定积分的经典题型及答案
- 格式:doc
- 大小:716.50 KB
- 文档页数:7
定积分期末考试题及答案一、选择题(每题4分,共20分)1. 若函数f(x)在区间[a, b]上连续,则定积分∫<sub>a</sub><sup>b</sup>f(x)dx的值:A. 总是存在B. 可能不存在C. 总是不存在D. 无法确定答案:A2. 计算定积分∫<sub>0</sub><sup>1</sup>x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 1答案:A3. 函数f(x)=x^3在区间[-1, 1]上的定积分值为:A. 0B. 2C. -2D. 1答案:A4. 若∫<sub>a</sub><sup>b</sup>f(x)dx =∫<sub>a</sub><sup>b</sup>g(x)dx,则f(x)和g(x)在区间[a, b]上的关系是:A. 相等B. 相等或相反C. 相等或相等的常数倍D. 无法确定答案:C5. 定积分∫<sub>0</sub><sup>π/2</s up>cos(x)dx的值是:A. 1B. 0C. π/2D. -1答案:B二、填空题(每题5分,共20分)1. 定积分∫<sub>0</sub><sup>1</sup>(2x+1)dx的值为______。
答案:3/22. 函数f(x)=x^2在区间[0, 2]上的定积分值是______。
答案:8/33. 计算定积分∫<sub>0</sub><sup>π</sup>sin(x)dx的值是______。
答案:24. 定积分∫<sub>-1</sub><sup>1</sup>|x|dx的值为______。
高中数学定积分试题一.选择题(共32小题)1.=()A.4+πB.4+2πC.4+4πD.2+π2.的值为()A.e﹣2B.e C.e+1D.e﹣13.|1﹣x2|dx=()A.B.4C.D.4.P(a,b)为函数f(x)=x2(x>0)图象上一点,当直线x=0,y=b与函数的图象围成区域的面积等于时,a的值为()A.B.C.1D.5.计算的值为()A.ln2+1B.2ln2+1C.3ln2+3D.3ln2+1 6.如图,在矩形OABC内随机取一点,则它位于阴影部分的概率为()A.B.C.D.7.已知函数,则定积分的值为()A.B.C.D.8.定积分(x+e x)的值为()A.e B.e+C.e﹣D.e+19.定积分(+x)dx=()A.+B.C.+1D.10.若a=(x+1)dx,b=cos xdx,c=e x dx,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b 11.计算:=()A.﹣1B.1C.﹣8D.812.抛物线y=x2+1和直线y=x+3所围成的封闭图形的面积是()A.B.C.D.13.函数f(x)在区间[﹣1,5]上的图象如图所示,g(x)=f(t)dt,则下列结论正确的是()A.在区间(﹣1,0)上,g(x)递增且g(x)>0B.在区间(﹣1,0)上,g(x)递增且g(x)<0C.在区间(﹣1,0)上,g(x)递减且g(x)>0D.在区间(﹣1,0)上,g(x)递减且g(x)<014.设,则二项式展开式的所有项系数和为()A.1B.32C.243D.102415.曲线,以及直线l:x=2所围成封闭图形的面积为()A.1B.3C.6D.816.如图所示阴影部分是由函数y=e x、y=sin x、x=0和x=围成的封闭图形,则其面积是()A.e+2B.e﹣2C.e D.2﹣e17.直线y=x与曲线y=围成的封闭图形的面积为()A.B.C.D.18.若函数f(x)=A sin(ωx﹣)(A>0,ω>0)的图象如图所示,则图中的阴影部分的面积为()A.﹣1+B.C.1﹣D.19.已知,由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积为S.如图可以通过计算区域内多个等宽的矩形的面积总和来估算S.所谓“分之弥细,所失弥少”,这就是高中课本中的数列极限的思想.由此可以求出S的值为()A.B.C.D.20.曲线y=e2x与直线x+y=1、x﹣1=0围成的平面图形的面积等于()A.e2﹣1B.e2﹣C.e2﹣D.e2﹣21.曲线y2=x与y=x2所围图形的面积为()A.B.C.D.﹣1 22.汽车以V=3t+1(单位:m/s)作变速直线运动时,在第1s至第2s间的1s内经过的位移是()A.4.5m B.5m C.5.5m D.6m23.曲线y=﹣x2﹣x与x轴所围成图形的面积被直线y=kx分成面积相等的两部分,则k的值为()A.B.C.D.24.求曲线y=x2与y=x所围成的图形的面积S,正确的是()A.B.C.D.25.直线y=﹣x与函数f(x)=﹣x3围成封闭图形的面积为()A.1B.C.D.026.如图,阴影部分的面积为()A.2B.2﹣C.D.27.由曲线y=,直线y=x﹣2及x轴所围成的图形的面积为()A.B.C.D.828.由y=﹣x2与直线y=2x﹣3围成的图形的面积是()A.B.C.D.929.一物体在变力F(x)=5﹣x2(力单位:N,位移单位:m)作用下,沿与F(x)成30°方向作直线运动,则由x=1运动到x=2时F(x)作的功为()A.1J B.J C.J D.2J30.圆(x﹣a)2+y2=r2(a,r∈R,且r>0)的面积等于()A.(a+)dyB.2(a+)dyC.dxD.2dx31.由曲线y=x2﹣4,直线x=0,x=4和x轴围成的封闭图形的面积(如图)是()A.(x2﹣4)dxB.|(x2﹣4)dx|C.|x2﹣4|dxD.(x2﹣4)dx+(x2﹣4)dx32.某同学用“随机模拟方法”计算曲线y=lnx与直线x=e,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数x i和10个区间[0,1]上的均匀随机数,其数据如表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22 y0.840.250.980.150.010.600.590.880.840.10 lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是()A.B.C.D.二.填空题(共18小题)33.cos xdx+dx=.34.计算定积分=.35.(e x+2x)dx=.36.计算:dx=.37.若,则a=.38.由曲线y=﹣x2+2x与直线y=x围成的封闭图形的面积为.39.由x的正半轴、y=x2和x=4所围成的封闭图形的面积是40.计算定积分sin xdx=.41.定积分=.42.的值为.43.由曲线,直线y=2x,x=2所围成的封闭的图形面积为.44.已知曲线y2=x与y=x﹣2的图象所围成的阴影部分面积为.45.直线x=0、直线y=e+1与曲线y=e x+1围成的图形的面积为.46.如图是平面直角坐标系下y=sin x与圆O:x2+y2=π2图象,在圆O内随机取一点,则此点落在右图中阴影部分的概率是.47.曲线y=与直线y=2x﹣1及x轴所围成的封闭图形的面积为.48.由函数y=e x,y=,x=e所围成的封闭图形的面积为.49.直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为1,则k=.50.计算2xdx=.参考答案与试题解析一.选择题(共32小题)1.=()A.4+πB.4+2πC.4+4πD.2+π【分析】对2和分别积分,结合定积分的几何意义求解即可.【解答】解:=+,而表示以原点为圆心,2为半径的上半个圆在[0,2]部分的面积,故=+=2x+=4+π,故选:A.【点评】本题考查了定积分的求法,考查了定积分的几何意义,主要考查计算能力,属于基础题.2.的值为()A.e﹣2B.e C.e+1D.e﹣1【分析】根据定积分的计算方法直接求解即可.【解答】解:=(x﹣lnx)=(e﹣1)﹣(1﹣0)=e﹣2,故选:A.【点评】本题考查了定积分的计算,主要考查计算能力,属于基础题.3.|1﹣x2|dx=()A.B.4C.D.【分析】根据函数|1﹣x2|为偶函数,将原式转化为[0,2]上的定积分,再分别转化为[0,1]和[1,2]上分别积分即可.【解答】解:∵函数|1﹣x2|为偶函数,∴|1﹣x2|dx=2=2+2=2(x﹣)|+2()|=4.故选:B.【点评】本题考查了定积分的计算,主要考查计算能力,属于基础题.4.P(a,b)为函数f(x)=x2(x>0)图象上一点,当直线x=0,y=b与函数的图象围成区域的面积等于时,a的值为()A.B.C.1D.【分析】画出图象,利用定积分求出即可.【解答】解:=b﹣=,b=1,故b=1,把b=1代入f(x)=x2(x>0),得a=1,故选:C.【点评】考查定积分的应用,基础题.5.计算的值为()A.ln2+1B.2ln2+1C.3ln2+3D.3ln2+1【分析】由定积分公式,求解.【解答】解:,故选:D.【点评】本题考查定积分,属于基础题.6.如图,在矩形OABC内随机取一点,则它位于阴影部分的概率为()A.B.C.D.【分析】利用定积分求出阴影面积,再求出概率.【解答】解:阴影部分的面积m=,矩形的面积为n=3,故阴影部分概率为,故选:B.【点评】考查了几何概型和用定积分求面积,基础题.7.已知函数,则定积分的值为()A.B.C.D.【分析】依题意,=(﹣x+2)dx+,根据定积分的几何意义,表示已(3,0)为圆心,以1为半径的上半个圆的面积,计算即可.【解答】解:依题意,=(﹣x+2)dx+其中表示已(3,0)为圆心,以1为半径的上半个圆的面积,如图,所以=(﹣x+2)dx+=(2x﹣)|+=,故选:C.【点评】本题考查了定积分的计算,定积分的几何意义,属于基础题.8.定积分(x+e x)的值为()A.e B.e +C.e ﹣D.e+1【分析】直接利用定积分的应用求出结果.【解答】解:==.故选:C.【点评】本题考查的知识要点:利用定积分的关系式的应用求出结果,主要考察学生的运算能力和转换能力,属于基础题型.9.定积分(+x)dx=()A .+B .C .+1D .【分析】直接利用定积分的运算和几何意义的应用求出结果.【解答】解:==.故选:A.【点评】本题考查的知识要点:定积分的应用,定积分的几何意义的应用,主要考察学生的运算能力和转换能力,属于基础题型.10.若a =(x+1)dx,b =cos xdx,c =e x dx,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b 【分析】直接利用定积分和三角函数的值的应用求出结果.【解答】解:a =(x+1)dx =.b =cos xdx =,c =e x dx =所以:c>a>b故选:C.【点评】本题考查的知识要点:定积分的应用,定积分的几何意义的应用,主要考察学生的运算能力和转换能力,属于基础题型.11.计算:=()A.﹣1B.1C.﹣8D.8【分析】根据题意,由定积分的计算公式可得=(x2+2x ),进而计算可得答案.11【解答】解:根据题意,=(x2+2x )=(4+4)﹣(4﹣4)=8;故选:D.【点评】本题考查定积分的计算,关键是掌握定积分的计算公式,属于基础题.12.抛物线y=x2+1和直线y=x+3所围成的封闭图形的面积是()A .B .C .D .【分析】根据题意分析,封闭图形面积即为(x+3)﹣(x2+1)在x=﹣1到x=2上定积分的值.【解答】解:令x+3=x2+1,得x1=﹣1,x2=2,则S ===,故选:C.【点评】本题考查定积分的基本定理,涉及定积分的计算,属于基础题.13.函数f(x)在区间[﹣1,5]上的图象如图所示,g(x )=f(t)dt,则下列结论正确的是()A.在区间(﹣1,0)上,g(x)递增且g(x)>0B.在区间(﹣1,0)上,g(x)递增且g(x)<0C.在区间(﹣1,0)上,g(x)递减且g(x)>0D.在区间(﹣1,0)上,g(x)递减且g(x)<0【分析】由定积分,微积分基本定理可得:f(t)dt表示曲线f(t)与t轴以及直线t=0和t=x所围区域面积,当x 增大时,面积减小,减小,g(x)增大,故g(x)递增且g(x)<0,得解.【解答】解:如图,g(x )=f(t)dt =﹣,因为x∈(﹣1,0),12所以t∈(﹣1,0),故f(t)>0,故f(t)dt表示曲线f(t)与t轴以及直线t=0和t=x所围区域面积,当x 增大时,面积减小,减小,g(x)增大,故g(x)递增且g(x)<0,故选:B.【点评】本题考查了定积分,微积分基本定理,属中档题.14.设,则二项式展开式的所有项系数和为()A.1B.32C.243D.1024【分析】由定积分、微积分基本定理及二项式展开式的系数得a ==﹣cos x=2,所以二项式(2x +)5展开式中令x=1可得:二项式(2x +)5展开式的所有项系数和为(2+1)5=243,得解【解答】解:因为a ==﹣cos x=2,所以二项式(2x +)5展开式中令x=1可得:二项式(2x +)5展开式的所有项系数和为(2+1)5=243,故选:C.【点评】本题考查了定积分、微积分基本定理及二项式展开式的系数,属基础题.15.曲线,以及直线l:x=2所围成封闭图形的面积为()A.1B.3C.6D.8【分析】联立得交点A(2,4),联立,得交点B(2,﹣4),解得A(2,4),B(2,﹣4),由曲线,以及直线l:x=2围成的封闭图形面积S,即可判断出正误.【解答】解:联立得交点A(2,4),联立,得交点B(2,﹣4),所以曲线,以及直线l:x=2所围成封闭图形的面积为:S ===2x2=2×22﹣2×02=8,13故选:D.【点评】本题主要考查积分的应用,求出积分上限和下限,是解决本题的关键.16.如图所示阴影部分是由函数y=e x、y=sin x、x=0和x =围成的封闭图形,则其面积是()A.e+2B.e﹣2C.e D.2﹣e【分析】直接利用定积分的应用求出结果.【解答】解:根据封闭图形的组成,所以:==.故选:B.【点评】本题考查的知识要点:定积分的应用,主要考察学生的运算能力和转换能力,属于基础题型.17.直线y=x与曲线y =围成的封闭图形的面积为()A .B .C .D .【分析】利用定积分的几何意义,首先利用定积分表示面积,然后计算即可.【解答】解:y=x与曲线y =围成的封闭图形的面积S ===.14故选:D.【点评】本题考查了定积分的几何意义的应用,关键是正确利用定积分表示面积,属基础题.18.若函数f(x)=A sin(ωx ﹣)(A>0,ω>0)的图象如图所示,则图中的阴影部分的面积为()A.﹣1+B .C.1﹣D .【分析】先求出f(x)的解析式,以及对应的零点,积分即可.【解答】解:依题意A=1,==π,∴T=2π,ω==1,∴f(x)=sin(x ﹣),故当x =时,f(x)=0.∴阴影面积为==cos(x ﹣)|=1﹣.故选:C.【点评】本题考查了正弦型函数的图象,定积分,主要考查计算能力,属于基础题.19.已知,由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积为S.如图可以通过计算区域内多个等宽的矩形的面积总和来估算S.所谓“分之弥细,所失弥少”,这就是高中课本中的数列极限的思想.由此可以求出S的值为()A .B .C .D .15【分析】由题意利用积分法求出由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积.【解答】解:由题意,令S =x2dx =x 3=×(1﹣0)=,∴由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积为S =.故选:B.【点评】本题考查了定积分的几何意义与应用问题,是基础题.20.曲线y=e2x与直线x+y=1、x﹣1=0围成的平面图形的面积等于()A .e2﹣1B .e2﹣C .e2﹣D.e2﹣【分析】先求出曲线与直线的交点,设围成的平面图形面积为S,利用定积分求出S 即可.【解答】解:由题意,曲线y=e2x与直线x+y=1、x﹣1=0围成的平面图形如图所示∴S ==()=﹣=故选:A.【点评】本题主要考查定积分求面积.用定积分求面积时,要注意明确被积函数和积分区间,属于基本运算.21.曲线y2=x与y=x2所围图形的面积为()A .B .C .D .﹣1【分析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数在区间[0,1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案.16【解答】解:由,解得或,则曲线y2=x与y=x2所围图形的面积为S =(﹣x2)dx =(﹣x3)=(﹣)﹣0=,故选:C.【点评】本题求两条曲线围成的曲边图形的面积,着重考查了定积分的几何意义和积分计算公式等知识,属于基础题.22.汽车以V=3t+1(单位:m/s)作变速直线运动时,在第1s至第2s间的1s内经过的位移是()A.4.5m B.5m C.5.5m D.6m【分析】根据题意,由定积分定理,可得汽车在第1s至第2s间的1s内经过的位移S =(3t+1)dt,计算即可得答案.【解答】解:根据题意,汽车在第1s至第2s间的1s内经过的位移S =(3t+1)dt =(+t )=5.5;故选:C.【点评】本题考查了微积分基本定理,关键是理解定积分的几何意义.23.曲线y=﹣x2﹣x与x轴所围成图形的面积被直线y=kx分成面积相等的两部分,则k的值为()A .B .C .D .【分析】先计算出曲线y=﹣x2﹣x与x轴围成区域的面积,然后求出曲线y=﹣x2﹣x与直线y=kx的交点坐标,然后利用定积分计算直线y=kx与曲线y=﹣x2﹣x围17成区域的面积,等于曲线y=﹣x2﹣x与x轴围成区域的面积的一半,列方程求出k 的值.【解答】解:曲线y=﹣x2﹣x与x轴交于(﹣1,0)和原点,所以,曲线y=﹣x2﹣x与x轴围成的平面区域的面积为,联立,解得或,即直线y=kx与曲线y=﹣x2﹣x交于点(﹣k﹣1,﹣k2﹣k)和坐标原点,所以,曲线y=﹣x2﹣x位于直线y=kx上方区域的面积为==,解得,故选:D.【点评】本题考察利用定积分计算曲边三角形的面积,关键在于积分函数与积分区间,属于中等题、24.求曲线y=x2与y=x所围成的图形的面积S,正确的是()A .B .C .D .【分析】根据题意,画出图象确定所求区域,结合定积分的几何性质分析可得答案.【解答】解:根据题意,如图所示,阴影部分为曲线y=x2与y=x所围成的图形,其面积S=S△ABO﹣S曲边梯形ABO =(x﹣x2)dx;故选:A.【点评】本题考查定积分的几何意义,要注意明确被积函数和积分区间.1825.直线y=﹣x与函数f(x)=﹣x3围成封闭图形的面积为()A.1B .C .D.0【分析】先根据题意画出区域,然后然后依据图形得到积分上限为1,积分下限为﹣1的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:联立方程可得,解得x=﹣1,0,1,∴直线y=﹣x与函数f(x)=﹣x3围成封闭图形的面积S=2(x﹣x3)dx=2()=2(﹣)=,故选:C.【点评】考查学生会求出原函数的能力,以及会利用定积分求图形面积的能力,同时考查了数形结合的思想,属于基础题.26.如图,阴影部分的面积为()A.2B.2﹣C .D .【分析】确定积分区间与被积函数,求出原函数,即可求得定积分.【解答】解:由题意阴影部分的面积等于(3﹣x2﹣2x)dx=(3x ﹣x3﹣x2)=(3﹣﹣1)﹣(﹣9+9﹣9)=,故选:C.19【点评】本题考查定积分求面积,考查导数知识的运用,考查学生的计算能力,属于基础题.27.由曲线y =,直线y=x﹣2及x轴所围成的图形的面积为()A .B .C .D.8【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=x2与直线y=6x围成的封闭图形的面积,即可求得结论.【解答】解:由解得,∴曲线y =,直线y=x﹣2及x轴所围成的图形的面积S =﹣(x ﹣2)dx =﹣()=﹣2=.故选:A.【点评】本题考查利用定积分求面积,解题的关键是确定被积区间及被积函数.28.由y=﹣x2与直线y=2x﹣3围成的图形的面积是()A .B .C .D.9【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=﹣x2与直线y=2x﹣3的面积,即可求得结论.【解答】解:由y=﹣x2与直线y=2x﹣3联立,解得y=﹣x2与直线y=2x﹣3的交点为(﹣3,﹣9)和(1,﹣1)因此,y=﹣x2与直线y=2x﹣3围成的图形的面积是S =(﹣x2﹣2x+3)dx =(﹣x3﹣x2+3x )=.故选:B.【点评】本题给出y=﹣x2与直线y=2x﹣3,求它们围成的图形的面积,着重考查了20定积分的几何意义和定积分计算公式等知识,属于基础题.29.一物体在变力F(x)=5﹣x2(力单位:N,位移单位:m)作用下,沿与F(x)成30°方向作直线运动,则由x=1运动到x=2时F(x)作的功为()A.1J B.J C.J D.2J【分析】由物理学知识知,变力F(x)所作的功对应“位移﹣力”只要求W=∫12(5﹣x2)•cos30°dx,进而计算可得答案.【解答】解:由于F(x)与位移方向成30°角.如图:F在位移方向上的分力F′=F•cos30°,W=∫12(5﹣x2)•cos30°dx=∫12(5﹣x2)dx=(5x﹣x3)|12=故选:C.【点评】本题属于物理学科的题,体现了数理结合的思想方法,属于基础题.30.圆(x﹣a)2+y2=r2(a,r∈R,且r>0)的面积等于()A.(a+)dyB.2(a+)dyC.dxD.2dx【分析】由圆的方程求得y关于x的解析式,再求出x的取值范围,根据圆的对称性和定积分的几何意义,写出圆的面积表达式.【解答】解:由圆(x﹣a)2+y2=r2(a,r∈R,且r>0),得y=±,由(x﹣a)2≤r2,解得a﹣r≤x≤a+r;根据圆的对称性和定积分的几何意义,计算圆的面积为S圆=2dx.故选:D.【点评】本题考查了圆的方程与定积分的应用问题,是基础题.31.由曲线y=x2﹣4,直线x=0,x=4和x轴围成的封闭图形的面积(如图)是()A.(x2﹣4)dxB.|(x2﹣4)dx|C.|x2﹣4|dxD.(x2﹣4)dx+(x2﹣4)dx【分析】由题意结合定积分的几何意义整理计算即可求得最终结果.【解答】解:定积分表示曲边梯形的面积,位于x轴上方为正面积,位于x轴下方为负面积,据此可得:由曲线y=x2﹣4,直线x=0,x=4和x轴围成的封闭图形的面积是.故选:C.【点评】本题考查定积分的几何意义及其应用,重点考查学生对基础概念的理解和计算能力,属于中等题.32.某同学用“随机模拟方法”计算曲线y=lnx与直线x=e,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数x i和10个区间[0,1]上的均匀随机数,其数据如表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22 y0.840.250.980.150.010.600.590.880.840.10 lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是()A.B.C.D.【分析】首先确定所给数据中唯一曲边三角形的点的个数,然后利用频率近似概率,结合几何概型求解曲边三角形的面积即可.【解答】解:由表可知,向矩形区域{(x,y)|1⩽x⩽e,0⩽y⩽1}内随机抛掷10个点,其中有6个点在曲边三角形内,其横坐标分别为2.5,1.22,2.52,2.17,1.89,2.22其频率为.∵矩形区域的面积为e﹣1,∴曲边三角形面积的近似值为.故选:D.【点评】本题考查了蒙特卡洛模拟的方法,频率值近似为概率值,将古典概型与几何概型联系起来即可,属于常考题目.二.填空题(共18小题)33.cos xdx+dx=1+.【分析】cos xdx可以直接积分,dx根据几何意义积分即可.【解答】解:dx表示单位圆在[0,1]上的部分的面积,即个单位圆的面积,∴cos xdx+dx=sin x+=1+,故答案为:1+.【点评】本题考查了定积分的求法,考查了定积分的几何意义,主要考查计算能力,属于基础题.34.计算定积分=.【分析】=dx﹣dx,前式根据定积分的几何意义求解,后式直接积分即可得到所求.【解答】解:=dx﹣dx,dx表示半圆y=在[0,1]上部分的面积,即个单位圆的面积,∴=dx﹣dx=﹣x=.故答案为:.【点评】本题考查了定积分的求法,定积分的几何意义,主要考查计算能力,属于基础题.35.(e x+2x)dx=e2+3.【分析】直接利用定积分运算法则求解即可【解答】解:(e x+2x)dx=e2﹣1+(22﹣0)=e2+3,故答案为:e2+3【点评】题考查定积分的运算法则的应用,考查计算能力36.计算:dx=π﹣.【分析】根据定积分的几何意义,结合圆的知识求解即可.【解答】解:依题意,dx表示半圆y=,在x=1和x=2之间的部分与x轴围成的区域的面积,如图中阴影所示,依题意,△AOB为等边三角形,故B的纵坐标为∴dx=π×22﹣=π﹣,故答案为:π﹣.【点评】本题考查了定积分的求法,考查定积分的几何意义,主要考查计算能力和直观想象,属于中档题.37.若,则a=2.【分析】直接利用关系式求出函数的被积函数的原函数,进一步求出a的值.【解答】解:若,则,即,所以a=2.故答案为:2.【点评】本题考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.38.由曲线y=﹣x2+2x与直线y=x围成的封闭图形的面积为.【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=x2+2x与直线y=x所围成的封闭图形的面积,即可求得结论.【解答】解:将直线方程与曲线方程联立可得,所以正直线y=x和抛物线y=﹣x2+2x交点坐标为(0,0),(1,1),结合图象可知围成的封闭图形的面积为.故答案为:.【点评】本题考查利用定积分求面积,解题的关键是确定被积区间及被积函数.本题属于基础题.39.由x的正半轴、y=x2和x=4所围成的封闭图形的面积是【分析】根据定积分的几何意义和积分法则求解即可.【解答】解:根据定积分的几何意义,由x的正半轴、y=x2和x=4所围成的封闭图形的面积是:S===﹣0=,故答案为:.【点评】本题主要考查了定积分的几何意义与计算问题,是基础题.40.计算定积分sin xdx=2.【分析】根据题意,由定积分的计算公式可得sin xdx=(﹣cos x),进而计算可得答案.【解答】解:根据题意,sin xdx=(﹣cos x)=cos0﹣cosπ=2;故答案为:2.【点评】本题考查定积分的计算,关键是掌握定积分的计算公式.41.定积分=+e.【分析】根据题意,由定积分的计算公式可得=(+e x),进而计算可得答案.【解答】解:根据题意,=(+e x)=(+e)﹣(0+1)=+e,故答案为:+e.【点评】本题考查定积分的计算,关键是掌握定积分的计算公式.42.的值为8π.【分析】利用定积分性质和圆的面积求出即可.【解答】解:根据定积分的性质,y=sin3x为奇函数,在[﹣4,4]图象关于原点对称,定积分为0,y=在x∈[﹣4,4]的面积为以(0,0)为圆心,半径为4的圆的面积的一半,故为8π,故答案为:8π.【点评】本题考查定积分的计算,考查学生分析解决问题的能力,属于中档题.43.由曲线,直线y=2x,x=2所围成的封闭的图形面积为3﹣2ln2.【分析】求出曲线,直线y=2x的交点坐标,根据定积分的几何意义列式求解即可.【解答】解:依题意,由解得,∴封闭的图形面积为=(x2﹣2lnx)=3﹣2ln2.故答案为:3﹣2n2.【点评】本题考查了定积分的几何意义,定积分的求法,主要考查分析解决问题的能力和计算能力,属于基础题.44.已知曲线y2=x与y=x﹣2的图象所围成的阴影部分面积为.【分析】联立直线和抛物线,可得交点坐标,对y积分即可求得面积.【解答】解:联立y2=x与y=x﹣2可得,直线与抛物线的交点为(1,﹣1),(4,2),根据定积分的意义,图象所围成的阴影部分面积:S==()=,故答案为:.【点评】本题考查了定积分的应用,定积分的几何意义,属于基础题.45.直线x=0、直线y=e+1与曲线y=e x+1围成的图形的面积为1.【分析】根据定积分的几何意义求解即可.【解答】解:依题意,令e+1=e x+1,得x=1,所以直线x=0,y=e+1与曲线y=e x+1围成的区域的面积为S===(ex﹣e x)|=1,故答案为:1.【点评】本题考查了定积分的几何意义,定积分的计算,属于基础题.46.如图是平面直角坐标系下y=sin x与圆O:x2+y2=π2图象,在圆O内随机取一点,则此点落在右图中阴影部分的概率是.【分析】计算出阴影面积,圆的面积,代入几何概型的概率计算公式即可.【解答】解:依题意,图中阴影面积为S=2=﹣2cos x|=4,而圆的面积为S'=π×π2=π3,所以圆O内随机取一点,则此点落在右图中阴影部分的概率是=.故答案为:.【点评】本题考查了定积分的求法,圆的方程与面积,几何概型的概率计算,属于基础题.47.曲线y=与直线y=2x﹣1及x轴所围成的封闭图形的面积为.【分析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积【解答】解:由曲线y=与直线y=2x﹣1构成方程组,解得,由直线y=2x﹣1与y=0构成方程组,解得;∴曲线y=与直线y=2x﹣1及x轴所围成的封闭图形的面积为:S=dx﹣(2x﹣1)dx=﹣(x2﹣x)=﹣=.故答案为:.【点评】本题考查了定积分的计算问题,关键是求出积分的上下限,是基础题.48.由函数y=e x,y=,x=e所围成的封闭图形的面积为e e﹣2e.【分析】运用定积分知识计算围城曲边梯形的面积可得结果.【解答】解:根据题意得,联立得;∴S==e e﹣e﹣e(lne﹣ln1)=e e﹣2e故答案为e e﹣2e.【点评】本题考查由定积分计算围成图形的面积.49.直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为1,则k=±6.【分析】求出直线y=kx+1与抛物线y=kx2+1(k≠0)的两个交点,确定被积函数和被积区间,利用定积分可求出围成的封闭区域的面积,即可求出k的值.【解答】解:当k>0时,直线y=kx+1与抛物线y=kx2+1交于(0,1)和(1,k+1)两点,且当0<x<1时,直线y=kx+1在抛物线y=kx2+1上方,此时,直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为=k,得k =6;当k<0时,直线y=kx+1与抛物线y=kx2+1交于(0,1)和(1,k+1)两点,且当0<x<1时,直线y=kx+1在抛物线y=kx2+1下方,此时,直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为,得k=﹣6.故答案为:±6.【点评】本题考查利用定积分来计算面积,解决本题的关键是确定被积函数和被积区间,属于中等题.50.计算2xdx=8.【分析】直接根据定积分的计算法则即可.【解答】解:2xdx=x2=32﹣12=8,故答案为:8【点评】本题考查了定积分的计算,属于基础题。
定积分试题及答案大学一、选择题1. 定积分的几何意义是表示曲线与x轴之间的有向面积。
()A. 正确B. 错误答案:A2. 设函数f(x)在区间[a,b]上连续,则定积分∫[a,b]f(x)dx的值是唯一的。
()A. 正确B. 错误答案:A3. 定积分∫[a,b]kf(x)dx=k∫[a,b]f(x)dx,其中k为常数。
()A. 正确B. 错误答案:A二、填空题1. 设f(x)=x^2,计算定积分∫[0,1]x^2dx的值为____。
答案:1/32. 若∫[0,1]f(x)dx=2,则∫[0,2]f(x)dx=____。
答案:43. 设f(x)=2x,求定积分∫[1,2]2xdx的值为____。
答案:4三、解答题1. 计算定积分∫[0,π]sin(x)dx。
解:根据定积分的计算公式,我们有∫[0,π]sin(x)dx = [-cos(x)] | [0,π] = -cos(π) - (-cos(0)) = 2。
2. 设f(x)=x^3+3x^2+2x-1,求定积分∫[-1,1]f(x)dx。
解:首先计算不定积分F(x)=∫f(x)dx,得到F(x)=x^4/4+x^3+x^2-x+C。
然后计算定积分∫[-1,1]f(x)dx = F(1)-F(-1) = [(1)^4/4+(1)^3+(1)^2-1] - [(-1)^4/4+(-1)^3+(-1)^2-(-1)]= (1/4+1+1-1) - (1/4-1+1+1) = 0。
3. 求曲线y=x^2与x轴及直线x=1,x=2所围成的面积。
解:根据定积分的几何意义,所求面积为S = ∫[1,2]x^2dx = [x^3/3] | [1,2] = (2^3/3) - (1^3/3) = 7/3。
一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( ) A .一定是正的 B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对解析: 由⎠⎛a bf (x )d x 的几何意义及f (x )>0,可知⎠⎛a b f (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛ab f (x )d x >0.答案:A 2. 若22223,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .4.11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1- 【答案】A 【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( )A .16B .13C .56D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0), 利用微积分的几何含义可得封闭图形的面积为:23201111111((2)()|().32326S x x x dx x x --=-+=--=--=⎰ 二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________.解析: f (x )=⎠⎛0x(2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3),∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________. 解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300=7890(m).∴v =s t =789030=263(m/s).答案:263 m/s 三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)(cos e )d x x x π-⎰+;(3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x .解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1eπ. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x =⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2.9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ).解:由f (0)=0得c =0, f ′(x )=3x 2+2ax +b . 由f ′(0)=0得b =0, ∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析: (1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-ab =0.∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=⎣⎡⎦⎤13ax 3+(2-a )x | 10=2-23a =-2, ∴a =6,∴c =-4. 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且61(),2f x dx =⎰则66()f x dx -⎰等于( )A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴661()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰答案:C2. (改编题)A . 3 B. 4 C. 3.5 D. 4.5 【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .4答案:C解析:由⎩⎪⎨⎪⎧y =x2y =kx 消去y 得x 2-kx =0,所以x =0或x =k ,则阴影部分的面积为 ∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92. 即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46.答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的A .31 B .34 C .2 D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+, 则()x f 的图象与x 轴所围成的封闭图形的面积为232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。
定积分典型例题20例答案例1 求33322321lim(2)n n n n n®¥+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x nD =,然后把2111n n n =×的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即入和式中各项.于是将所求极限转化为求定积分.即33322321lim (2)n n n n n ®¥+++=333112lim ()n n n n nn ®¥+++=13034xdx =ò.例2 2202x x dx -ò=_________.解法1 由定积分的几何意义知,2202x x dx -ò等于上半圆周22(1)1x y -+= (0y ³) 与x 轴所围成的图形的面积.故2202x x dx -ò=2p. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则,则222x x dx -ò=2221sin cos t tdt pp --ò=22021sin cos t tdt p-ò=2202cos tdt pò=2p例3 (1)若22()x t x f x e dt -=ò,则()f x ¢=___;(2)若0()()xf x xf t dt =ò,求()f x ¢=___.分析 这是求变限函数导数的问题,利用下面的公式即可这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ¢¢=-ò.解 (1)()f x ¢=422x x xee---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得可得()f x ¢=()()xf t dt xf x +ò.例4 设()f x 连续,且31()x f t dt x -=ò,则(26)f =_________.解 对等式310()x f t dt x -=ò两边关于x 求导得求导得32(1)31f x x -×=,故321(1)3f x x-=,令3126x -=得3x =,所以1(26)27f =.例5 函数11()(3)(0)xF x dt x t =->ò的单调递减开区间为_________.解 1()3F x x ¢=-,令()0F x ¢<得13x>,解之得109x <<,即1(0,)9为所求.为所求. 例6 求0()(1)arctan xf x t tdt =-ò的极值点.的极值点. 解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下: 故1x =为()f x 的极大值点,0x =为极小值点.为极小值点. 例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中2arcsin 0()xt g x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim ()n nf n ®¥.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0tf g e dt -===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x-=¢¢===-.故所求切线方程为y x =.而.而3()(0)3lim ()lim33(0)330n n f f n nf f n n®¥®¥-¢=×==-.例8 求 22sin lim(sin )x x x tdt t t t dt®-òò;分析 该极限属于型未定式,可用洛必达法则.型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt ®-òò=2202(sin )lim(1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x x x ®-×- =2012(2)lim sin x x x®-×=0.注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.x (,0)-¥(0,1)1 (1,)+¥()f x ¢-+-例9 试求正数a 与b ,使等式2021lim1sin xx t dt x b x a t®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t ®-+ò=220lim 1cos x x a x b x ®+-=22001lim lim 1cos x x x b x a x ®®×-+201lim 11cos x x b xa ®==-,由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由 2012lim11cos x x xaa®==-,得4a =.即4a =,1b =为所求.为所求. 例10 设sin 20()sin xf x t dt =ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的(). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小.D .低阶无穷小. 解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x x g x x x ®®×=+ 2200cos sin(sin )lim lim 34x x x x x x ®®=×+ 22011lim 33x x x ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f xg x x x x ®®®-+-+===++.例11 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx --+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例12 设()f x 是连续函数,且1()3()f x x f t dt =+ò,则()________f x =.分析 本题只需要注意到定积分()baf x dx ò是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且11(3)()x a dx f t dt a +==òò.所以所以2101[3]2x ax a +=,即132a a +=,从而14a =-,所以,所以 3()4f x x =-.例13 计算2112211x xdx x-++-ò. 分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解2112211x x dx x -++-ò=211112221111xxdx dx x x--++-+-òò.由于22211x x +-是偶函数,而211xx +-是奇函数,有112011x dx x-=+-ò, 于是于是 2112211x xdx x-++-ò=212411x dx x+-ò=2212(11)4x x dx x--ò=11200441dx x dx --òò由定积分的几何意义可知12014x dx p-=ò, 故2111022444411x xdx dx x p p -+=-×=-+-òò.例14 计算22()x d tf x t dt dx -ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以22()x tf x t dt -ò=201()()2xf u du -ò=21()2x f u du ò,故220()x d tf x t dt dx -ò=201[()]2x d f u du dx ò=21()22f x x ×=2()xf x . 错误解答 22()x d tf x t dt dx -ò22()(0)xf x x xf =-=.错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dt f x dx¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元. 例15 计算3sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解 3s i n x x d x pò3(c o s )x d x p=-ò330[(c o s )](co s )x x x d x pp=×---ò 30cos 6xdx pp=-+ò326p=-. 例16 计算1200ln(1)(3)x dx x +-ò. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò 11ln 2ln324=-.例17 计算20sin x e xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于2sin xe xdx pò20sin xxde p=ò220[sin ]cos xxe x e xdx p p=-ò220cos xe e xdx p p=-ò,(1) 而2cos xe xdx pò20cos xxde p=ò2200[cos ](sin )xxe x e x dx p p=-×-ò 2sin 1xe xdx p=-ò, (2)将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]xe e xdx p p=--ò,故20sin xe xdx pò21(1)2e p=+.例18 计算10arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx ò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421x dx x p=--ò. (1) 令sin x t =,则,则2121x dx x-ò2202sin sin 1sin t d t tp =-ò220sin cos cos t tdt tp=×ò220sin tdt p=ò 201cos 22t dt p-==ò20sin 2[]24t t p-4p =. (2) 将(将(22)式代入()式代入(11)式中得)式中得1arcsin x xdx =ò8p .例19设()f x [0,]p 上具有二阶连续导数,()3f p ¢=且0[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx p ¢¢+ò00()sin cos ()f x d x xdf x p p¢=+òò[]0000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp¢¢¢=-++òò()(0)2f f p ¢¢=--=. 故 (0)f ¢=2()235f p ¢--=--=-.例20 计算2043dx x x +¥++ò. 分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+ =ln 32.。
定积分试题及答案大学# 定积分试题及答案试题1:计算定积分 \(\int_{0}^{1} x^2 dx\)。
答案:首先,我们需要找到函数 \(f(x) = x^2\) 的原函数。
对于这个函数,原函数是 \(F(x) = \frac{1}{3}x^3\)。
然后,我们计算在区间 \([0, 1]\) 上的定积分:\[\int_{0}^{1} x^2 dx = F(1) - F(0) = \frac{1}{3}(1)^3 -\frac{1}{3}(0)^3 = \frac{1}{3} - 0 = \frac{1}{3}\]试题2:求定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。
答案:函数 \(f(x) = \frac{1}{x}\) 的原函数是自然对数函数\(F(x) = \ln|x|\)。
计算定积分:\[\int_{1}^{2} \frac{1}{x} dx = F(2) - F(1) = \ln(2) - \ln(1) = \ln(2)\]试题3:计算定积分 \(\int_{0}^{\pi} \sin(x) dx\)。
答案:函数 \(f(x) = \sin(x)\) 的原函数是 \(-\cos(x)\)。
计算定积分:\[\int_{0}^{\pi} \sin(x) dx = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 2\]试题4:求定积分 \(\int_{-1}^{1} (x^2 - 1) dx\)。
答案:函数 \(f(x) = x^2 - 1\) 的原函数是 \(F(x) =\frac{1}{3}x^3 - x\)。
计算定积分:\[\int_{-1}^{1} (x^2 - 1) dx = F(1) - F(-1) =\left(\frac{1}{3}(1)^3 - 1\right) - \left(\frac{1}{3}(-1)^3 - (-1)\right) = \frac{1}{3} - 1 + \frac{1}{3} + 1 = \frac{2}{3} \]试题5:计算定积分 \(\int_{0}^{1} e^x dx\)。
定积分典型例题20例答案例 1 求 Iim 42(3n τ 32n^ JH 3n 3).n厂n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限•解 将区间[0, 1] n 等分,则每个小区间长为.* ,然后把1的一个因子-乘n n n nn入和式中各项•于是将所求极限转化为求定积分•即Iim A (V n 4 5+⅛2n 2切|+卅)=1计气卩弋F + 山 +;F )=[坏dx=3 •n -r ,n n n I n∖ n 042 -----------------2例 2 [J 2x —xdx= ______________•2 ry解法1由定积分的几何意义知, 0J 2x —X 2dx 等于上半圆周(x —1)2+y 2=1 ( y ≥0)与X 轴所围成的图形的面积.故$ 2χ 一χ2d χ= •■■02解法2本题也可直接用换元法求解.令x_1 = Sint (丄兰t ≤三),则2 2这是求变限函数导数的问题,禾U 用下面的公式即可d V(X)— f (t)dt = f[v(x)]v(x) - f[u(x)]u (X) • dxU(X )丄2-e;可得.Xf (X) = 0f (t)dt Xf(X) •X 3丄解 对等式;f(t)dt =x 两边关于X 求导得3 2f (x -1) 3x =1,4_..1 —sin 2tcostdt =2 :、1 —sin 2tcostdt2522例3(1)若f (x) e 丄Xdt ,则 f (X) =— ; (2)若 f(x)=Xxf (t)dt ,求 f (X )=— •■:'≡. 2 -= 2 02COs tdt=- 分析(2) 由于在被积函数中 X 不是积分变量,故可提到积分号外即Xf (X)=X Of (t)dt ,则V(X) 例4设f (x)连续,且X 3 -1O f (t)dt =X ,贝U f(26)=------ 2-XdX =例7已知两曲线y =f (X)与y =g(χ)在点(0,0)处的切线相同,其中arcs inx 十2g(x) = 0e dt , X [-1,1],试求该切线的方程并求极限Iim nf (-3). n 性 n分析 两曲线y =f(χ)与y =g(χ)在点(0,0)处的切线相同,隐含条件 f (0^g (0).解由已知条件得12X 2= (2) Iim =0 .x-⅛ Si nx注此处利用等价无穷小替换和多次应用洛必达法则.故 f(x 3-1)=13X 2 3 1,令X 46得x=3 ,所以f(26)冷1例5函数F(x) = j (3 _4)dt (x >0)的单调递减开区间为F(X)= 31 1 1x ,令F(X z O 得X 3 ,解之得。
定积分典型例题20例答案例1求lim 丄(循2丁2『L Vn 3) •n n分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘nn n nn入和式中各项•于是将所求极限转化为求定积分•即lim A (习n 2 ^2n 2 LVn 3) = lim -(^—L ^—) = VXdx - • n nnnn,n ,n ° 42 -- ------ r例 2o (2x x dx = ___________• 2 . ________解法1由定积分的几何意义知, °. 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0)与x 轴所围成的图形的面积.故2,2x x 2dx = _ • 0 2'1 sin 2tcostdt = 2。
2J sin 2t costdt =2 : cos 2 tdt^22x 2 2x例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)=分析这是求变限函数导数的问题,利用下面的公式即可(1) f (x) =2xe x e x可得xf (x) = 0 f (t)dt xf (x) •x 1例 4 设 f(x)连续,且。
f(t)dt x ,贝U f (26) = _________________O Ax 1解 对等式0 f(t)dtx 两边关于x 求导得3 2f(x 1) 3x 1,解法2本题也可直接用换元法求解.令x 1= Sint (2 t 2),则d v(x)dx u(x)f(t)dt f[v(x)]v(x) f[u(x)]u (x) • (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即xf (x) x 0 f (t)dt ,则x 2dx =3 1 令x 1 26得x 3,所以f (26)27故f(x 3 1) 丄3x 例5函数F(x)F (x)1 1,令F (x) 0得r 3,解之得xx1 10 x -,即(0,-)为所求.9 9f (x)x0 (1 t)arctan tdt 的极值点.f (x) = (1 x)arctan x .令 f (x) = 0,得 x 1 , x 0.列表如下:x(,0)0 (0,1) 1(1,)f (x)-0 +f (x)的极大值例7已知两曲线y f (x)与y g(x)在点(0,0)处的切线相同,其中arcs inxg(x) 0t 2e dt , x [ 1,1],试求该切线的方程并求极限 lim nf (?).n n分析两曲线y f (x)与y g(x)在点(0,0)处的切线相同,隐含条件f(0) g(0),f (0)g (0) •解由已知条件得f(0)g(0)°e " dt且由两曲线在(0,0)处切线斜率相同知f (0)g(0)(arcsin x)2e1 x 2故所求切线方程为 y x .而lim nf (-) n nIim3nf(-) n3 0 nf(0) 一 3f (0) 3 •x 22sin tdtlim 0;x 0分析 该极限属于型未定式,可用洛必达法则. 0X 22sin tdt lim ------------------ = lim = ( 2) lim= ( 2)x 0:t (t sin t)dt x 0( 1) x (x sinx) 、7 x 0x sinx ' 丿2x(sin x 2)22 2(x ) 34x(x 0)的单调递减开区间为x 1(3点,x 0为极小值点.由题意先求驻点.于是12x=(2) lim =0 . x 0sinx注此处利用等价无穷小替换和多次应用洛必达法则.1 x t 2例9 试求正数a 与b ,使等式lim -------------------- dt 1成立.x 0x bsin x 0 ‘ ―t 2分析 易见该极限属于 0型的未定式,可用洛必达法则.1 x 2lim.a x 01 bcosx21 x lim3x 0x 2故f(x)是g(x)同阶但非等价的无穷小.2例11计算1|x|dx .分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.2 220 2x 0 x 251|x|dx = 1( x)dx 0xdx = [ y] 1 [y]0 =-.在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如[-]32丄,则是错误的.错误的原因则是由于被积函数 」2在x 0处间断且在被x 6 x 2lim__ x 0x bsin x 0 . a 2x_ _t 「dt = lim _— =lim 1f 2 x 01 bcosx x op x 2x 2limx 01 bcosx由此可知必有 lim(1 bcosx) 0,得 b 1 .又由得a 4 .即a 4 , si nx1xlim a x 01 cosxb 1为所求. 例10设f (x)sin t 2dt , g(x) x 3 x 4,则当0 时,f (x)是 g(x)的( ). A .等价无穷小.B .同阶但非等价的无穷小.解法1由于lim 型 lim si 门伽浪)cosxx 0g(x) x 0C .高阶无穷小.D .低阶无穷小.mo Hx3x 2 4x 3cosx3 4xmo Hxsin (sin x)x解法2 将sin t 2展成t 的幕级数, 1 2 3 3!(t)f (x) 0 sin x 2 [t 2 再逐项积分,得到1 si n 42L ]dt 1 . 3 一 sin xlim 少 x 0g(x).31sin x(- lim -1 . 4sin x 4234x x1 lim -x 01 ■ 4 . sin x L 42 1 xUdx x积区间内无界 例12设f(x)是连续函数,且f(x) 1x 3 0 f(t)dt ,则 f (x)所以 分析本题只需要注意到定积分因f (x)连续,f (x)必可积,从而a 1—,所以 4例13 计算12x21 分析 bf (x)dx 是常数(a, b 为常数).从而f (x) x 3a ,且f(x) x1 21[―X 2 3ax]0 23 2 .10 f (t)dt 是常数,记 10 f (t)dt a ,则1 o(x3a)dx3a a ,x dx. 1 1 x 2由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. I 2x 2 x ------ dx = II 1 x 2 I 2x 2----- dxII .1 x 2 ___ dx .由于 11 1 x 2一是偶函数,而 1 1 x 2 旦古函数, 是奇 2 x 111=dx 2 x0,I2x 2 xII1 x 2dx = 4 由定积分的几何意义可知 例14计算肿(x 2 011 x 20 1x 2dx 1 2x 2 1 dx = 4 1x 2 (11x 2) 0x _= dx 1 1 x 2t 2)dt ,其中 分析 要求积分上限函数的导数, 元使被积函数中不含 ,然后再求导. 由于 x 2 otf(xx 2dx = 4 dx 4;FVdx故令x 2xdx 01 4 dx 0 f(x)连续. 但被积函数中含有 x ,因此不能直接求导,必须先换2 1 x2 2 2t )dt = 2 0f(x t )dt .2 20时u x ;当t x 时u 0,而dtx2 2 1tf(x t)dt=;222d 1 x tf(x t)dt= dx [2 0x 2f (U)( du)=idu ,所以x 2f (u)du ,f (u)du] =£ f(x 2) 2x = xf (x 2).错误解答 — tf(x 2 t 2)dtxf(x 2 x 2) xf(O).dx 0错解分析这里错误地使用了变限函数的求导公式,公式d x(x) a f (t)dt f (x)dx a中要求被积函数f(t)中不含有变限函数的自变量 x ,而f (x 2 t 2)含有x ,因此不能直接求导,而应先换元. 15 计算 3 xsinxdx .分析 被积函数中出现幕函数与三角函数乘积的情形,通常采用分部积分法.=1ln21 In3 .417计算2e si nxdx .分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于 02e x sin xdx;sin xde x [e x sinx]〕2e x cosxdxe^2e x cos xdx ,(1)而02 *cosxdx2cos xde x[e x cosx](?o2e x ( sin x)dx2e x sin xdx 01 , (2)将(2)式代入(1)式可得?e x s in xdx e 2[2 e x sin xdx 1],故2 e xsin xdx1 ~2-(e 2 1). 21例 18 计算 xarcsinxdx .解 3 xs in xdx 3 xd(0 0 '3cosx) [x ( COSX )]oo3( cos x) dx616计算0兽dx .3cosxdx¥ 6分析被积函数中出现对数函数的情形,可考虑采用分部积分法.1x)d(-3 xJdx= 1ln(1 0(3 x)2'1Fln(1x)】1(3 x) (1 x)dx1 In2 21 xarcsin xdx分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于 0 [ f (x) f (x)]cos xdx 0 f (x)d sinxcosxdf (x){ f (x)sin x 00 f (x)sin xd" {[ f (x)cosx]° 0f (x)sin xd 冷f ( ) f (0) 2 .故 f (0) 2 f ( )2 3分析 该积分是无穷限的的反常积分,用定义来计算.解 dxtdx1 t 11 解2= lim 2= lim ()dxx 4x 3 t 0 x 4x 3 t 2 0 x 1 x 31 x 1 t 1 t 1 1 =lim [In ]0= lim (In In ) t2 x3 t 2 t 3 3分析 被积函数中出现反三角函数与幕函数乘积的情形,通常用分部积分法.1解xarcs in xdx1x20arcsinxd (一2x1[ arcsinx]。
定积分典型例题20例答案例1 求33322321lim(2)n n n n n →∞+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =⎰.例2 2202x x dx -⎰=_________.解法1 由定积分的几何意义知,2202x x dx -⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则222x x dx -⎰=2221sin cos t tdt ππ--⎰=2221sin cos t tdt π-⎰=2202cos tdt π⎰=2π 例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5 函数11()(3)(0)x F x dt x t =->⎰的单调递减开区间为_________.解 1()3F x x'=-,令()0F x '<得13x >,解之得109x <<,即1(0,)9为所求. 例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x -=''===-.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-x(,0)-∞0 (0,1)1 (1,)+∞()f x '-+-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t →-+⎰=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x→→⋅-+201lim 11cos x x b x a →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算2112211x x dx x-++-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 2112211x x dx x-++-⎰=211112221111x x dx dx x x--++-+-⎰⎰.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-⎰, 于是2112211x x dx x -++-⎰=2102411x dx x +-⎰=22120(11)4x x dx x--⎰=11200441dx x dx --⎰⎰ 由定积分的几何意义可知12014x dx π-=⎰, 故211122444411x x dx dx xππ-+=-⋅=-+-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π⎰30(c o s )x d x π=-⎰33[(c o s )](c o s )x x x d x ππ=⋅---⎰ 30cos 6xdx ππ=-+⎰326π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21021421x dx x π=--⎰. (1) 令sin x t =,则2121x dx x-⎰222sin sin 1sin td t tπ=-⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算243dxx x +∞++⎰. 分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。
定积分典型例题20例答案例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x '=()0F x '<3>,解之得109x <<,即1(0,)9为所求.例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →=-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21-⎰=211--+⎰⎰2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰,故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()xd tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1) 令sin x t =,则21⎰22sin t π=⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算2043dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。