2012浙江宁波中考数学解析
- 格式:doc
- 大小:965.00 KB
- 文档页数:25
无锡新领航教育
浙江11市2012年中考数学试题分类解析汇编
专题1:实数
一、选择题
1. (2012浙江杭州3分)计算(2﹣3)+(﹣1)的结果是【 】
A .﹣2
B .0
C .1
D .2
【答案】A 。
【考点】有理数的加减混合运算。
【分析】根据有理数的加减混合运算的法则进行计算即可得解:
(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2。
故选A 。
2. (2012浙江杭州3分)已知()
3m 2213⎛⎫=-⨯- ⎪ ⎪⎝⎭,则有【 】 A .5<m <6 B .4<m <5 C .﹣5<m <﹣4 D .﹣6<m <﹣5
【答案】A 。
【考点】二次根式的乘除法,估算无理数的大小。
【分析】求出m 的值,估算出经的范围5<m <6,即可得出答案:
()324m 22132132128339⎛⎫=-⨯-=⨯=⨯⨯= ⎪ ⎪⎝⎭ ∵252836<<,∴5286<<,即5<m <6。
故选A 。
3. (2012浙江湖州3分)-2的绝对值等于【 】
A .2
B .-2
C .
12 D .±2
【答案】A 。
【考点】绝对值。
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-2到原点的距离是错误!未指定书签。
,所以-2的绝对值是2错误!未找到引用源。
,故选A 。
4. (2012浙江嘉兴、舟山4分)(﹣2)0等于【 】
A . 1
B . 2
C . 0
D . ﹣2。
2012宁波市初中毕业生学业考试数学卷评析高新区外国语学校杨善福回味早已尘埃落定的2012中考,总感觉有话要说。
6月13日的估分与6月19日的实查分竟然相差了近20分,由于城区高中的志愿填报要根据估分来填报志愿,这让多少个家庭为之痛苦地煎熬近半个月,直到所有的普高录取分数线划定,才让那些填报“跑偏”的考生稍稍有些放下心来,毕竟各“名校”的录取线也都较估分线和上年线下降了近20分,更何况其他“普通”学校录取线与往年录取线落下有30分。
这样的落差划线在“东论—张老师博客”里也大呼“大跌眼镜”。
究竟是什么原因导致今年这样的多年不遇的结果呢?作为一名初三数学教师,想从试卷本身来寻找一些端倪。
首先从考前的《学业考试说明》和“官方”文件里已经知道今年的难度系数会有所调整,去年的《学业考试说明》中明确提出“难度系数0.7左右”,而今年的《学业考试说明》中提出的是“难度系数不低于0.7”,据此,所有的数学教师对难度的提高是有一定心里准备的。
按照满分120分如果难度0.75,平均分约是90分,而改变成0.7平均分约是84。
从高新区全体参加考试的学生情况来看平均成绩为85.2,难度系数约为0.71,正好是预设的难度系数。
去年的中考高新区全体考生的数学平均成绩89.7,因此仅从这一科可以看出平均成绩下落约5分。
虽然老师们对难度的调整心理有预期,但是老师们拿到试卷后,发现并没有偏、难、怪题,总体认为平稳、基础,看上去不陌生,因此错误地按照往年的经验指导学生进行了估分,这就导致了估分出现了偏差。
虽然2012数学卷没有“陌生”感,但是,对于学生来说到底什么样的题算是难题?什么样的题是不容易得分题?认真分析现在学生学习的特点可以发现:当遇到“从未见过的”类型题时会是第一大难题,这种题是无从下手,抓耳挠腮也无济于事,这样的题在2012数学卷中未有出现,恰好正是没有这题出现,所以麻痹了学生也麻痹了老师。
本次试卷中学生得分不高的主要原因究竟是什么呢?对于学生来说有一种隐性难题,那就是时下流行的“PISA”题。
宁波市2002-2013年中考数学试题分类解析专题09 三角形选择题1. (2002年浙江宁波3分)如图,△ABC中,AB=7,AC=6,BC=5,点D、E分别是边AB、AC的中点,则DE的长为【】2. (2004年浙江宁波3分)如图所示,在△ABC中,D,E分别是AB,AC的中点,且AB=10,AC=14,BC=16,则DE等于【】3. (2004年浙江宁波3分)如图,在四边形ABCD中,E是AB上一点,EC∥AD,DE∥BC,若S△BEC=1,S△ADE=3,则S△CDE等于【】4. (2006年浙江宁波大纲卷3分)如图,已知圆锥的底面直径等于6,高等于4,则其母线长为【】【分析】易知,圆锥的底面半径、高和母线构成直角三角形,半径为3 ,高为4,根据勾股定理可得其母线长为5。
故选D。
5. (2006年浙江宁波大纲卷3分)如图,为了确定一条小河的宽度BC,可在点C左侧的岸边选择一点A,使得AC⊥BC,若测得AC=a,∠CAB=θ,则BC=【】6. (2006年浙江宁波课标卷3分)如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE 的长等于【】7. (2007年浙江宁波3分)如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为【】8. (2009年浙江宁波3分)等腰直角三角形的一个底角的度数是【】A.30°B.45°C.60°D.90°【答案】B。
【考点】等腰直角三角形的性质。
【分析】直接根据等腰直角三角形的性质得等腰直角三角形的一个底角的度数是45°。
故选B。
9. (2010年浙江宁波3分)如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB 的角平分线,则图中等腰三角形共有【】A、5个B、4个C、3个D、2个10. (2011年浙江宁波3分)如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为 ,那么滑梯长l为【】11. (2012年浙江宁波3分)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为【】1 2. (2012年浙江宁波3分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为【】二、填空题1. (2002年浙江宁波3分)t an45°=▲2. (2002年浙江宁波3分)如图,△ABC中,AB=AC,△DEF中,DE=DF,要使得△ABC∽△DEF,还需增加的一个条件是▲ (填上你认为正确的一个即可,不必考虑所有可能情况).3. (2002年浙江宁波3分)如图,G是正六边形ABCDEF的边CD的中点,连结AG交CE于点M,则GM:MA=▲【答案】1:6。
浙江11市2012年中考数学试题分类解析汇编专题12:押轴题(一)一、选择题1.(2012浙江杭州3分)已知关于x,y的方程组x y=4ax y=3a-⎧⎨-⎩+3,其中﹣3≤a≤1,给出下列结论:①x=5y=1⎧⎨-⎩是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是【 C 】A.①②B.②③C.②③④D.①③④【考点】二元一次方程组的解,解一元一次不等式组。
【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断:解方程组x y=4ax y=3a-⎧⎨-⎩+3,得x=12ay=1a+⎧⎨-⎩。
∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4。
①x=5y=1⎧⎨-⎩不符合﹣5≤x≤3,0≤y≤4,结论错误;②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x,y的值互为相反数,结论正确;③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a两边相等,结论正确;④当x≤1时,1+2a≤1,解得a≤0,y=1﹣a≥1,已知0≤y≤4,故当x≤1时,1≤y≤4,结论正确。
,2.(2012浙江湖州3分)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于【A】A.B.C.3 D.4过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,即=,=,解得:BF=x,CM=﹣x,∴BF+CM=.3. (2012浙江嘉兴、舟山4分)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是【D 】A.B.C.D.【考点】动点问题的函数图象。
2012年浙江省宁波市中考数学试卷一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.(﹣2)0的值为()A.﹣2B.0C.1D.22.下列交通标志图案是轴对称图形的是()A .B .C .D .3.一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为()A .B .C .D.14.据宁波市统计局年报,去年我市人均生产总值为104 485元,104 485元用科学记数法表示为()A.1.04 485×106元B.0.104 485×106元C.1.04 485×105元D.10.4 485×104元5.我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为()A.2,28B.3,29C.2,27D.3,286.下列计算正确的是()A.a6÷a2=a3B.(a3)2=a5C .D .7.已知实数x,y 满足,则x﹣y等于()A.3B.﹣3C.1D.﹣18.如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4B.2C .D .第8题图9.如图是某物体的三视图,则这个物体的形状是( )A .四面体B .直三棱柱C .直四棱柱D .直五棱柱10.如图是老年活动中心门口放着的一个招牌,这个招牌 是由三个特大号的骰子摞在一起而成的.每个骰子的六个 面的点数分别是1到6,其中可以看见7个面,其余11个 面是看不见的,则看不见的面上的点数总和是( )A .41B .40C .39D .3811.如图,用邻边分别为a ,b (a <b )的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a 与b 满足的关系式是( ) A .b=a B .b=a C .b=D .b=a12.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A .90 B .100 C .110 D .121二、填空题(每小题3分,共18分)13.写出一个比4小的正无理数 _________ .14.分式方程的解是 _________.15.如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是 _________ 人.第9题图第10题图 第11题图 第12题图16.如图,AE ∥BD ,C 是BD 上的点,且AB=BC ,∠ACD=110°,则∠EAB= _________ 度.17.把二次函数y=(x ﹣1)2+2的图象绕原点旋转180°后得到的图象 的解析式为 _________ .18.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=2,D 是线 段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于 E ,F ,连接EF ,则线段EF 长度的最小值为_________ .三、解答题(本大题有8题,共66分) 19.计算:.20.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.21.如图,已知一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4). (1)求反比例函数的解析式和点B 的坐标;(2)根据图象回答,当x 在什么范围内时,一次函数的值大于反比例函数的值?22.某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔.每位女生的身高统计如图,部分统计量如表:第15题图 第16题图 第18题图第20题图第21题图(1)求甲队身高的中位数; (2)求乙队身高的平均数及身高不小于1.70米的频率;(3)如果选拔的标准是身高越整齐越好,那么甲、乙两队中哪一队将被录取?请说明理由.23.如图,在△ABC 中,BE 是它的角平分线,∠C=90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F . (1)求证:AC 是⊙O 的切线;(2)已知sinA=,⊙O 的半径为4,求图中阴影部分的面积.24.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:自来水销售价格 污水处理价格 每户每月用水量 单价:元/吨 单价:元/吨 17吨以下a 0.80 超过17吨但不超过30吨的部分b 0.80 超过30吨的部分6.000.80已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元. (1)求a ,b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?25.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形.如图1,▱ABCD 中,若AB=1,BC=2,则▱ABCD 为1阶准菱形.第22题图第23题图第25题图(1)判断与推理:①邻边长分别为2和3的平行四边形是_________阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD 上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.26.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.第26题图2012年浙江省宁波市中考数学试卷参考答案一、1.C 2.B 3.A 4.C 5.B 6.D 7.A8.A 9.B 10. C 11.D 12.C二、13.π(答案不唯一)14.x=815.5 40 17.y=﹣(x+1)2﹣218.三、19.解:原式==a﹣2+a+2=2a.20.解:(1)第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.答:第5个图形有18颗黑色棋子.(2)设第n个图形有2013颗黑色棋子,根据(1)得3(n+1)=2013解得n=670,所以第670个图形有2013颗黑色棋子.21.解:(1)设反比例函数的解析式为y=.∵反比例函数图象经过点A(﹣4,﹣2),∴﹣2=.∴k=8.∴反比例函数的解析式为y=.∵B(a,4)在y=的图象上,∴4=.∴a=2,∴点B的坐标为B(2,4).(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.22.解:(1)把甲队队员身高从高到矮排列:1.76,1.75,1.75,1.71,1.70,1.65,位置处于中间的两数为:1.75,1.71,故甲队身高的中位数是米.(2)(1.70+1.68+1.72+1.70+1.64+1.70)=1.69米,故乙队身高的平均数是1.69米. 身高不低于1.70米的频率为.(3)∵S乙<S甲,∴乙队的身高比较整齐,乙队将被录取.23.解:(1)连接OE.∵OB=OE,∴∠OBE=∠OEB .∵BE是△ABC的角平分线,∴∠OBE=∠EBC.∴∠OEB=∠EBC.∴OE∥BC .∵∠C=90°,∴∠AEO=∠C=90° .∴AC是⊙O的切线.(2)连接OF.∵sinA=,∴∠A=30°∵⊙O的半径为4,∴AO=2OE=8.∴AE=4,∠AOE=60°.∴AB=12.∴BC=AB=6,AC=6.∴CE=AC﹣AE=2.∵OB=OF,∠ABC=60°,∴△OBF是正三角形.∴∠FOB=60°,CF=6﹣4=2.∴∠EOF=60°.∴S梯形OECF=(2+4)×2=6,S扇形EOF==.∴S阴影部分=S梯形OECF﹣S扇形EOF=6﹣.24.解:(1)由题意,得②﹣①,得5(b+0.8)=25.解得b=4.2.把b=4.2代入①,得17(a+0.8)+3×5=66.解得a=2.2.∴a=2.2,b=4.2.(2)当用水量为30吨时,水费为:17×3+13×5=116元,9200×2%=184元,∵116<184,∴小王家六月份的用水量超过30吨.设小王家六月份用水量为x吨,由题意,得17×3+13×5+6.8(x﹣30)≤184,6.8(x﹣30)≤68,解得x≤40.∴小王家六月份最多能用水40吨.25.解:(1)①利用邻边长分别为2和3的平行四边形进过两次操作,所剩四边形是边长为1的菱形,故邻边长分别为2和3的平行四边形是2阶准菱形;故答案为:2;②由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形;(2)①如图所示:,②∵a=6b+r,b=5r,∴a=6×5r+r=31r;如图所示:故▱ABCD是10阶准菱形.26.解:(1)设该二次函数的解析式为y=a(x+1)(x﹣2),将x=0,y=﹣2代入,得﹣2=a(0+1)(0﹣2).解得a=1.∴抛物线的解析式为y=(x+1)(x﹣2),即y=x2﹣x﹣2.(2)设OP=x,则PC=PA=x+1.在Rt△POC中,由勾股定理,得x2+22=(x+1)2,解得x=,即OP=.(3)①∵△CHM∽△AOC,∴∠MCH=∠CAO.(i)如图1,当H在点C下方时,∵∠MCH=∠CAO,∴CM∥x轴,∴y M=﹣2,∴x2﹣x﹣2=﹣2,解得x1=0(舍去),x2=1,∴M(1,﹣2),(ii)如图1,当H在点C上方时,∵∠MCH=∠CAO,∴PA=PC,由(2)得,M为直线CP与抛物线的另一交点,设直线CM的解析式为y=kx﹣2,把P(,0)的坐标代入,得k﹣2=0,解得k=,∴y=x﹣2,由x﹣2=x2﹣x﹣2,解得x1=0(舍去),x2=.此时y=×﹣2=,∴M′(,),②在x轴上取一点D,如图(备用图),过点D作DE⊥AC于点E,使DE=,在Rt△AOC中,AC===,∵∠COA=∠DEA=90°,∠OAC=∠EAD,∴△AED∽△AOC,∴=,即=.解得AD=2,∴D(1,0)或D(﹣3,0).过点D作DM∥AC,交抛物线于M,如图(备用图)则直线DM的解析式为:y=﹣2x+2或y=﹣2x﹣6,当﹣2x﹣6=x2﹣x﹣2时,即x2+x+4=0,方程无实数根,当﹣2x+2=x2﹣x﹣2时,即x2+x﹣4=0,解得x1=,x2=,∴点M的坐标为(,3+)或(,3﹣).。
浙江11市2012年中考数学试题分类解析汇编押轴题一、选择题1.(2012浙江杭州3分)已知关于x,y的方程组x y=4ax y=3a-⎧⎨-⎩+3,其中﹣3≤a≤1,给出下列结论:①x=5y=1⎧⎨-⎩是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是【】A.①②B.②③C.②③④D.①③④2.(2012浙江湖州3分)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于【】A .5B .453C.3 D.43. (2012浙江嘉兴、舟山4分)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是【】A.B.C.D.4. (2012浙江丽水、金华3分)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A.2010B.2012C.2014D.20165. (2012浙江宁波3分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为【】A.90B.100C.110D.1216. (2012浙江衢州3分)已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是【】A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y17. (2012浙江绍兴4分)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为【】A.512532⨯B.69352⨯C.614532⨯D.711352⨯8. (2012浙江台州4分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【】A. 1 B.3C. 2 D.3+19. (2012浙江温州4分)如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A 出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是【】A.一直增大B.一直减小C.先减小后增大D.先增大后减小10. (2012浙江义乌3分)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是【】A.①②B.①④C.②③D.③④二、填空题1. (2012浙江杭州4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为▲ .2. (2012浙江湖州4分)如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小三角形,若m47n25,则△ABC的边长是▲3. (2012浙江、舟山嘉兴5分)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB 的中点,连接CD,过点B作BG丄CD,分别交GD、CA于点E、F,与过点A且垂直于的直线相交于点G,连接DF.给出以下四个结论:①AG FGAB FB;②点F是GE的中点;③AF=23AB;④S△ABC=5S△BDF,其中正确的结论序号是▲ .4. (2012浙江丽水、金华4分)如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=3,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°.(1)当点E是AB的中点时,线段DF的长度是▲ ;(2)若射线EF经过点C,则AE的长是▲ .5. (2012浙江宁波3分)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC 于E,F,连接EF,则线段EF长度的最小值为▲ .6. (2012浙江衢州4分)如图,已知函数y=2x和函数ky=x的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P 为顶点的四边形是平行四边形,则满足条件的P点坐标是▲ .7. (2012浙江绍兴5分)如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为▲ (用含n的代数式表示)9. (2012浙江温州5分)如图,已知动点A在函数4y=x(x>o)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴,y轴于点P,Q.当QE:DP=4:9时,图中的阴影部分的面积等于▲ _.10. (2012浙江义乌4分)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是▲ ;(2)当AB为梯形的腰时,点P的横坐标是▲三、解答题1. (2012浙江杭州12分)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.2.(2012浙江杭州12分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT 于点C,OB⊥AT于点B,已知∠EAT=30°,AE=33,MN=222.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上( FME是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.3. (2012浙江湖州10分)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?4. (2012浙江湖州12分)如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(- 3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B 作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t< 3 )①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)5. (2012浙江嘉兴、舟山12分)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,3]得△AB′C′,则S△AB′C′:S△ABC=;直线BC 与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(4)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.6. (2012浙江嘉兴、舟山14分)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.(1)如图1,当m=2时,①求线段OP的长和tan∠POM的值;②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.①用含m的代数式表示点Q的坐标;②求证:四边形ODME是矩形.。
宁波市2002-2013年中考数学试题分类解析专题09 三角形选择题1. (2002年浙江宁波3分)如图,△ABC中,AB=7,AC=6,BC=5,点D、E分别是边AB、AC的中点,则DE的长为【】2. (2004年浙江宁波3分)如图所示,在△ABC中,D,E分别是AB,AC的中点,且AB=10,AC=14,BC=16,则DE等于【】3. (2004年浙江宁波3分)如图,在四边形ABCD中,E是AB上一点,EC∥AD,DE∥BC,若S△BEC=1,S△ADE=3,则S△CDE等于【】4. (2006年浙江宁波大纲卷3分)如图,已知圆锥的底面直径等于6,高等于4,则其母线长为【】【分析】易知,圆锥的底面半径、高和母线构成直角三角形,半径为3 ,高为4,根据勾股定理可得其母线长为5。
故选D。
5. (2006年浙江宁波大纲卷3分)如图,为了确定一条小河的宽度BC,可在点C左侧的岸边选择一点A,使得AC⊥BC,若测得AC=a,∠CAB=θ,则BC=【】6. (2006年浙江宁波课标卷3分)如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE 的长等于【】7. (2007年浙江宁波3分)如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为【】8. (2009年浙江宁波3分)等腰直角三角形的一个底角的度数是【】A.30°B.45°C.60°D.90°【答案】B。
【考点】等腰直角三角形的性质。
【分析】直接根据等腰直角三角形的性质得等腰直角三角形的一个底角的度数是45°。
故选B。
9. (2010年浙江宁波3分)如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB 的角平分线,则图中等腰三角形共有【】A、5个B、4个C、3个D、2个10. (2011年浙江宁波3分)如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为 ,那么滑梯长l为【】11. (2012年浙江宁波3分)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为【】1 2. (2012年浙江宁波3分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为【】二、填空题1. (2002年浙江宁波3分)t an45°=▲2. (2002年浙江宁波3分)如图,△ABC中,AB=AC,△DEF中,DE=DF,要使得△ABC∽△DEF,还需增加的一个条件是▲ (填上你认为正确的一个即可,不必考虑所有可能情况).3. (2002年浙江宁波3分)如图,G是正六边形ABCDEF的边CD的中点,连结AG交CE于点M,则GM:MA=▲【答案】1:6。
宁波市2002-2013年中考数学试题分类解析专题11 圆一、选择题1. (2003年浙江宁波3分)如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,已知PB=BC=3,则PA的长是【】2. (2004年浙江宁波3分)如图,PA切⊙O于A,割线PBC经过圆心O,交⊙O于B、C两点,若PA=4,PB=2,则tan∠P的值为【】【答案】B。
【考点】切线的性质,切割线定理,锐角三角函数定义。
【分析】∵PA,PB分别是⊙O的切线和割线,∴PA2=PB•PC。
∵PA=4,PB=2,∴PC=8,BC=6。
∴OB=3。
连接OA,则∠OAP=90°。
∴OA3tan PPA4∠==。
故选B。
3. (2005年浙江宁波3分)如图,圆和圆的位置关系是【】4. (2005年浙江宁波3分)边长分别为3,4,5的三角形的内切圆半径与外接圆半径的比为【】A.1∶5B.2∶5C.3∶5D.4∶55. (2006年浙江宁波大纲卷3分)已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是【】6. (2007年浙江宁波3分)已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是【】(A)内切 (B)外切 (C)相交 (D)相离7. (2008年浙江宁波3分)已知半径分别为5cm和8cm的两圆相交,则它们的圆心距可能是【】A.1cm B.3cm C.10cm D.15cm8. (2010年浙江宁波3分)两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是【】A、内切B、相交C、外切D、外离9. (2011年浙江宁波3分)如图,⊙O1 的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD 的中心,O1O2垂直AB于P点,O1O2 =8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1 与正方形ABCD的边只有一个公共点的情况一共出现【】【答案】B。
2012年浙江省中考数学圆试题解析浙江11市2012年中考数学试题分类解析汇编专题11:圆一、选择题1. (2012浙江杭州3分)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是【】A.内含B.内切C.外切D.外离【答案】B。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
因此,∵两圆的半径分别为2cm和6cm,圆心距为4cm.则d=6﹣2=4。
∴两圆内切。
故选B。
2.(2012浙江湖州3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是【】A.45°B.85°C.90°D.95°【考点】圆周角定理,直角三角形两锐角的关系圆心角、弧、弦的关系。
【分析】∵AC是⊙O的直径,∴∠ABC=90°。
∵∠C=50°,∴∠BAC=40°。
∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°。
∴∠CAD=∠DBC=45°。
∴∠BAD=∠BAC+∠CAD=40°+45°=85°。
故选B。
3. (2012浙江嘉兴、舟山4分)如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于【】A.15°B.20°C.30°D.70°【答案】B。
【考点】切线的性质,等腰三角形的性质。
【分析】∵BC与⊙O相切于点B,∴OB⊥BC。
∴∠OBC=90°。
∵∠ABC=70°,∴∠OBA=∠OBC﹣∠ABC=90°﹣70°=20°。
2012年全国中考数学试题分类解析汇编(159套63专题)专题:38等腰(边)三角形一、选择题1. (2012宁夏区3分)一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是【】A.13 B.17 C.22 D.17或22【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形:①若4为腰长,9为底边长,由于4+4<9,则三角形不存在;②9为腰长,则符合三角形的两边之和大于第三边。
∴这个三角形的周长为9+9+4=22。
故选C。
2. (2012广东肇庆3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为【】A.16 B.18 C.20 D.16或20【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意。
∴此三角形的周长=8+8+4=20。
故选C。
3. (2012江苏常州2分)已知三角形三边的长分别为4,9,则这个等腰三角形的周长为【】A.13B.17C.22D.17或22【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】由三角形三边的长分别为4,9,知三角形三边的长分别为4,4,9或4,9,9,但由于4,4,9与三角形的构成条件“两边之和大于第三边,两边之差小于第三边”不符,因此,三角形三边的长只能分别为4,9,9 ,周长为22。
故选C。
4. (2012江苏徐州3分)如果等腰三角形的两边长分别为2和5,则它的周长为【】A.9 B.7 C.12D.9或12【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】根据等腰三角形的性质,如果等腰三角形的两边长分别为2和5,则另一边可能是2或5。
浙江省宁波市12年中考数学试卷一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2012•宁波)(﹣2)0的值为()A.﹣2B.0C.1D.22.(2012•宁波)下列交通标志图案是轴对称图形的是()A.B.C.D.3.(2012•宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为()A.B.C.D.14.(2012•宁波)据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学记数法表示为()A.1.04485×106元B.0.104485×106元C.1.04485×105元D.10.4485×104元5.(2012•宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为()A.2,28B.3,29C.2,27D.3,286.(2012•宁波)下列计算正确的是()A.a6÷a2=a3B.(a3)2=a5C.D.7.(2012•宁波)已知实数x,y满足,则x﹣y等于()A.3B.﹣3C.1D.﹣18.(2012•宁波)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4B.2C.D.9.(2012•宁波)如图是某物体的三视图,则这个物体的形状是()A.四面体B.直三棱柱C.直四棱柱D.直五棱柱10.(2012•宁波)如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是()A.41B.40C.39D.3811.(2012•宁波)如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是()A.b=a B.b=a C.b=D.b= a12.(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90B.100C.110D.121二、填空题(每小题3分,共18分)13.(2012•宁波)写出一个比4小的正无理数_________.14.(2012•宁波)分式方程的解是_________.15.(2012•宁波)如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是_________人.16.(2012•宁波)如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB= _________度.17.(2012•宁波)把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为_________.18.(2012•宁波)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为_________.三.解答题(本大题有8题,共66分)19.(2012•宁波)计算:.20.(2012•宁波)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.21.(2012•宁波)如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?22.(2012•宁波)某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔.每位女生的身高统计如图,部分统计量如表:(1)求甲队身高的中位数;(2)求乙队身高的平均数及身高不小于1.70米的频率;(3)如果选拔的标准是身高越整齐越好,那么甲、乙两队中哪一队将被录取?请说明理由.23.(2012•宁波)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.24.(2012•宁波)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?25.(2012•宁波)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是_________阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.26.(2012•宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且P A=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.参考答案与试题解析一.选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2012•宁波)(﹣2)0的值为()A.﹣2B.0C.1D.2考点:零指数幂。
分析:根据零指数幂的运算法则求出(﹣2)0的值解答:解:(﹣2)0=1.故选C.点评:考查了零指数幂:a0=1(a≠0),由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0),注意:00≠1.2.(2012•宁波)下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形。
专题:常规题型。
分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(2012•宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为()A.B.C.D.1考点:概率公式。
分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,白球的数目为2.解答:解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到白球的概率是:2÷3=.故选A.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=.4.(2012•宁波)据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学记数法表示为()A.1.04485×106元B.0.104485×106元C.1.04485×105元D.10.4485×104元考点:科学记数法—表示较大的数。
专题:常规题型。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于104485有6位,所以可以确定n=6﹣1=5.解答:解:104485=1.04485×105.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.5.(2012•宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为()A.2,28B.3,29C.2,27D.3,28考点:极差;众数。
专题:常规题型。
分析:根据极差的定义,找出这组数的最大数与最小数,相减即可求出极差;根据众数的定义,找出这组数中出现次数最多的数即可.解答:解:这组数中,最大的数是30,最小的数是27,所以极差为30﹣27=3,29出现了3次,出现的次数最多,所以,众数是29.故选B.点评:本题考查了极差与众数的概念,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.6.(2012•宁波)下列计算正确的是()A.a6÷a2=a3B.(a3)2=a5C.D.考点:立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法。
专题:计算题。
分析:根据同底数幂的除法、幂的乘方、平方根、立方根的定义解答.解答:解:A、a6÷a2=a6﹣2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、=5,表示25的算术平方根式5,≠±5,故本选项错误;D、,故本选项正确.故选D.点评:本题考查了立方根、算术平方根、幂的乘方与积的乘方、同底数幂的除法,是一道基础题.7.(2012•宁波)已知实数x,y满足,则x﹣y等于()A.3B.﹣3C.1D.﹣1考点:非负数的性质:算术平方根;非负数的性质:偶次方。