青岛版初中数学八年级上册《几何证明初步》单元测试卷练习题2
- 格式:pdf
- 大小:693.49 KB
- 文档页数:6
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、已知,四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③S△EDF=S△BCF.其中错误的说法有()A.0个B.1个C.2个D.3个2、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°3、如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.44、如图,A,B,C,D是⊙O上四个点,且弧AB=弧BC=弧CD,BA和CD的延长线相交于P,∠P=40°,则∠ACD的度数是()A.15°B.20°C.40°D.50°5、下列说法中错误的是()A.在中,若,则是直角三角形B.在中,若,则是直角三角形 C.在中,若,,的度数比是7:3:4,则是直角三角形 D.在中,若三边长,则是直角三角形6、下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与已知直线平行;④长方体是四棱柱;其中正确的有()A.1个B.2个C.3个D.4个7、如图,在中,,点在上,以点为圆心,为半径作,点恰好在上,是的切线,则的度数是()A.35°B.30°C.25°D.20°8、已知直线a∥b,将一副三角板按如图所示放置在两条平行线之间,则∠1的度数是A.45°B.60°C.75°D.80°9、如图,已知AB∥DE ,∠ABC=70°,∠CDE=140°,则∠BCD的值为()A.20°B.30°C.40°D.70°10、关于三角形,下列说法错误的是()A.三角形具有稳定性B.三角形任意两边之和大于第三边C.三角形的内角和是180°D.钝角三角形一定不是等腰三角形11、如图,在条件:①∠5=∠6,②∠7=∠2,③∠3+∠8=180°,④∠3=∠2,⑤∠4+∠1=180°中,能判定a∥b的条件有()A.4个B.3个C.2个D.1个12、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+ αC.D.360°﹣α13、如图,直线c与直线a、b相交,且a∥b,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中正确的个数为()A.0B.1C.2D.314、如图,AB∥CD,CB平分∠ECD交AB于点B,若∠ECD=60°,则∠B的度数为()A.25°B.30°C.35°D.40°15、如图,在△ABC中,∠B>90°,CD为∠ACB的角平分线,在AC边上取点E,使DE=DB,且∠AED>90°.若∠A=,∠ACB=,则()A. B. C.D.二、填空题(共10题,共计30分)16、“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA、OB组成.两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E在槽中滑动,若∠BDE=84°.则∠CDE是________ °.17、如图,中,,与分别是与的平分线,,.则的周长是________.18、如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠2=________度.19、如图,直线AB、CD相交于点E,DF∥AB.若∠D=65°,则∠AEC=________20、如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为________.21、如图,平分,,,则________.22、如图,,若和分别垂直平分和,则是________ 度.23、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=________.24、好久未见的A,B,C,D,E五位同学欢聚一堂,他们相互握手一次,中途统计各位同学握手次数为:A同学握手4次,B同学握手3次,C同学握手2次,D同学握手1次,那么此时E同学握手________次.25、如图,AB∥CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为________.三、解答题(共5题,共计25分)26、如图,E为△ABC的边BC上一点,D在BA的延长线上,DE交AC于点F,∠B=45°,∠C=30°,∠EFC=70°,求∠D的度数.27、如图,已知∠1=∠2,再添上什么条件可使AB∥CD成立?并就你添上的条件证明AB∥CD.28、上午8时,一条船从海岛A出发,以15n mile/h(海里/时,1 n mile/h=1852m)的速度向正北航行,10时到达海岛B处.从A,B望灯塔C,测得∠NAC=42°,∠NBC=84°.求从海岛B到灯塔C的距离.29、如图,∠CAB=100°,∠ABF=130°,AC∥MD,BF∥ME,求∠DME的度数.30、如图,已知∠EFC+∠BDC=180°,∠DEF=∠B,试判断DE与BC的位置关系,并说明理由.参考答案一、单选题(共15题,共计45分)1、A2、A3、C4、A5、D6、B7、C8、C9、B10、D11、A12、C13、D14、B15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,对于图中标记的各角,下列条件不能够推理得到a∥b的是( )A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠1+∠4=180°2、有理数数a,b在轴上的表示如图所示,则下列结论中:①ab<0,②a+b<0,③a﹣b<0,④a<,⑤﹣a>﹣b,正确的有()A.2个B.3个C.4个D.5个3、如图,直线m∥n,若∠1=30°,∠2=58°,则∠BAC的度数为()A.12°B.28°C.29°D.30°4、如图,直线a、b被直线c所截,下列说法正确的是()A. 当∠1=∠2时,一定有a∥bB. 当a∥b时,一定有∠1=∠2C. 当a∥b时,一定有∠1+∠2=180°D. 当a∥b时,一定有∠1+∠2=90°5、甲、乙、丙三位同学进行立定跳远比赛,每人轮流跳一次称为一轮,每轮按名次从高到低分别得3分、2分、1分(没有并列名次),他们一共进行了五轮比赛,结果甲共得14分;乙第一轮得3分,第二轮得1分,且总分最低.那么丙得到的分数是( )A.8分B.9分C.10分D.11分6、一副三角板按如图所示叠放在一起,则图中∠α的度数是()A.75°B.60°C.45°D.105°7、如图所示的图形中x的值是A.60B.40C.70D.808、如图,直线EF分别与直线AB,CD相交于点G、H,已知∠1=∠2=50°,GM平分∠HGB 交直线CD于点M.则∠3=()A.60°B.65°C.70°D.130°9、如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°10、如图所示,在下列四组条件中,能判定AB∥CD的是()A.∠1=∠2B.∠ABD=∠BDCC.∠3=∠4D.∠BAD+∠ABC=180°11、如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°12、下列说法正确的个数()在同一平面内:①两条射线不相交就平行;②过一点有且只有一条直线与已知直线垂直;③有公共顶点且相等的角是对顶角;④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A.0个B.1个C.2个D.3个13、在△ABC中,若∠A=∠B=∠C,那么△ABC是( )A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形14、如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.50°B.80°C.65°D.115°15、如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于( )A.144°B.126°C.108°D.72°二、填空题(共10题,共计30分)16、如图,四边形ABCD内接于⊙O,BC是⊙O的直径,AD∥BC,AC与BD相交于点P,若∠APB=50°,则∠PBC=________.17、如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.18、如图,在平行四边形ABCD中,DE平分∠ADC,AD=7,BE=2,则平行四边形ABCD的周长是________.19、如图钢架中,焊上等长的7根钢条来加固钢架,若,则的度数是________.20、两条平行直线被第三条直线所截,则:①一对同位角的角平分线互相平行;②一对内错角的角平分线互相平行;③一对同旁内角的角平分线互相平行;④一对同旁内角的角平分线互相垂直.其中正确的结论是________ .(注:请把你认为所有正确的结论的序号都填上)21、如图,直角三角尺的直角顶点在直线b上,∠3 = 25°,转动直线a,当∠1=________,时,a∥b22、如图,△ABC≌△ADE,BC的延长线经过点E,交AD于F,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠EAB= ________ °.23、已知长方形,点和点分别在和边上,如图将沿着折叠以后得到,与相交于点,与相交于点,则与的数量关系为________.24、如图,已知AF∥EC,AB∥CD,∠A=65°,则∠C=________度.25、如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,且∠A+∠ABC=90°,则∠PEF=________.三、解答题(共5题,共计25分)26、如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF过点O,且平行于BC,求∠BOC的度数.27、已知在中,是边上的一点,的角平分线交于点,且,求证:.28、如图Ⅰ,已知纸片中,,,将其折叠,如图Ⅱ,使点A与点B重合,折痕为,点D、E分别在、上,求的大小.29、如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)30、已知,射线分别和直线交于点,射线分别和直线交于点.点在上( 点与三点不重合).连接.请你根据题意画出图形并用等式直接写出、、之间的数量关系.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、C5、B6、D7、A8、B10、B11、B12、B13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件.B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖.C.“篮球队员在罚球线上投篮一次,投中”为随机事件.D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次.2、如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为()A.30°B.34°C.36°D.40°3、如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A.30°B.60°C.90°D.45°4、如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.2B.3C.4D.55、如图所示,已知l1∥l2,直线l与l1、l2分别相交于C、D两点,把一块含有30°角的三角板按如图位置摆放.若∠1=130°,则∠2=()A.60°B.50°C.30°D.20°6、如图,AB∥CD,∠D=30°,∠E=35°,则∠B的度数为()A.60°B.65°C.70°D.75°7、如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④8、如图,将三角尺的直角顶点放在直尺的一边,∠1=30°,∠2=70°,则∠3等于()A.20°B.30°C.40°D.50°9、如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.20°C.15°D.14°10、下列命题是真命题的是()A.内错角相等B.过一点有且只有一条直线与已知直线垂直C.同位角相等,两直线平行D.一个角的补角大于这个角11、如图,,,,则的度数为()A. B. C. D.12、下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为13、如图,直线m∥n,若∠1=30°,∠2=58°,则∠BAC的度数为()A.12°B.28°C.29°D.30°14、将—副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,直线a、b被直线c所截,,若∠2=50º,则∠1等于( )A.120 ºB.130 ºC.140 ºD.150 º2、如图,将直尺与含角的直角三角板放在一起,若,则的度数是()A. B. C. D.3、甲、乙、丙三位同学进行立定跳远比赛,每人轮流跳一次称为一轮,每轮按名次从高到低分别得3分、2分、1分(没有并列名次),他们一共进行了五轮比赛,结果甲共得14分;乙第一轮得3分,第二轮得1分,且总分最低.那么丙得到的分数是( )A.8分B.9分C.10分D.11分4、如图,把矩形ABCD沿EF对折,若,则等于()A.115°B.130°C.120°D.65°5、小亮为宣传“两会”,设计了形状如图所示的彩旗,图中∠ACB=90°,∠D=15°,点A在CD上,AD=AB,BC=2dm,则AD的长为()A.3dmB.4dmC.5dmD.6dm6、在△ABC中,已知∠A=∠B= ∠C,则三角形是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形7、如图,已知∠1 = 70º,如果CD∥BE,那么∠B的度数为()A.70ºB.100ºC.110ºD.120º8、如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数为()A.24°B.25°C.30°D.35°9、如图,直线,,,则的度数是()A. B. C. D.10、如图,在正方形的外侧,作等边三角形,则为()A.45°B.25°C.30°D.40°11、如图,直线,则的度数是().A.38°B.48°C.42°D.39°12、如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6B.7C.8D.913、如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=1,∠ABE=45°,则BC的长为()A. B.1.5 C. D.214、下列说法:①有理数的绝对值一定是正数;②两点之间的所有连线中,线段最短;③相等的角是对顶角;④过一点有且仅有一条直线与已知直线垂直;⑤不相交的两条直线叫做平行线,其中正确的有()A.1个B.2个C.3个D.4个15、O是△ABC中∠ABC和∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E 点,若BC=10cm,那么△ODE的周长为()A.8cmB.9cmC.10cmD.11cm二、填空题(共10题,共计30分)16、如图,在与中,AB、EF相交于点D,点F在边BC上,,,.下列结论:①;②;③中,正确的是________.(填序号)17、如图,直线EF分别与直线AB、CD相交于点P和点Q,已知:AB∥CD,∠1=∠2,求证:PG∥QH。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,在的边上取一点使,作于,作交于点,则与的关系是()A. B. C.D.2、如图,已知AB∥CD,∠DFE=130°,则∠ABE的度数为()A.40°B.50°C.60°D.130°3、如图,直线,若,,则的度数为()A. B. C. D.4、如图,已知AB∥EF,CD⊥BC,∠B=x°,∠D=y°,∠E=z°,则()A.x+y-z=90B.x-y+z=0C.x+y+z=180D.y+z- x =905、下列说法中正确的个数有()①三角形的三条高都在三角形内,且相交于一点;②三角形的中线都是过顶点平分对边的直线;③在△ABC中,若∠A=∠B=∠C,则△ABC一定是直角三角形;④三角形的一个外角大于与它不相邻的每个内角;A.0个B.1个C.2个D.3个6、下列四种说法:①三角形三个内角的和为360°;②三角形一个外角大于它的任何一个内角;③三角形一个外角等于它任意两个内角的和;④三角形的外角和等于360°. 其中正确说法的个数为()A.0B.1C.2D.37、如图,∠1=60º,∠2=60º,∠3=57º,则∠4=57º,下面是A,B,C,D四个同学的推理过程,你认为推理正确的是()A.因为∠1=60º=∠2,所以a∥b,所以∠4=∠3=57ºB.因为∠4=57º=∠3,所以a∥b,故∠1=∠2=60ºC.因为∠2=∠5,又∠1=60º,∠2=60º,故∠1=∠5=60º,所以a∥b,所以∠4=∠3=57ºD.因为∠1=60º,∠2=60º,∠3=57º,所以∠1=∠3=∠2-∠4=60º-57º=3º,8、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°9、一副三角板如图放置,点D在CB的延长线上,EF∥CD,∠C=∠EDF=90°,∠A=45°,∠EFD=30°,则∠DFB=( )A.15°B.20°C.25°D.30°10、下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个11、如图,在△ABC中,BE平分∠ABC交AC于点E,CD⊥AC交AB于点D,∠BCD=∠A,则∠BEA的度数( )A.155°B.135°C.108°D.100°12、如图,直线,点A在直线上,以点A为圆心,适当长度为半径画弧,分别交直线、于B、C两点,连结AC、BC.若,则的大小为()A. B. C. D.13、如图,已知AB∥CD,∠1=62°,则∠2的度数是()A.28°B.62°C.108°D.118°14、如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°15、如图所示,△ABC 中, AB=AC,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.60°B.65°C.70°D.75°二、填空题(共10题,共计30分)16、如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=________度.17、如图,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,则∠GFC=________度.18、如图,∠AOB=40°,OP平分∠AOB,点C为射线OP上一点,作CD⊥OA于点D,在∠POB的内部作CE∥OB,则∠DCE=________度.19、如图,AB∥CD,AD与BC交于点O,OP平分∠BOD,交CO的延长线于P,若∠A=100º,∠B=30º,则∠P的度数是________20、如图,AB∥CD,点P在CD上,且AP⊥BP,∠ABP=25°,则∠APC=________ 度.21、如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,则∠P的度数为________.22、如图,直线a,b被直线c,d所截.若,,,则的度数为________度.23、若一个等腰三角形的顶角等于40°,则它的底角等于________。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、下列命题正确的是( )A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等2、如图,已知BC是⊙O的直径,OA⊥BC于点O,点D在劣弧AC上(不与点A,C重合),BD与OA交于点E.已知∠AED=65°,则∠AOD=()A.40°B.35°C.32.5°D.30°3、如图①,在△ABC中,D,E分别是AB,AC的中点把△ADE沿线段DE向下折叠,使点A 落在BC上的点A'处,得到图②,则下列四个结论中,不一定成立的是( )A.DB=DAB.∠B+∠C+∠1=180°C.△ADE≌△A'DED.BA=CA4、如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B;④AD∥BE,且∠D=∠B.其中能说明AB∥DC的条件有()A.4个B.3个C.2个D.1个5、如图1是画平行线时,采用推三角尺的方法从如图1到如图2得到平行线,在平移三角尺画平行线的过程中,使用的数学原理是()A.同位角相等,两直线平行B.两直线平行,内错角相等C.两直线平行,同位角相等D.内错角相等,两直线平行6、用一把带有刻度的直角尺,①可以画出两条平行的直线a与b,如图(1);②可以画出∠AOB的平分线OP,如图(2);③可以检验工作的凹面是否成半圆,如图(3);④可以量出一个圆的半径,如图(4)。
上述四个方法中,正确的个数是()A.1个B.2个C.3个D.4个7、如图,AD平分∠BAC,点E在AB上,EF∥AC交AD于点G,若∠DGF=40°,则∠BAD的度数为()A.20°B.40°C.50°D.80°8、如图,AB是⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且CO=CD,则∠PCA=()A.30°B.45°C.60°D.67.5°9、下列命题中,真命题是()A.4的平方根是2B.同位角相等,两直线平行C.同旁内角互补 D.0没有立方根10、如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.80°B.50°C.30°D.20°11、如图,直线为直角,则等于()A. B. C. D.12、如图.己知AB∥CD,∠1=70°,则∠2的度数是()A.60°B.70°C.80°D.110°13、如图,将四边形纸片ABCD沿PR翻折得到三角形PC′R,恰好C′P∥AB,C′R∥AD.若∠B=120°,∠D=50°,则∠C=()A.85°B.95°C.90°D.80°14、张浩有红牌和蓝牌各75张,已知张浩能在一个摊位上用2张红牌换1张银牌和1张蓝牌,还能在另一个摊位上用3张蓝牌换1张银牌和1张红牌,若他按照上述方法继续换下去,直到手中的牌无法交换为止,则张浩手中最后有银牌()张A.62B.26C.102D.10315、如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于()A.5B.6C.7D.8二、填空题(共10题,共计30分)16、如图,BE平分∠ABC,CE平分∠ACD,∠A=60°,则∠E=________.17、如图所示,,AE平分∠BAC交BD于点E,若∠1=64°,则∠2的度数为________.18、如图,,射线CF交AB于E,,则的度数为________.19、等边三角形的两条中线所夹的锐角的度数为________20、在一次数学活动课上,老师让同学们用两个大小、形状都相同的三角板画平行线AB,CD,并说出自己做法的依据.小琛、小萱、小冉三位同学的做法如下:小琛说:“我的做法的依据是内错角相等,两直线平行.”小萱做法的依据是________.小冉做法的依据是________.21、如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是________.22、如图,在中,,的中垂线EF与的平分线交于点F,连结并延长,交于点D,若,则的度数是________.23、如图,在△ABC中,按以下步骤作图:①分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为________ .24、如图,请你添加一个条件使得AD∥BC,所添的条件是________.25、如图,把一块长方形纸条沿折叠,若,那么________度.三、解答题(共5题,共计25分)26、如图,在△ABC中,BE、CD相交于点E,∠A=76°,∠ACD=37°,∠2=143°.求:∠1和∠DBE的度数.27、如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=40°;(1)求∠BAE的度数;(2)求∠DAE的度数;(3)如果只知道∠B﹣∠C=40°,而不知道∠B,∠C的具体度数,你能得出∠DAE的度数吗?如果能求出∠DAE的度数.28、如图,已知:AC//FG,∠1=∠2,判断DE与FG的位置关系,并说明理由.29、如图,在△ABC中,CD=CA,CE⊥AD于点E,BF⊥AD于点F.求证:∠ACE=∠DBF.30、画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH.(2)判断EF、GH的位置关系是.(3)连接AC和BC,则三角形ABC的面积是.参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、B5、A6、D7、B8、D9、B10、D11、B12、D13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,过E作EG⊥EF于点E,交CD 于点G.若∠CFE=120°,则∠BEG的大小为()A.20°B.30°C.60°D.120°2、如果两条平行线被三条直线所截,那么一对内错角的角平分线一定()A.互相平行B.互相垂直C.相交成锐角D.相交成钝角3、下列命题是真命题的是()A.相等的角是对顶角B.两直线被第三条直线所截,内错角相等 C.若m 2=n 2,则m=n D.有一角对应相等的两个菱形相似.4、如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5、如图,在中,平分交于点,过点作交于点,且平分,若,则的长为()A. B. C. D.6、下列四种说法,正确的是()A.对顶角相等B.射线AB与射线BA表示同一条射线C.两点之间,直线最短D.在同一平面内,不相交的两条线段必平行7、如图,为钝角三角形,将绕点逆时针旋转130°得到,连接,若,则的度数为()A.75°B.85°C.95°D.105°8、在同一平面内,如果两条直线被第三条直线所截,那么()A.同位角相等B.内错角相等C.不能确定三种角的关系D.同旁内角互补9、如图,,=120º,平分,则等于()A.60ºB. 50ºC.30ºD. 35º10、如图,已知∠1=∠B,则下列结论不成立的是()A.AD∥BCB.∠B=∠CC.∠2+∠B=180°D.∠1+∠2=180°11、如图在△ABC中,∠B=40°,∠C=70°,AD⊥BC于D,AE平分∠BAC交BC于E,则∠DAE等于( )A.15°B.20°C.35°D.70°12、如图,在中,,,垂直平分斜边,交于,是垂足,连接,若,则的长是A. B.4 C. D.613、如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50 ,则∠ABD+∠ACD的值为()A.60B.50C.40D.3014、下列命题,其中是真命题的是()A.相等的角是对顶角B.两点之间,垂线段最短C.图形的平移改变了图形的位置和大小D.三角形的一条中线能将三角形分成面积相等的两部分15、如图,AB∥CD,若∠2=135°,则∠1的度数是()A.30°B.45°C.60°D.75°二、填空题(共10题,共计30分)16、如图,在中,,,平分,交于点,若,则________.17、阅读下面解答过程,并填空或填理由.已知如下图,点E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H,∠A=∠D,∠1=∠2.试说明:∠B=∠C.解:∵∠1=∠2(已知)∠2=∠3(________)∴∠3=∠1(等量代换)∴AF∥DE(________)∴∠4=∠D(________)又∵∠A=∠D(已知)∴∠A=∠4(等量代换)∴AB∥CD(________)∴∠B=∠C(________).18、如图,在∆ABC中,∠ACB=900,∠B=150, DE垂直平分AB,交BC于点E,垂足为D,BE=6cm,则AC等于________.19、如图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为________.20、如图所示,在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E,若∠CAE=∠B+30°,则∠B=________度.21、如图,△ABC中,D,E分别在边AB,AC上,DE∥BC.若∠A=60°,∠B=70°,则∠AED的度数为________.22、如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.证明:∵∠A=∠F(已知)∴AC∥________,________∴∠D=∠1________又∵∠C=∠D(已知)∴∠1=________ ________∴BD∥CE ________23、在△ABC中,(cos A﹣)2+|tan B﹣1|=0,则∠C=________.24、如图,一束平行太阳光线照射到正五边形上,则∠1=________.25、如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D.若∠A=32°,则∠BCD=________°.三、解答题(共5题,共计25分)26、如图,在△ABC中,∠B=50°,AD平分∠CAB,交BC于D,E为AC边上一点,连接DE,∠EAD=∠EDA,EF⊥BC于点F.求∠FED的度数.27、如图,于点,点在上,且,是直角三角形吗?为什么?28、狮子在星期一、二、三说谎.独角兽在星期四、五、六说谎.其余的日子,它们讲真话.森林之子问狮子:“今天是星期几?”狮子说:“昨天是我说谎的日子.”他又问独角兽,独角兽也说:“昨天是我说谎的日子”,你知道今天是星期几吗?29、如图,在中,点、、分别在边、、上,且,,若,求的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:已知▲▲▲30、如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D 在GH上,求∠BDC的度数.参考答案一、单选题(共15题,共计45分)2、A3、D4、D5、B6、A7、D8、C9、C10、B11、A12、D13、C14、D15、B二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
八年级上册数学单元测试卷-第5章几何证明初步-青岛版(含答案)一、单选题(共15题,共计45分)1、a、b、c为同一平面内的三条直线,若a与b不平行,b与c不平行,那么下列判断正确的是()A.a与c一定不平行B.a与c一定平行C.a与b互相垂直 D.a与c可能相交或平行2、如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cmB.8cmC.6cmD.4cm3、如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.19°B.38°C.42°D.52°4、将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105°D.120°5、如图,下列条件中能判定AB∥CD的是()A.∠1=∠2B.∠2=∠4C.∠1=∠3D.∠B+∠BCD=180°6、如图,将□ABCD的一边BC延长至点E,若∠A=110°,则∠1等于()A.110°B.35°C.70°D.55°7、已知△ABC中,∠A=80°,∠B,∠C的平分线的夹角∠BOC是()A.130°B.50°C.100°D.60°8、如图,在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作MN∥BC交AB于点M,交AC于点N.若BM=2,CN=3,则MN的长为()A.10B.5.5C.6D.59、若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个 D.以上都不对10、如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=( )A.70°B.80°C.90°D.100°11、在等边三角形ABC中,边长为2,CD平分∠ACB,交AB于点D,DE∥BC,则△ADE的周长为()A.2B.2.5C.3D.412、如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1, B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=()A. B. C. D.13、如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A.105°B.115°C.125°D.135°14、一幅三角板,如图所示叠放在一起,则图中∠a的度数是( )A.75°B.60°C.65°D.55°15、如图,直线,AC⊥BC,AC交直线BC于点C,∠1=60°,则∠2的度数是().A.50°B.45°C.35°D.30°二、填空题(共10题,共计30分)16、如图所示,α=________度.17、如图,若B、D、F在AN上,C、E在AM上,且AB=BC=CD=ED=EF,∠A=20°,则∠FEB= ________18、如图,AB∥CD,CE平分∠BCD,∠B=36°,则∠DCE等于________.19、如图,已知,,,则的度数为________.20、如图,若∠B=40°,A、C分别为角两边上的任意一点,连接AC,∠BAC与∠ACB的平分线交于点P1,则∠P1=________,D、F也为角两边上的任意一点,连接DF,∠BFD与∠FDB的平分线交于点P2,…按这样规律,则∠P2016=________.21、如图,AD⊥BC 于 D,且 DC=AB+BD,若∠BAC=108°,则∠C 的度数是________度.22、如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠A=80°,则∠BOC=________.23、如图,在等腰△ABC中,AB=AC,∠A=360, BD⊥AC于点D,则∠CBD=________.24、如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②;③∠ADF=2∠ECD;④;⑤CE=DF.其中正确结论的序号是________.25、如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=________.三、解答题(共5题,共计25分)26、如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.27、如图,已知,试说明28、如图,在△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=72°,∠C=30°,求①∠BAE的度数;②∠DAE的度数;(2)探究:如果只知道∠B=∠C+42°,也能求出∠DAE的度数吗?若能,请你写出求解过程;若不能,请说明理由.29、如图:AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2等于多少度?30、如图,点D是△ABC的边BC上的一点,∠B=∠BAD=∠C,∠ADC=72°.试求∠DAC的度数.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、C5、D6、C7、A8、D9、B10、C11、C12、B13、C14、A15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,∠C=30°,∠ABC=100°,将△ABC绕点A顺时针旋转至△ADE(点B 与点D对应),连结BD,当BD平分∠ABC时,∠BAE的大小为( )A.130°B.135°C.140°D.145°2、如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°3、如图,ABCD为一长方形纸带,AB∥CD,将ABCD沿EF折,A,D两点分别与对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°4、a,b,c为平面内不同的三条直线,若要a∥b,条件不符合的是()A.a∥c,b∥cB.a⊥c,b⊥cC.a⊥c,b∥cD.c截a,b所得的内错角的邻补角相等5、如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是()A.20°B.30°C.35°D.40°6、如图,在平行四边形中,,E为垂足.如果,则()A. B. C. D.7、如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E的度数是()A.20°B.30°C.50°D.70°8、如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为()A.50°B.60°C.70°D.80°9、如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100°B.90°C.80°D.70°10、将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A.30°B.45°C.50°D.60°11、甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是()A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边12、如图,纸片对边AB∥CD,将纸片沿着EF折叠,DF的对应边D'F交AB于点G,FH平分∠CFD'交AC于点H。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件()A.AB=DCB.∠1=∠2C.AB=ADD.∠D=∠B2、如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.66°D.56°3、在平行四边形ABCD中,若∠A∶∠B=5∶4,则∠C的度数为()A.80°B.120°C.100°D.110°4、如图,已知∠1 = 70º,如果CD∥BE,那么∠B的度数为()A.70ºB.100ºC.110ºD.120º5、如图,直线a∥b,将含有45°的三角板ABC的直角顶点C放在直线b上,若∠1=27°,则∠2的度数是()A.10°B.15°C.18°D.20°6、如图,直线l1∥l2,∠1=62°,则∠2的度数为()A.152°B.118°C.28°D.62°7、下列说法正确的是( )A. 表示的积B.任何有理数的偶次方都是正数C.一个数的平方是,这个数一定是D. 与互为相反数8、如图,给出了过直线外一点画已知直线的平行线的方法,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等9、如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是()A.同位角相等,两直线平行B.两直线平行,同位角相等C.经过直线外一点,有且只有一条直线与这条直线平行D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行10、下列说法错误的是( )A.边长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形全等D.形状和大小完全相同的两个三角形全等11、小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多12、如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④13、有三位同学对校队与市队足球赛进行估计,A说:校队至少进3个球,B说:校队进球数不到5个,C说:校队至少进1个球.比赛后,知道3个人中,只有1个人的估计是对的,你能知道,校队踢进球的个数是()A.4个B.3个C.2个D.0个14、用反证法证明命题“一个三角形中至少有一个角不小于60度”,应先假设这个三角形中()A.至多有两个角小于60度B.都小于60度C.至少有一个角是小于60度D.都大于60度15、小聪将一副直角三角尺如图所示的方式摆放在一起,其中,,, ,则()A.180°B.210°C.150°D.240°二、填空题(共10题,共计30分)16、已知一副三角板如图(1)摆放,其中两条斜边互相平行,则图(2)中∠1=________.17、如图,在△ABC中,∠B=38°,∠C=40°,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,则∠DAE= ________°.18、一艘货轮以18 km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.19、如图,EF∥CD,∠1+∠2=180°,试判断AC与DG的位置关系,并填空.答:AC∥DG.理由如下:∵EF∥CD(已知)∴∠1+∠ECD=180°(________)又∵∠1+∠2=180°(已知),∴∠2=________.(同角的补角相等)∴AC∥DG.(________)20、如图,已知等腰△ABC中,AB=AC,∠BAC=36°,若以B为圆心,BC长为半径画弧,交腰AC于点E,则图中等腰三角形有________个.21、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=25°,那么∠2的度数是________.22、如图,在长方形中,比大,则的度数为________(用度分秒形式表示).23、如图,在△ABC中,D在边AC上,如果AB=BD=DC,且∠C=40°,那么∠A=________°.24、如图,和关于直线对称,,,则________.25、已知直线,用一块含30°角的直角三角板按图中所示的方式放置,若,则________.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、一个零件的形状如图所示,按规定∠A应等于1200,∠B、∠D应分别为150、200.李叔叔量得∠BCD=1450,就能断定该零件不合格,你能说出其中的道理吗?28、如图所示,在△ABC中,BE=CE,∠C=70°,以AB为直径的半圆分别交AC、BC于点D,E,O为圆心,求∠DOE的度数.29、如图,,求证:.30、已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、C5、C6、D7、D8、A9、A10、C11、B12、D13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、一幅三角板,如图所示叠放在一起,则图中的度数为()A.75°B.60°C.65°D.55°2、如图,≌,,点A,D,E在同一条直线上,,则的度数是()A. B. C. D.3、下列说法中正确的是()A.如果两条直线被第三条直线所截,那么同旁内角互补B.垂线段最短 C.垂直于同一条直线的两条直线平行 D.如果a =b ,那么a =b4、如图,在中,点是内一点,且点到三边的距离相等.若,则的度数为()A. B. C. D.5、下列说法正确的是()A.两点确定一条直线B.不相交的两条直线叫做平行线C.过一点有且只有一条直线与已知直线平行D.两点间的距离是指连接两点间的线段6、如图,点A,B分别在直线a、b上,且直线a∥b,以点A为圆心,AB长为半径画弧交直线a于点C,连接BC,若∠2=67°,则∠1=()A.78°B.67°C.46°D.44°7、如图所示的图形中x的值是A.60B.40C.70D.808、布鲁斯先生、他的妹妹、他的儿子,还有他的女儿都是网球选手.这四人中有以下情况:①最佳选手的孪生同胞与最差选手性别不同:②最佳选手与最差选手年龄相同.则这四人中最佳选手是()A.布普斯先生B.布鲁斯先生的妹妹C.布鲁斯先生的儿子D.布鲁斯先生的女儿9、已知:如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,则∠A的度数是()A.30°B.36°C.45°D.50°10、命题“垂直于同一条直线的两条直线互相平行”的条件是()A.如果两条直线垂直于同一条直线B.两条直线互相平行C.两条直线互相垂直D.两条直线垂直于同一条直线11、如图,若m∥n,∠1=105 o,则∠2=()A.55 oB.60 oC.65 oD.75 o12、如下图,在△ABC中,AD平分外角∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A.50°B.65°C.80°D.95°13、如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°.则∠C等于( )A.40°B.65°C.75°D.115°14、小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°15、如图,直线a,b被直线c所截,已知已知a∥b,∠1=40°,则∠2的度数为()A.40°B.50°C.140°D.160°二、填空题(共10题,共计30分)16、如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2=________17、如图,为的直径,与相切于点,弦.若,则________.18、如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为________度.19、在一个平面内过直线l上一点A画l的平行线,能画出________条;过直线l上一点A画l的垂线,能画出________条.20、将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.21、如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(________)∴∠2=∠CGD(等量代换)∴CE∥BF(________)∴∠________=∠BFD(________)又∵∠B=∠C(已知)∴________(等量代换)∴AB∥CD(________)22、如图,直线l1∥l2, AB⊥l1,垂足为D,BC与直线l2相交于点C,若∠1=30°,则∠2=________.23、如图,矩形ABCD的顶点A、C分别在直线、上,且与平行,∠2=58°,则∠1的度数为________°24、如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1,∠A1BC 和∠A1CD的平分线交于点A2得∠A2,…,∠A2017BC和∠A2017CD的平分线交于点A2018,则∠A2018=________25、如图,把沿线段折叠,使点落在点处,,若∠A+∠B=110°,则=________.三、解答题(共5题,共计25分)26、如图,直线a∥b,△DCB中,AB与DC垂直,点A在线段BC上,直线b经过点C.若∠1=73°﹣∠B,求∠2的度数.27、如图,EF⊥GF于F.∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.28、如图,已知∠A=30°,∠B=40°,∠1=95°,求∠D的数.29、如图,在△ABC中,已知点D在线段AB的反向延长线上,AE是∠DAC的平分线,且AE ∥BC.求证:△ABC是等腰三角形.30、如图已知∠1=∠2,∠B=∠C,求证:AB∥CD.证明:∵∠1=∠2(已知),且∠1=∠4(),∴∠2=∠4 ().∴BF∥▲().∴∠▲=∠3 ().又∵∠B=∠C(已知),∴▲(等量代换).∴AB∥CD ().参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、A5、A6、C7、A8、D9、C10、D12、C13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、29、。
八年级上册数学单元测试卷-第5章几何证明初步-青岛版(含答案)一、单选题(共15题,共计45分)1、将一张矩形纸片折叠成如图所示的图形,若,则的度数是()A. B. C. D.2、甲乙丙丁四人的车分别为白色、银色、蓝色和红色.在问到他们各自车的颜色时,甲说:“乙的车不是白色.”乙说:“丙的车是红色的.”丙说:“丁的车不是蓝色的.”丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,那么以下说法正确的是:()A.甲的车是白色的,乙的车是银色的B.乙的车是蓝色的,丙的车是红色的C.丙的车是白色的,丁的车是蓝色的D.丁的车是银色的,甲的车是红色的3、如图,在△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 分别交AB、AC于M、N,则△AMN的周长为()A.10B.6C.4D.不确定4、如图,下列条件中能判定直线l1∥l2的是( )A.∠1=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠3=180°5、如图,AB=AC,∠A= ,AB的垂直平分线MN交AC于D,则∠DBC的度数()A. B. C. D.6、如图,已知AB∥CD,若∠E=15°,∠C=55°,则∠A的度数为()A.25°B.40°C.35°D.45°7、如图,直线,a,d是截线且交于点A,若,,则()A.40°B.50°C.60°D.70°8、如图,△ABC中,D、E分别是BC、AC边上一点,F是AD、BE的交点,CE=2AE,BF=EF,EN∥BC交AD于N,若BD=2,则CD长度为( )A.6B.7C.8D.99、如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,则∠ABD=()A.20°B.46°C.55°D.70°10、如图,点A,B,C在⊙O上,AB∥CO,∠B=22°,则∠A=( ).A.22°B.40°C.44°D.68°11、如图所示的图形中x的值是()。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图所示,下列说法中错误的是()A.∵∠A+∠ADC=180°,∴AB∥CDB.∵AB∥CD,∴∠ABC+∠C=180° C.∵∠1=∠2,∴AD∥BC D.∵AD∥BC,∴∠3=∠42、如图,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2B.∠2=2∠1C.180°﹣∠1﹣∠2D.180°﹣∠2+∠13、如图,已知锐角∠AOB,在射线OA上取一点C,以点O为圆心、OC长为半径作,交射线OB于点D,连结CD;分别以点C、D为圆心、CD长为半径作弧,两弧交于点P,连结CP、DP;作射线OP.若∠AOP=20°,则∠ODP的度数是()A.110°B.120°C.130°D.140°4、如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正确的有( )PACA.1个B.2个C.3个D.4个5、将一张矩形纸片折叠成如图所示的图形,若,则的度数是()A. B. C. D.6、如图,现将一块三角板含有角的顶点放在直尺的一边上,若,那么的度数为()A. B. C. D.7、如图,直线a,b被直线c所截,下列条件能使a//b的是( )A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠78、如图,直线a∥b,∠1=70°,那么∠2等于( )A.70°B.100°C.110°D.20°9、已知ΔABC中,∠A∶∠B∶∠C=3∶7∶8,则ΔABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能10、已知下列结论:①若,则互为相反数;②若,则且;③;④绝对值小于10的所有整数之和等于0;⑤3与-5是同类项.其中正确的结论有()个.A.2B.3C.4D.511、如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°12、如图,将一副直角三角板按如图方式叠放在一起,则∠α的度数是()A.150ºB.120ºC.165ºD.135º13、已知△ABC的三边分别为a.b、c,则下列条件中不能判定△ABC是直角三角形的是()A.b 2=a 2﹣c 2B.C.∠C=∠A﹣∠BD.∠A:∠B:∠C=3:4:514、下列命题中,假命题是( )A.一组邻边相等的平行四边形是菱形;B.一组邻边相等的矩形是正方形;C.一组对边相等且有一个角是直角的四边形是矩形;D.一组对边平行且另一组对边不平行的四边形是梯形.15、小明用计算器求了一些正数的平方,记录如下表.x15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 225 228.01 231.04 234.09 237.16 240.25 243.36 246.49 249.64 252.81 256下面有四个推断:①=1.51②一定有3个整数的算术平方根在15.5~15.6之间③对于小于15的两个正数,若它们的差等于0.1,则它们的平方的差小于3.01④16.22比16.12大3.23所有合理推断的序号是()A.①②B.③④C.①②④D.①②③④二、填空题(共10题,共计30分)16、AD是△ABC的一条高,如果∠BAD=65°,∠CAD=30°,则∠BAC=________.17、如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC的度数为________°.18、如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为________°.19、如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为________°.20、如图,在▱ABCD中,∠D=120°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为________.21、如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=________度.22、如图,在矩形中,E在延长线上,连接,交于点F,,若,,则的长为________.23、如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是________.24、如图,点B在∠ADE的边DA上,过点B作 DE的平行线 BC,如果∠D=49°,那么∠ABC的度数为 ________ .25、填空并完成推理过程.如图,E点为DF上的点,B点为AC上的点,∠1=∠2,∠C=∠D,试说明:AC∥DF.解:∵∠1=∠2,(已知)∠1=∠3(________)∴∠2=∠3,(等量代换)∴________∥________,(________)∴∠C=∠ABD,(________)又∵∠C=∠D,(已知)∴∠D=∠ABD,(________)∴AC∥DF.(________)三、解答题(共5题,共计25分)26、如图在四边形ABCD中,∠B=∠D=90°,AE、CF分别平分∠BAD和∠BCD.试问直线AE、CF的位置关系如何?请说明你的理由.27、如图①,将△ABC纸片沿DE折叠,使点A落F的位置,DF与BC交于点G,EF与BC交于点M,∠A=80°,求∠1+∠2的度数;28、如图,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P,试说明△EPF为直角三角形.29、如图,直线PQ、MN被直线EF所截,交点分别为A、C,AB平分∠EAQ,CD平分∠ACN,如果PQ∥MN,那么AB与CD平行吗?为什么?30、如图,已知BD为∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,CD与BD交于点D,试说明∠A=2∠D.参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、D5、D6、B7、B9、C10、B11、D12、C13、D14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、30、。
第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,已知直线AB与CD平行,直线EF与AB,CD分别交于点E,F,若∠1=125°,则∠2=( )A.65°B.55°C.50°D.45°2、如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD3、如图,在△ABC中,D是BC延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于( )A.90°B.80°C.70°D.60°4、下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容已知:如图,∠BEC=∠B+∠C求证:AB∥CD证明:延长BE交★于点F,则∠BEC=■+∠C(三角形的外角等于它不相等的内角之和)又∠BEC=∠B+∠C,得∠B=▲故AB∥CD(●相等,两直线平行).则回答错误的是( )A.★代表CDB.■代表∠EFCC.▲代表∠EFCD.●代表同位角5、如图,AB//CD,∠CDE=140,则∠A的度数为()A.140B.60C.50D.406、直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于()A.80°B.65°C.60°D.55°7、如图,下列四个条件中,能判断的是()A. B. C. D.8、如图,直线,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°9、用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是()A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°10、如图,直线∥,直线与直线、分别交于点A,点B,AC⊥AB于点A,交直线于点C.如果∠1 = 34°,那么∠2的度数为()A.34°B.56°C.66°D.146°11、用反证法证明:在一个三角形中至少有一个内角小于或等于60°.证明过程中,可以先()A.假设三个内角没有一个小于60°的角B.假设三个内角没有一个等于60°的角C.假设三个内角没有一个小于或等于60°的角D.假设三个内角没有一个大于或等于60°的角12、如图,在△ABC中,点D在边BA的延长线上,∠ABC的平分线和∠DAC的平分线相交于点M,若∠BAC=80°,∠C=60°,则∠M的大小为()A.20°B.25°C.30°D.35°13、如图,CD∥AB,BC平分∠ACD,CF平分∠ACG,∠BAC=40°,∠1=∠2,则下列结论:①CB⊥CF;②∠1=70°;③∠ACE=2∠4;④∠3=2∠4,其中正确的是()A.①②③B.①②④C.②③④D.①②③④14、如图,,为的角平分线,、分别是和的角平分线,且,则以下与的关系正确的是()A. B. C. D.15、我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a⊥b,b⊥c,则a⊥c.②a,b,c是直线,若a∥b,b∥c,则a∥c.③a,b,c是直线,若a与b相交,b与c相交,则a与c相交.④若∠α与∠β互补,∠β与∠γ互补,则∠α与∠γ互补.其中正确的命题的个数是()A.0B.1C.2D.3二、填空题(共10题,共计30分)16、如图,在ABC中,点D、E、F分别是BC,AB,AC上的点,若∠B=∠C,BF=CD,BD=CE,∠EDF=56°,则∠A=________°.17、如图,在△ABC中,按以下步骤作图:①分别以点B、C为圆心,以大于二分之一倍的BC的长度为半径作弧,两弧相交于M、N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=24°,则∠ACB的度数为________.18、如图,在△ABC中,点P是△ABC的外角∠DBC、∠BCE的平分线的交点,若∠BPC=72°,连接AP,则∠BAP=________ 度.19、如图,过等边△ABC的顶点A作射线.若∠1=20°,则∠2的度数为________.20、如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为________.21、如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则________.22、如果等腰三角形一个角是45°,那么另外两个角的度数为________23、已知:如图,∠1=∠2,求证:AB∥CD∵∠1=∠2,(已知)又∠3=∠2,________∴∠1=________.________∴ AB∥CD.(________,________)24、在中,,是边上的高线,且.则等于________.25、如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+ ∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则.其中正确的结论是________.(填序号)三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、如图,已知,CD∥EF,∠1=∠2,若∠3=40°,求∠ACB的度数.28、如图,已知,,求证:.完成推理填空:证明:∵(已知),_▲_,_▲_ ()又(已知),_▲_(),()29、如图,直线AB∥CD,BC平分∠ABD,∠1=50°,求∠2的度数。
(考试真题)第5章几何证明初步数学八年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70B.80C.90D.1002、如图,AB∥CD,BE平分∠ABC, CE⊥BE.若∠BCD=50°,∠BCE的度数为()A.55°B.65°C.70°D.75°3、下列命题是真命题的是()A.方差越大,说明数据就越稳定B.“预计本题的正确率是95%”表示100位考生中一定有95人做对C.两边及其一边的对角对应相等的两个三角形一定全等D.圆内接四边形对角互补4、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()A.55°B.125°C.135°D.140°5、下列说法中正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.三角形的外角大于任何一个内角6、如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.1个B.2个C.3个D.4个7、如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30°B.60°C.50°D.40°8、有三位同学对校队与市队足球赛进行估计,A说:校队至少进3个球,B说:校队进球数不到5个,C说:校队至少进1个球.比赛后,知道3个人中,只有1个人的估计是对的,你能知道,校队踢进球的个数是()A.4个B.3个C.1个D.0个9、如图,直线m∥n,若∠1=25°,∠2=47°,则∠BAC的度数为()A.22°B.25°C.27°D.30°10、如图,已知∠DAE=∠B,∠DAB=∠C,则下列结论不成立的是()A.AD∥BCB.∠B=∠CC.∠DAB+∠B="180°"D.AB∥CD11、如图,在中,,则的度数为()A. B. C. D.12、将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(﹣2,0),∠ABO=30°.则△AOB旋转过程中所扫过的图形的面积为()A. B. C. D.13、如图,已知直线AB∥CD,直线EF分别与AB、CD交于点M、N,点H在直线CD上,HG ⊥EF于点G,过点G作GP∥AB.则下列结论:①∠AMF与∠DNF是对顶角;②∠PGM=∠DNF;③∠BMN+∠GHN=90°;④∠AMG+∠CHG=270°.其中正确结论的个数()A.1个B.2 个C.3个D.4个14、如图所示,为的切线,切点为点A,交于点C,点D在上,若的度数是32°,则的度数是( )A.29°B.30°C.32°D.45°15、下列语句正确的有()个.①“对顶角相等”的逆命题是真命题.②“同角(或等角)的补角相等”是假命题.③立方根等于它本身的数是非负数.④用反证法证明:如果在中,,那么、中至少有一个角不大于45°时,应假设,.⑤如果一个等腰三角形的两边长分别是和,则周长是或.A.4B.3C.2D.1二、填空题(共10题,共计30分)16、如图,等腰中,,,的垂直平分线交于点,则的度数为________.17、如图,直线l1∥l2, AB⊥EF,∠1=20°,那么∠2=________.18、将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为________度.19、如图,,直线分别与,相交,若,则的度数为________°.20、如图,已知DA∥BC,∠BAC=70°,∠C=40°,则∠DAB=________°.21、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E.若∠CBD=32°,则∠ADE的度数为________.22、已知α与β互为余角,且cos(115°﹣α+β)= ,则α=________,β=________.23、如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论:①△BDF、△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.正确的有________.24、如图,正五边形内接于,点为上一点,连接,若,则的度数为________.25、如图,已知等边三角形中,点分别在边上,把沿直线翻折使点落在处,、分别交边于点、,若,则度数为________.三、解答题(共5题,共计25分)26、如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,求∠CDF的度数.27、某足球协会举办了一次足球联赛,其积分规则为:胜一场得3分,平一场得1分,负一场得0分,当全部比赛结束(每队平均比赛12场)时,A队共积19分,请通过计算,判断A队胜、平、负各几场.28、如图所示,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.29、以下是推导“三角形内角和定理”的学习过程,请补全证明过程及推理依据.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.证明:过点A作DE∥BC,(请在图上画出该辅助线并标注D,E两个字母)∠B=∠BD,∠C=________.(________)∵点D,A,E在同一条直线上,∴________(平角的定义)∴∠B+∠BAC+∠C=180°即三角形的内角和为180°.30、如图,五边形ABCDE的每个内角都相等,且∠1=∠2=∠3=∠4,求∠B和∠CAD的度数.参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、B5、B6、C7、A8、D9、A10、B12、D13、C14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)27、28、29、。
一、选择题(每题4分,共40分)1.下列命题中,真命题是()A.互补的两个角若相等,则两角都是直角B.平角是直线C.不相交的两条直线叫平行线D.和为180°的两个角叫做互补角2.如图,AB∥CD,AF 分别交AB、CD于A、C并且CE平分∠DCF,∠1=800,则等于()A.40°B.50°C.60°D.70°(2)(3)3.如图,,那么等于()A.180°B.360°C.540°D.720°4.下列结论中不正确的是()A.如果一条直线与两条平行线中的一条平行,那么这条直线与另一条也平行B.如果一条直线与两条平行线中的一条垂直,那么这条直线与另一条也垂直C.如果一条直线与两条平行线中的一条相交,那么这条直线与另一条也相交D.以上结论中只有一个不正确5、在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB, △PBC,△PAC均为等腰三角形,则满足上述条件的所有点P的个数为()A.3个B.4个C.6个D.7个6、△ABC中,∠C=900,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为点E,若AB=10则△DBE周长为()A .10 B.8 C.12 D.97.如图点D 在AB 上,点E 在AC 上并且∠B=∠C,那么补充下列一个条件后,仍无法判断△ABE ≌△ACD 的是( )A.AD=AEB.∠AEB=∠ADCC. BE=CDD. AB=AC8、如图∠1=∠2,PM ⊥OA 于点M,则P 点到OB 的距离等于( )A.OA 的长B.OP 的长C.PM 的长D.都不正确9、如图所示,AB 的垂直平分线为MN ,点P 在MN 上,则下列结论中,错误的是( ) A 、PA=PB B 、OA=OB C 、OP=OB D 、ON 平分∠APB 10、如图,直角三角形ABC 中,AB ⊥AC ,AD ⊥BC,BE 平分∠ABC ,交AD 于点E ,EF ∥AC ,下列结论一定成立的是( )A 、AB=BFB 、AE=EBC 、AD=DCD 、∠ABE=∠DFE(9) (10)NA PMO B AFEDCBEBDCAO2 1PBM A(7)(8)二、填空题(每空2分,共16分)11、在△ABC 中,(1)030,90=∠=∠A C ,则∠B= 度; (2)C B A ∠=∠=∠,500,则∠B= 度; (3)010,25=∠-∠=∠-∠C B C A ,则∠B= 度. 12、将命题“钝角大于它的补角”写成“如果…那么”的形式: 13、如图,已知:DE ⊥AB ,且∠A=∠D=290则∠ACB=13题图 16题图14、在△ABC 中,D 、E 分别在AB 、CD 上并且DE ‖BC,AE=1,CE=2,则=∆∆ABC ADE S S : 15、等腰三角形腰上的高与底边夹角为15°,则顶角的度数为 16、如图,已知:在△ABC 中,∠B=900, ∠1=∠2, ∠3=∠4,则的度数为三、解答题(共44分)17、(10分)已知如图,在∠AOB 中OC 平分∠AOB,CA ⊥OA,CB ⊥OB,垂足分别为A 、B,AB 交OC 于点K ,在图中你能找到哪些结论?(分别写出一组相等的角、线段,一组全等的三角形和一个等腰三角形)18、(10分)已知:如图,AB ‖DC,点E 是BC 上一点,∠1=∠2,∠3=∠4.求证:AE ⊥DEO—2010学年度第二学期学习效果评价八年级数学期末试题(命题人:贾绪真、王云鹏) (时间:90分钟)一、选择题1、下列计算正确的是( ) A 、(5-32=2 B 、32b a =ab bABC19.(12分)如图,在△ABC 中两个外角∠EAC 和∠FCA 的平分线交于D 点,求证:∠ADC=900-21∠ABC(19)20.(12分)如图,△ABC 中,∠B >∠C,AD ⊥BC,AE 平分∠BAC,求证: )(21C B DAE ∠-∠=∠ 。
青岛版八年级数学上册几何证明初步单元测试卷2一、选择题(共10小题;共50分)1. 将一副直角三角板按如图所示方式叠放在一起,则的度数是A. B. C. D.2. 下列语句是命题的是A. 延长线段B. 你吃过午饭了吗C. 直角都相等D. 连接两点3. 如图,在中,,是的垂直平分线,交于点,交于点.已知,则的度数为A. B. C. D.4. 已知如图,,,,,,,则的面积为A. B. C. D. 无法确定5. 下列命题中,真命题的个数是①对角线互相垂直且相等的平行四边形是正方形;②对角线互相垂直的矩形是正方形;③对角线相等的菱形是正方形;④对角线互相垂直平分且相等的四边形是正方形.A. 个B. 个C. 个D. 个6. 某校九年级四个班的代表队准备举行篮球友谊赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“902 班得冠军,904 班得第三”;乙说:“901 班得第四,903 班得亚军”;丙说:“903 班得第三,904 班得冠军”.赛后得知,三人都只猜对了一半,则得冠军的是A. 901 班B. 902 班C. 903 班D. 904 班7. 如图,若直线与的边、分别交于、,则图中的内错角有A. 对B. 对C. 对D. 对8. 如图,已知,,,,平分,则的度数是A. B. C. D.9. 如图所示,点是内一点,平分,于点,连接,若,,则的面积是A. B. C. D.10. 小明不慎把家里的一块圆形玻璃打碎了,其中四块碎片如图所示,为配到一块与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是A. 第①块B. 第②块C. 第③块D. 第④块二、填空题(共6小题;共30分)11. 如图所示,小迪将两个完全相同的三角板拼在一起,沿着三角板的斜边,画出线段,.则我们可以判定的依据是.12. 在数学课上,老师要求同学们利用一副三角板任作两条平行线.小明的作法如下:(1)任取两点,,画直线;(2)分别过点,作直线的两条垂线,;则直线,即为所求.老师说:"小明的作法正确."请回答:小明的作图依据是.13. 如图,点的坐标为,作轴,轴,垂足分别为,,点为线段的中点,点从点出发,在线段,上沿运动,当时,点的坐标为.14. 请把“对顶角相等”改写成“如果那么”的形式.15. 如图,已知等腰三角形,,若以点为圆心,长为半径画弧,分别与腰,交于点,.给出下列结论,正确的结论有:(把你认为正确的结论的序号都填上).①;②;③;④.16. 如图,平面直角坐标系中,,为轴正半轴上一点,连接,在第一象限作,,过点作直线轴于,直线与直线交于点,且,则直线解析式为.三、解答题(共8小题;共104分)17. 命题的定义与结构:一件事情的语句叫做命题,命题常写成“如果那么”的形式.“如果”后接的部分是,“那么”后接的部分是.18. 如图,为了加固房屋,要在屋架上加一根横梁,使,如果,应为多少度?19. 于点,交于点,交于点,,,判断和的位置关系,并说明理由.20. 如图,在和中,有下列论断:①;②;③.把其中两个作为条件,另一个作为结论,写出一个真命题,并加以证明.21. 如图,,,,与平行吗?为什么?22. 在中,,是线段的延长线上一点,以为一边在的右侧作,使,,连接.(1)如图,点在线段的延长线上移动,若,则.(2)设,.①如图当点在线段的延长线上移动时,与之间有什么数量关系?请说明理由.②当点在直线上(不与,重合)移动时,与之间有什么数量关系?请直接写出你的结论.23. 如图所示,已知,.(1)请你探究与的关系,并说明理由.(2)要想使与互相垂直平分,你认为除原已知条件成立外,还需添加一个什么样的条件?24. 如图,已知,,与交于,.求证:(1);(2)是等腰三角形.答案第一部分1. D2. C3. B 【解析】∵是的垂直平分线,∴.又∵,∴,∴.又∵,,∴.又∵,∴.4. A 【解析】过作的垂线交于,过作的垂线交的延长线于,,,,于是在和中,,,.5. D【解析】对角线互相垂直且相等的平行四边形是正方形,所以①正确;对角线互相垂直的矩形是正方形,所以②正确;对角线相等的菱形是正方形,所以③正确;对角线互相垂直平分且相等的四边形是正方形,所以④正确.6. B 【解析】假设甲说的“902班得冠军”是正确的,那么丙说的“904班得冠军”是错误的;“903班得第三”就是正确的,那么乙说的“903班得亚军”是错误的;“901班得第四”是正确的,这样三人都猜对了一半,且没矛盾.故猜测是正确的.7. C8. D 【解析】,,又,,;,,,,,又,,,又平分,,.9. C 【解析】过点作于点,平分,,,,10. A【解析】要配到与原来大小一样的圆形玻璃,关键是确定圆的半径.小明带到商店去的一块玻璃碎片应该是第①块,可以在第①块碎片的圆弧上取两点,连接这两点得到一条弦,然后作这条弦的垂直平分线,同样,再作另一条弦的垂直平分线,两条垂直平分线的交点即为圆心,从而确定半径,该圆即可确定.第二部分11. 内错角相等,两直线平行【解析】由题意:,(内错角相等两直线平行).12. 同位角相等,两直线平行13. 或【解析】点的坐标为,轴,轴,点为线段的中点,,,.①当点在上时,如图所示,在和中,,,点的坐标为;②当点在上时,如图所示,在和中,,,点的坐标为.综上:点的坐标为或.14. 如果两个角是对顶角,那么这两个角相等15. ③【解析】,,以点为圆心,长为半径画弧,交腰于点,,,,,,无法得到①;②;④.16.【解析】过点作轴交轴于,交于,轴,轴,,,四边形是矩形,,,,,,在和中,,,,,,,,,,,,点坐标为,点坐标为,,,,点坐标为,设直线的解析式为,解得直线的解析式为.第三部分17. 判断;题设;结论18. 由,可知.19. ,过作的平行线即可.20. 不唯一,如选①②③.已知:在与中,, .求证: . 证明:连接 .,.,,.21. .理由:,.,.,,,.22. (1)【解析】因为,所以,所以,在和中,因为所以,所以,因为,所以,因为,所以.(2)①当点在线段的延长线上移动时,与之间的数量关系是,理由是:因为,所以,所以,在和中,因为所以,所以,因为,所以,因为,,所以.②.【解析】②当在线段上时,,当点在线段延长线或反向延长线上时,.23. (1)垂直平分.理由如下:,点在的垂直平分线上.,点在线段的垂直平分线上.垂直平分.(2)或或.24. (1),,,在和中,,.(2),,,是等腰三角形.。