊥BC ,(三角形外心的性质)故OB ⋅BC =OD +DB ⋅BC =-12BC 2=-8,故D 错误.故选:AB20.(2023春·河北石家庄·高一统考期末)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知△ABC 的外心为O ,垂心为H ,重心为G ,且AB =3,AC =4,下列说法正确的是( )A.AH ⋅BC =0B.AG ⋅BC =-73 C.AO ⋅BC =72D.OH =OA +OB +OC【答案】ACD【解析】对于A 选项,由垂心的性质可知AH ⊥BC ,则AH ⋅BC=0,A 对;对于B 选项,设D 为BC 的中点,则AG =23AD,AD =AB +BD =AB +12BC =AB +12AC -AB =12AB +AC ,所以,AG =23AD =13AB +AC ,所以,AG ⋅BC =13AC +AB ⋅AC -AB =13AC 2-AB 2 =73,B错;对于C 选项,由外心的性质可知OB =OC ,则OD ⊥BC ,∴AO ⋅BC =AD +DO ⋅BC =AD ⋅BC =12AB +AC ⋅AC -AB =12AC 2-AB 2 =72,C 对;对于D 选项,由AH ⎳OD 得AH OD =AGGD=2,所以AH =2OD ,因为OD =OB +BD =OB +12BC =OB +12OC -OB =12OB +OC,所以OH -OA =AH =2OD =OB +OC ,即OH =OA +OB +OC,D 对.故选:ACD .三、填空题21.(2023秋·上海长宁·高二上海市延安中学校考期中)已知△ABC 的顶点坐标A -6,2 、B 6,4 ,设G 2,0 是△ABC 的重心,则顶点C 的坐标为_________.【答案】6,-6 【解析】设点C a ,b ,∵G (2,0)是△ABC 的重心,所以,-6+6+a 3=22+4+b 3=0,解得a =6b =-6 ,故点C 的坐标为6,-6 .故答案为:6,-6 .22.(2023秋·山西吕梁·高三统考阶段练习)设O 为△ABC 的外心,且满足2OA +3OB +4OC =0,OA=1,下列结论中正确的序号为______.①OB ⋅OC =-78;②AB =2;③∠A =2∠C .【答案】①③【解析】由题意可知:OA =OB =OC =1.①2OA +3OB +4OC =0 ,则2OA =-3OB -4OC ,两边同时平方得到:4=9+24OB ⋅OC +16,解得:OB ⋅OC =-78,故①正确.②2OA +3OB +4OC =0 ,则2OA -2OB =-5OB -4OC ,2BA =-5OB -4OC ,两边再平方得到:4AB 2=25+16+40OB ⋅OC=6.所以|AB =62,所以②不正确.③2OA +3OB +4OC =0 ,4OC =-3OB -2OA ,两边平方得到:16=9+4+12OA ⋅OB =13+12OA OB cos ∠AOB ,cos ∠AOB =14,∠AOB ∈0,π2,同理可得:cos ∠BOC =-78,∠BOC ∈π2,π ,∠AOB =2∠C ,∠COB =2∠A .故cos2C =14,cos2A =-78,且∠C ∈0,π4 ,∠A ∈π4,π2,cos4C =2cos 22C -1=2×14 2-1=-78=cos2A ,即∠A =2∠C .故③正确.故答案为:①③23.(2023·河北·模拟预测)已知O 为△ABC 的外心,AC =3,BC =4,则OC ⋅AB=___________.【答案】-72【解析】如图:E ,F 分别为CB ,CA 的中点,则OE ⊥BC ,OF ⊥AC∴OC ⋅AB =OC ⋅CB -CA =OC ⋅CB -OC ⋅CA=OE +EC ⋅CB -OF +FC ⋅CA=OE ⋅CB +EC ⋅CB -OF ⋅CA -FC ⋅CA=-12|CB |2--12|CA |2 =12CA |2- CB |2 =12×9-16 =-72.故答案为:-72.24.(2023秋·上海嘉定·高二上海市嘉定区第一中学校考期中)已知A 、B 、C 为△ABC 的三个内角,有如下命题:①若△ABC 是钝角三角形,则tan A +tan B +tan C <0;②若△ABC 是锐角三角形,则cos A +cos B <sin A +sin B ;③若G 、H 分别为△ABC 的外心和垂心,且AB =1,AC =3,则HG ⋅BC =4;④在△ABC 中,若sin B =25,tan C =34,则A >C >B ,其中正确命题的序号是___________.【答案】①②③④【解析】对于①,若△ABC 是钝角三角形,由tan C =-tan (A +B )=-tan A +tan B1-tan A tan B得tan A +tan B +tan C =tan A tan B tan C <0,故①正确,对于②,若△ABC 是锐角三角形,则A +B >π2,有0<π2-B <A <π2且0<π2-A <B <π2,则cos B =sin π2-B<sin A ,同理得cos A <sin B ,故cos A +cos B <sin A +sin B ,故②正确,对于③,由HG ⋅BC =(AG -AH )⋅BC =AG ⋅(AC -AB )=12(AC 2-AB 2)=4,故③正确,对于④,若sin B =25,tan C =34,则sin C =35,sin B <sin C <22,则B <C <π4,故A >π2>C >B ,故④正确,故答案为:①②③④25.(2023秋·天津南开·高三南开大学附属中学校考开学考试)在△ABC 中,AB =3,AC =5,点N 满足BN =2NC ,点O 为△ABC 的外心,则AN ⋅AO 的值为__________.【答案】596【解析】分别取AB ,AC 的中点E ,F ,连接OE ,OF ,因为O 为△ABC 的外心,∴OE ⊥AB ,OF ⊥AC ,∴AB ⋅OE =0,AC ⋅OF =0,∵BN =2NC ,∴BN =23BC ,∴AN =AB +BN =AB +23BC =AB +23(AC -AB )=13AB +23AC ,∴AO ⋅AB =12AB +EO ⋅AB =12AB 2=92,AO ⋅AC =12AC +FO ⋅AC =12AC 2=252,∴AN ⋅AO =13AB +23AC ⋅AO =13AB ⋅AO +23AC ⋅AO =13×92+23×252=596故答案为:59626.(2023·全国·高三专题练习)已知G 为△ABC 的内心,且cos A ⋅GA +cos B ⋅GB +cos C ⋅GC =0 ,则∠A =___________.【答案】π3【解析】首先我们证明一个结论:已知O 是△ABC 所在平面上的一点,a ,b ,c 为△ABC 的三边长,若a ⋅OA +b ⋅OB +c ⋅OC =0 ,则O 是△ABC 的内心.证明:OB =OA +AB ,OC =OA +AC ,则a ⋅OA +b ⋅OB +c ⋅OC =0 ⇔(a +b +c )⋅OA +b ⋅AB +c ⋅AC =0 ,等式两边同时除以a +b +c 得,AO =bc a +b +c AB |AB |+AC |AC | ,AB |AB |表示AB 方向上的单位向量,同理AC |AC |表示AC 方向上的单位向量,则由平行四边形定则可知bc a +b +c AB |AB |+AC |AC |表示∠BAC 的角平分线方向上的向量,则AO 为∠BAC 的角平分线,同理BO 、CO 分别为∠ABC ,∠ACB 的角平分线,所以O 是△ABC 的内心.于是我们得到本题的一个结论aGA +bGB +cGC =0 .又∵cos A ⋅GA +cos B ⋅GB +cos C ⋅GC =0 ,∴由正弦定理与题目条件可知sin A :sin B :sin C =a :b :c =cos A :cos B :cos C .由sin A :sin B =cos A :cos B 可得sin A cos B -cos A sin B =sin (A -B )=0,可得A =B ,同理可得B =C ,C =A ,即A =B =C =π3.故答案为:π3.27.(2023·全国·高三专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为______.【答案】3-32【解析】延长AO 交BC 于D ,设BC 与圆O 相切于点E ,AC 与圆O 相切于点F ,则OE =OF ,则OE ≤OD ,设AD =λAO =λxAB +λyAC ,因为B 、C 、D 三点共线,所以λx +λy =1,即x +y =1λ=AO AD =AO AO +OD ≤AO AO +OE =11+OE OA =11+OF OA=11+sin A 2,因为cos A =1-2sin 2A 2=13,0<A <π,0<A 2<π2,所以sin A 2=33,所以x +y ≤11+33=3-32.故答案是:3-3228.(2023·全国·高三专题练习)设I 为△ABC 的内心,若AB =2,BC =23,AC =4,则AI ⋅BC =___________【答案】6-23【解析】解法1:不难发现,△ABC 是以B 为直角顶点的直角三角形,如图,设圆I 与AB 、AC 、BC 分别相切于点D 、E 、F ,设圆I 的半径为r ,则ID =IE =IF =r ,显然四边形BDIF 是正方形,所以BD =BF =r ,从而AD =2-r ,CF =23-r ,易证AE =AD ,CE =CF ,所以AE =2-r ,CE =23-r ,故AE +CE =2+23-2r =AC =4,从而r =3-1,AD =2-r =3-3,AI ⋅BC =AI ⋅AC -AB =AI ⋅AC -AI ⋅AB =AI ⋅AC ⋅cos ∠IAC -AI ⋅AB ⋅cos ∠IAB=AE ⋅AC -AD ⋅AB =AD AC -AB =2AD =6-23.故答案为:6-23.解法2:按解法1求得△ABC 的内切圆半径r =3-1,由图可知AI在BC 上的投影即为3-1,所以AI ⋅BC =3-1 ×23=6-23.故答案为:6-23.。
专题:平面向量中三角形“四心”问题题型总结在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,而且培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍:1.“四心”的概念与性质(1)重心:三角形三条中线的交点叫重心.它到三角形顶点距离与该点到对边中点距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA +GB +GC =0或PG =13(PA +PB +PC )(其中P 为平面内任意一点).反之,若GA +GB +GC =0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33. (2)垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA ·HB =HB ·HC =HC ·HA 或HA 2+BC 2=HB 2+CA 2=HC 2+AB 2.反之,若HA ·HB =HB ·HC =HC ·HA ,则H 是△ABC 的垂心.(3)内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC |·IA +|CA |·IB +|AB |·IC =0.反之,若|BC |·IA +|CA |·IB +|AB |·IC =0,则点I 是△ABC 的内心.(4)外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA +OB )·BA =(OB +OC )·CB =(OC +OA )·AC =0或|OA |=|OB |=|OC |.反之,若|OA |=|OB |=|OC |,则点O 是△ABC 的外心.2.关于“四心”的典型例题[例1] 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________心.[解析] 由原等式,得OP -OA =λ(AB +AC ),即AP =λ(AB +AC ),根据平行四边形法则,知AB +AC 是△ABC 的中线所对应向量的2倍,所以点P 的轨迹必过△ABC 的重心.[答案] 重[点评] 探求动点轨迹经过某点,只要确定其轨迹与三角形中的哪些特殊线段所在直线重合,这可从已知等式出发,利用向量的线性运算法则进行运算得之.[例2] 已知△ABC 内一点O 满足关系OA +2OB +3OC =0,试求S △BOC ∶S △COA ∶S △AOB 之值.[解] 延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1,如图所示,则1OB =2OB ,1OC =3OC ,由条件,得OA +1OB +1OC =0,所以点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积,所以S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S . 于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3. [点评] 本题条件OA +2OB +3OC =0与三角形的重心性质GA +GB +GC =0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.[引申推广] 已知△ABC 内一点O 满足关系λ1OA +λ2OB +λ3OC =0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3.[例3] 求证:△ABC 的垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[证明] 对于△ABC 的重心G ,易知OG =OA +OB +OC 2,对于△ABC 的垂心H ,设OH =m (OA +OB +OC ),则 AH =AO +m (OA +OB +OC )=(m -1) OA +m OB +m OC .由AH ·BC =0,得[(m -1) OA +m OB +m OC ](OC -OB )=0,(m -1) OA ·(OC -OB )+m (OC 2-OB 2)=0, 因为|OC |=|OB |,所以(m -1) OA ·(OC -OB )=0.但OA 与BC 不一定垂直,所以只有当m =1时,上式恒成立.所以OH =OA +OB +OC ,从而OG =13OH ,得垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[引申推广]重心G 与垂心H 的关系:HG =13(HA +HB +HC ). [点评] 这是著名的欧拉线,提示了三角形的“四心”之间的关系.我们选择恰当的基底向量来表示它们,当然最佳的向量是含顶点A 、B 、C 的向量.[例4] 设A 1,A 2,A 3,A 4,A 5 是平面内给定的5个不同点,则使1MA +2MA +3MA +4MA +5MA =0成立的点M 的个数为( )A .0B .1C .5D .10[解析] 根据三角形中的“四心”知识,可知在△ABC 中满足MA +MB +MC =0的点只有重心一点,利用类比的数学思想,可知满足本题条件的点也只有1个.[答案] B[点评] 本题以向量为载体,考查了类比与化归,归纳与猜想等数学思想.本题的详细解答过程如下:对于空间两点A ,B 来说,满足MA +MB =0的点M 是线段AB 的中点;对于空间三点A ,B ,C 来说,满足MA +MB +MC =0,可认为是先取AB 的中点G ,再连接CG ,在CG 上取点M ,使MC =2MG ,则M 满足条件,且唯一;对于空间四点A ,B ,C ,D 来说,满足MA +MB +MC +MD =0,可先取△ABC 的重心G ,再连接GD ,在GD 上取点M ,使DM =3MG ,则M 满足条件,且唯一,不妨也称为重心G ;与此类似,对于空间五点A ,B ,C ,D ,E 来说,满足MA +MB +MC +MD +ME =0,可先取空间四边形ABCD 的重心G ,再连接GE ,在GE 上取点M ,使EM =4MG ,则M 满足条件,且唯一.。
平面向量与三角形的四心一、三角形的心(在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c )1.三角形的外心(Circumcenter ):三角形三条边的垂直平分线相交于一点,它是这个三角形外接圆的圆心,即外心.①外心到三顶点的距离相等,即|OA →|=|OB →|=|OB →|; ②外接圆半径R =a 2sin A =b 2sin B =c 2sin C =abc4S △ABC,直角三角形的外接圆半径R =c2(c 为斜边长);③AO →·BC →=12(b 2-c 2).2.三角形的内心(Incenter ):三角形三条内角平分线交于一点,这一点到这个三角形的三边的距离相等,是这个三角形的内切圆的圆心,即内心.①内切圆半径r =2S △ABC a +b +c=S △ABCp =(p -a )(p -b )(p -c )p ,Rr =abc2(a +b +c ),(其中R 为△ABC 外接圆半径,p =a +b +c2),直角三角形的内切圆半径r =a +b -c 2=aba +b +c(其中c 为斜边长,a 、b 为直角边长);② a IA →+b IB →+c IC →=0→; ③ID IA =a b +c ,IE IB =b c +a ,IF IC =c a +b. 3.三角形的重心:三角形三条中线相交于一点,它是这个三角形的重心.①GD GA =GE GB =GF GC =12,AD =122b 2+2c 2-a 2,BE =122c 2+2a 2-b 2,CF =122a 2+2b 2-c 2; ② S △GBC =S △GCA =S △GAB ,重心G 到三条边的距离与三条边的长成反比;③重心G 的坐标为(x 1+x 2+x 33,y 1+y 2+y 33);④GA →+GB →+GC →=0→; ⑤AG →·BC →=13(b 2-c 2).4.三角形的垂心(Orthocenter ):三角形三条高或其所在的直线的交点叫做这个三角形的垂心,锐角三角形的垂心在三角形内,直角三角形的垂心在直角顶点,钝角三角形的垂心在三角形外.BDBC二、三角形的心与向量的关系 1、三角形四心与各个顶点的关系⑴|OA →|=|OB →|=|OB →|; ⑵a IA →+b IB →+c IC →=0→⑶GA →+GB →+GC →=0→; ⑷HA →·HB →=HB →·HC →=HC →·HA → 2、轨迹经过三角形的外心、内心、重心、垂心 若O 是平面ABC 内的一定点,那么⑴若OP →=OA →+λ (AB →+AC →) (λ∈R ),则点P 的轨迹经过△ABC 的重心; ⑵若OP →=OA →+λ (AB →—|AB →|+AC →—|AC →|) (λ∈R ),则点P 的轨迹经过△ABC 的内心;⑶若OP →=OA →+λ (AB →—|AB →|cos B +AC →—|AC →|cos C ) (λ∈R ),则点P 的轨迹经过△ABC 的垂心; ⑷若OP →=OB →+OC →2+λ (AB →—|AB →|cos B +AC →—|AC →|cos C ) (λ∈R ),则点P 的轨迹经过△ABC 的外心;⑸若AP →·AB →—|AB →|=AP →·AC →—|AC →|,则点P 的轨迹经过△ABC 的内心. 4、当O 是△ABC 的各心时有下列结论:⑴若O 是重心,则OA →+OB →+OC →=0→,反之亦然; ⑵若O 是内心,则a OA →+b OB →+c OC →=0→,反之亦然;⑶若O 是外心,则sin2A OA →+sin2B OB →+sin2C OC →=0→,反之亦然; ⑷若O 是垂心,则tan A OA →+tan B OB →+tan C OC →=0→,反之亦然; 三、三角形的重要线段及面积 1、若AD 是△ABC 的中线,则⑴AD →=12(AB →+AC →);拓展,若点D 在BC 边上,BD :DC =m ;n ,则AD →=n m +n AB →+m m +n AC →⑵AB 2+AC 2=2(BD 2+AD 2),或AD =122b 2+2c 2-a 2;2、若AD 为∠A 的平分线,则⑴BD DC =AB AC ;⑵AD →= (→AB —|AB →|+→AC—|AC →|). 3、若AD 是BC 边上的高,则AD →·BC →=04、三角形面积S △=12ab sin C =p (p -a )(p -b )(p -c )=2R 2sin A sin B sin C =abc4R【练习题】1.(09海南宁夏)已知O ,N ,P 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0→,且P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( C ) A. 重心、外心、垂心 B. 重心、外心、内心C. 外心、重心、垂心D. 外心、重心、内心(注:三角形的三条高线交于一点,此点为三角型的垂心)2.(2010湖北)已知△ABC 和点M 满足MA →+MB →+MC →=0→.若存在实数m 使得AB →+AC →=m AM →成立,则m = ······························································································· ( B )A .2B .3C .4D .53.(2010全国Ⅱ)△ABC 中,点D 在AB 上,CD 平分∠ACB .若CB →=a →,CA →=b →,|a →|=1,|b →|=2,则CD →= ···························································································· ( A )A. 13a →+23b → B. 23a →+13b → C. 35a →+45b → D. 45a →+35b → 4.(2005年全国I 文科)点O 是△ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的 ············································································· ( D ) A. 三个内角的角平分线的交点 B. 三条边的垂直平分线的交点C. 三条中线的交点D. 三条高的交点5.(2012年大纲)△ABC 中,AB 边上的高为CD ,若CB →=a →,CA →=b →,a →·b →=0,|a→|=1,|b →|=2,则AD →= ··························································································· ( D )A .13a →-13b →B . 23a →-23b →C .35a →-35b →D .45a →-45b →6.(2005年全国I 理科)△ABC 的外接圆的圆心为O ,两条边上的高的交点为H , OH →=m (OA →+OB →+OC →),则实数m = ;【1】7. (2014全国1高考理15)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB→与AC →的夹角为 .【90 】8.给定直线l :y =2x -16,抛物线C :y 2=ax (a >0). ⑴当抛物线C 的焦点在直线l 上时,求抛物线的方程;⑵若△ABC 的三个顶点在⑴确定的抛物线上,且点A 的纵坐标y A =8,△ABC 的重心恰好时抛物线的焦点,求直线BC 的方程.【简答】⑴y 2=32x ;⑵4x +y -40=09.(北京2002年理科数学第21题)已知O (0,0),B (1,0),C (b ,c )是△OBC 的三个顶点.⑴写出△OBC 的重心G ,外心F ,垂心H 的坐标,并证明G 、F 、H 三点共线; ⑵当直线FH 与OB 平行时,求顶点C 的轨迹.。
平面向量三角形四心(有详解)平面向量三角形四心(有详解)平面向量是数学中的重要概念,可以用来表示空间中的点、线、面等几何对象。
在平面向量的运算和应用中,三角形是常见的几何形状之一。
本文将介绍平面向量与三角形四心的关系,并详细解析其性质和应用。
1. 三角形的四心概述三角形的四心是指三角形内部的四个特殊点,包括重心、外心、内心和垂心。
这四个点有着各自的特点和性质,对于研究三角形的形状和性质非常重要。
1.1 重心三角形的重心是三条中线的交点,即三角形三个顶点与对应中点的连线交于一点。
重心在三角形中心位置,对称性较强,具有重要的几何意义。
1.2 外心三角形的外心是外接圆的圆心,即三角形三个顶点的垂直平分线的交点。
外心离三角形各顶点的距离相等,是三角形的外接圆的圆心。
1.3 内心三角形的内心是内切圆的圆心,即三角形三条边的角平分线的交点。
内心到三角形三边的距离相等,是三角形的内切圆的圆心。
1.4 垂心三角形的垂心是三条高线的交点,即三角形三个顶点与对边垂线的交点。
垂心所在的直线被称为垂心线,与三角形的三条边垂直。
2. 平面向量与四心关系的性质平面向量与三角形的四心之间具有一些重要的几何性质和关系,下面将分别介绍。
2.1 重心与向量以三角形的重心为原点建立直角坐标系,三角形三个顶点的位置向量相对于重心的位置向量之和为零。
即,三角形三个顶点的位置向量和为零向量。
2.2 外心与向量三角形的三个顶点为A、B、C,以外心O为原点建立直角坐标系。
则三角形顶点A、B、C的位置向量之和等于三倍的外心O的位置向量。
即,OA + OB + OC = 3OO。
2.3 内心与向量设三角形的内心为I,以内心I为原点建立直角坐标系。
则三角形三个顶点的位置向量与对边的位置向量之和分别为倍数的内心I的位置向量。
即,AI + BI = CI = 2II。
2.4 垂心与向量以三角形的垂心为原点建立直角坐标系,三角形三个顶点的位置向量与对边垂线的位置向量之和为零。
2023届高考专题——平面向量与三角形的“四心”一、三角形的“四心”(1)重心:三角形的三条中线的交点;O 是△ABC 的重心⇔OA →+OB →+OC →=0;(2)垂心:三角形的三条高线的交点;O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →;(3)外心:三角形的三条边的垂直平分线的交点(三角形外接圆的圆心).O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2);(4)内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心);O 是△ABC 的内心⇔OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|=0. 注意:向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线).类型一 平面向量与三角形的“重心”问题例1 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( C )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点 [解析] 取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], ∴OP →=13[2(1-λ)OD →+(1+2λ)OC →] =21-λ3OD →+1+2λ3OC →, 而21-λ3+1+2λ3=1,∴P ,C ,D 三点共线, ∴点P 的轨迹一定经过△ABC 的重心.类型二 平面向量与三角形的“外心”问题例2 设P 是△ABC 所在平面内一点,若AB →·(CB →+CA →)=2AB →·CP →,且AB →2=AC →2-2BC →·AP →,则点P 是△ABC 的( A )A .外心B .内心C .重心D .垂心[解析] 由AB →·(CB →+CA →)=2AB →·CP →,得AB →·(CB →+CA →-2CP →)=0,即AB →·[(CB →-CP →)+(CA →-CP →)]=0,所以AB →·(PB →+PA →)=0.设D 为AB 的中点,则AB →·2PD →=0,故AB →·PD →=0.由AB →2=AC →2-2BC →·AP →,得(AB →+AC →)·(AB →-AC →)=-2BC →·AP →,即(AB →+AC →-2AP →)·BC →=0.设E 为BC 的中点,则(2AE →-2AP →)·BC →=0,则2PE →·BC →=0,故BC →·PE →=0.所以P 为AB 与BC 的垂直平分线的交点,所以P 是△ABC 的外心.故选A .跟踪练习在△ABC 中,O 为其外心,OA ―→·OC ―→=3,且 3 OA ―→+7OB ―→+OC ―→=0,则边AC 的长是________.[解析] 设△ABC 外接圆的半径为R ,∵O 为△ABC 的外心,∴|OA ―→|=|OB ―→|=|OC ―→|=R ,又 3 OA ―→ +7 OB ―→+OC ―→=0,则 3 OA ―→+OC ―→=-7OB ―→,∴3OA ―→2+OC ―→2+2 3OA ―→·OC ―→=7OB ―→2,从而OA ―→·OC ―→=32R 2,又OA ―→·OC ―→=3,所以R 2=2,又OA ―→·OC ―→=|OA ―→||OC ―→|cos ∠AOC =R 2cos ∠AOC =3,∴cos ∠AOC =32,∴∠AOC =π6,在△AOC 中,由余弦定理得AC 2=OA 2+OC 2-2OA ·OC ·cos∠AOC =R 2+R 2-2R 2×32=(2-3)R 2=4-23.所以AC =3-1. 类型三 平面向量与三角形的“垂心”问题例3 (2022·济南质检)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,点P 满足OP ―→=OA ―→+λ⎝⎛⎭⎪⎪⎫AB―→|AB ―→|cos B +|AC ―→||AC ―→|cos C ,则动点P 的轨迹一定通过△ABC 的( )A .重心B .外心C .垂心D .内心 [解析] OP ―→-OA ―→=λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|cos B +AC ―→|AC ―→|cos C ,AP ―→=λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|cos B +AC ―→|AC ―→|cos C ,BC ―→·AP ―→=λ⎝ ⎛⎭⎪⎪⎫BC ―→·AB ―→|AB ―→|cos B +BC ―→·AC ―→|AC ―→|cos C =λ⎝⎛⎭⎪⎪⎫|BC ―→||AB ―→|cos π-B |AB ―→|cos B +|BC ―→||AC ―→|cos C |AC ―→|cos C =λ(-|BC ―→|+|BC ―→|)=0,所以BC ―→⊥AP ―→,动点P 在BC 的高线上,动点P 的轨迹一定通过△ABC 的垂心,故选C .类型四 平面向量与三角形的“内心”问题例4 在△ABC 中,|AB →|=3,|AC →|=2,AD →=12AB →+34AC →,则直线AD 通过△ABC 的( D ) A .重心B .外心C .垂心D .内心[解析] ∵|AB →|=3,|AC →|=2,∴12|AB →|=34|AC →|=32.设AE →=12AB →,AF →=34AC →,则|AE →|=|AF →|.∵AD →=12AB →+34AC →=AE →+AF →,∴AD 平分∠EAF , ∴AD 平分∠BAC ,∴直线AD 通过△ABC 的内心.跟踪练习(2022·海南模拟)在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP ―→=x OB ―→+y OC ―→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( )A .1063B .1463C .4 3D .6 2 [解析] 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 二、三角形形状的判断在△ABC 中,①若|AB →|=|AC →|,则△ABC 为等腰三角形;②若AB →·AC →=0,则△ABC 为直角三角形;③若AB →·AC →<0,则△ABC 为钝角三角形;④若AB →·AC →>0,BA →·BC →>0,且CA →·CB →>0,则△ABC 为锐角三角形;⑤若|AB →+AC →|=|AB →-AC →|,则△ABC 为直角三角形;⑥若(AB →+AC →)·BC →=0,则△ABC 为等腰三角形.例5 (2022·驻马店质检)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( C )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形 [解析] 由题意知CB →·(AB →+AC →)=0.所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形,故选C .〔变式训练4〕(1)若P 为△ABC 所在平面内一点.①若(OP →-OA →)·(AB →-AC →)=0,则动点P 的轨迹必过△ABC 的垂心.②若OP →=OA →+λ(AB →+AC →)(λ≥0),则动点P 的轨迹必过△ABC 的重心.③若CA →2=CB →2-2AB →·CP →,则动点P 的轨迹必过△ABC 的外心.(2)已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC 为( D )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形[解析] (1)①由题意知AP →·CB →=0,∴AP ⊥BC ,∴动点P 必过△ABC 的垂心;②由题意知AP →=λ(AB →+AC →)=2λAM →(M 为BC 中点)∴P 、A 、M 共线,∴P 必过△ABC 的重心;③2AB →·CP →=CB →2-CA →2=(CB →-CA →)·(CB →+CA →)=AB →·(CB →+CA →),即2AB →·CP →=AB →·(CB →+CA →),∴AB →·(2CP →-CB →-CA →)=AB →·(BP →+AP →)=0.∴以BP →,AP →为邻边的平行四边形的对角线互相垂直.∴点P 在线段AB 的中垂线上,∴P 必过△ABC 的外心.(2)因为非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又cos ∠BAC =AB →|AB →|·AC →|AC →|=12,所以∠BAC =π3.所以△ABC 为等边三角形.故选D .。
专题4.7:平面向量与三角形四心问题的研究与拓展
【探究拓展】
探究1:已知O 是△ABC 所在平面上一定点,动点P 满足:
(1
)OA OP ++=λ[0,)λ∈+∞,点P 形成的图形一定通过△ABC 的 心.
(填外心、内心、重心、垂心)
(2)sin sin AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝
⎭,[0,)λ∈
+∞点P 形成的图形一定通过△ABC 的_________心.
(3)++=λ,[0,)λ∈+∞点P 形成的图形一定通过△ABC 的_________
心.
探究2:已知ABC ∆的重心为O ,且332,5===AC BC AB ,,则______=⋅. 3
16- 变式1:已知ABC ∆的外心为O ,且332,5===AC BC AB ,
,则______=⋅ -8
变式
2:已知△ABC 的内角A 的大小为120
(1)若
AB =,求△ABC 的另外两条边长;
(2)设O 为△ABC
的外心,当BC =AO BC ⋅uuu r
uu u r 的值.
【解】(1
)
b CA ==BC a
= (2)由BC =22421b c ++=,即2216170b b
+-=,解得1b =或4.设BC 的中点为D ,则A O A D D O =+uuu r uuu r uuu r ,因为O 为△ABC 的外心,所以0DO BC ⋅=u u u r u u u r ,
于是()()
221b c AO BC AD BC AB AC AC AB -⋅=⋅=+⋅-=uuu r uu u r uuu r uu u r uu u r uuu r uuu r uu u r . 所以当1b =时,4c =,221522b c AO BC -⋅==-uuu r uu u r ;当4b =时,1c =,221522b c AO BC -⋅==uuu r uu u r . 拓展1:若O 点是ABC ∆内的外心, H 点是ABC ∆的垂心,且()OH m OA OB OC =++,求实数m 的值. 1 解:由()OH m OA OB OC =++,得()OH OA m OA OB OC OA -=++-,
于是(1)()HA m OA m OB OC =-++,(1)()HA BC m OA BC m OB OC BC =-++ 即(1)()()HA BC m OA BC m OB OC OC OB =-++-,
由题意,知0HA BC =,及()()0OB OC OC OB +-=,从而(1)0m OA BC -=,
其中0OA BC ≠,因此10,1m m -==即.
拓展2:已知ABC ∆的内心为O ,且332,5===AC BC AB ,,则______=⋅BC AO 法1:两次运用内角角平分线定理(将AO 进行向量的分解)
法2:可直接利用射影定理()(-⋅=⋅计算即可)
拓展3:c b a ,,是ABC ∆的C B A ∠∠∠,,所对的边,若点P 是ABC ∆内一点,BPC ∆、 APC ∆、APB ∆的面积分别为c b a S S S ,,,求证:=++S S S c b a .
思考1:当P 分别为ABC ∆重心、外心、内心时,分别可得到什么结论?
思考2:设P 是ABC ∆内任意一点,S △ABC 表示ABC ∆的面积,λ1=ABc PBC S S ∆∆, λ2=ABC PCA S S ∆∆, λ3=
ABC PAB S S ∆∆,定义f (P)=(λ1, λ, λ3),若G 是ABC ∆的重心,f (Q)=(21,31,61),则____________. A
A .点Q 在△GA
B 内 B .点Q 在△GB
C 内 C .点Q 在△GCA 内
D .点Q 与点G 重合 【专题反思】你学到了什么?还想继续研究什么?。