人教版九年级数学上册 同步练习 21.3实际问题与一元二次方程(第三课时)
- 格式:doc
- 大小:130.00 KB
- 文档页数:6
实际问题与一元二次方程同步练习一.选择题(共12小题)1.某银行经过最近的两次降息,使一年期存款的年利率由2.25%降低至1.21%,设平均每次降息的百分率为x,则x满足方程()A.2.25%(1-2x)=1.21%B.1.21%(1+2x)=2.25%C.1.21%(1+x)2=2.25%D.2.25%(1-x)2=1.21%2.一次围棋比赛,要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x个参赛棋手,则可列方程为()A.0.5x(x-1)=45B.0.5x(x+1)=45C.x(x-1)=45D.x(x+1)=453.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1-x)2=461B.180(1+x)2=461C.368(1-x)2=442D.368(1+x)2=4424.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()B.15C.16D.255.某件羊毛衫的售价为1000元,因换季促销,商家决定降价销售,在连续两次降价x%后,售价降低了190元,则x为()A.5B.10C.19D.816.2017年底,全国铁路营业里程为12.7万公里,其中高铁2.5万公里;截至2019年底,中国高铁运营里程突破3.5万公里(按3.5万公里计算),约占全球高铁网的七成,若这两年我国高铁里程的增长率相同,在保持年增长率不变的前提下,预计2021年中国高铁里程为多少万公里()A.4.5B.4.7C.4.9D.5.17.疫情期间,某口罩厂一月份的产量为100万只,由于市场需求量不断增大,三月份的产量提高到121万只,该厂二、三月份的月平均增长率为()A.12.1%B.20%D.10%8.近几年来安徽省各地区建立了比较完善的经济困难学生资助体系.某地区在2017年给每个经济困难学生发放的资助金额为800元,2019年发放的资助金额为1250元,则该地区每年发放的资助金额的平均增长率为()A.10%B.15%C.20%D.25%9.三角形两边的长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是()A.24B.24或C.48D.10.如图,某中学计划靠墙围建一个面积为80m2的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10mB.4mC.10mD.8m11.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A.7B.8C.9D.1012.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?()A.0.5B.0.6C.2-D.4-2二.填空题(共5小题)13.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.14.如图,在一个长20m,宽10m的矩形草地内修建宽度相等的小路(阴影部分),若剩余草地(空白部分)的面积171m2,则小路的宽度为m.15.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.16.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.17.“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有人.三.解答题(共5小题)18.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?19.适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.20.受疫情影响,某种蔬菜的价格快速上涨,是原价的1.5倍,同样用48元能买到的蔬菜比原来少了2千克.(1)求这种蔬菜的原价是每千克多少元?(2)政府采取增加采购渠道、财政补贴等多种措施,降低价格,方便老百姓的生活.这种蔬菜的批发价两次下调后,由每千克10元降为每千克6.4元.求平均每次下调的百分率.21.甲商品的进价为每件20元,商场确定其售价为每件40元.(1)若现在需进行降价促销活动,预备从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.若该商品两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整?22.乐高积木是儿童喜爱的玩具.这种塑胶积木一头有凸粒,另一头有可嵌入凸粒的孔,形状有1300多种,每一种形状都有12种不同的颜色,以红、黄、蓝、白、绿色为主.它靠小朋友自己动手动脑,可以拼插出变化无穷的造型,令人爱不释手,被称为“魔术塑料积木”.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价;(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降m(m>0)元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润为5760元。
实际问题与一元二次方程同步练习一.选择题(共12小题)1.疫情期间,某快递公司推出无接触配送服务,第1周接到5万件订单,第2周到第3周订单量增长率是第1周到第2周订单量增长率的1.5倍,若第3周接到订单为7.8万件,设第1周到第2周的订单增长率为x,可列得方程为()A.5(1+x+1.5x)=7.8B.5(1+x×1.5x)=7.8C.7.8(1-x)(1-1.5x)=5D.5(1+x)(1+1.5x)=7.82.如图,某小区规划在一个长40m、宽26m的长方形场地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草,要使每一块草坪的面积都为144m2,那么通道的宽x应该满足的方程为()A.(40+2x)(26+x)=40×26B.(40-x)(26-2x)=144×6C.144×6+40x+2×26x+2x2=40×26D.(40-2x)(26-x)=144×63.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A.7B.8C.9D.104.一种商品的原价是16元,经过两次提价后的价格为20元,如果每次提价的百分率都是x,根据题意,则x的值应在()A.0 和5%之间B.5%和10%之间C.10%和15%之间D.15%和20%之间5.如图,某中学计划靠墙围建一个面积为80m2的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10m B.4m C.10m D.8m6.在半径为R的圆形钢板上,挖去四个半径都为r的小圆.若R=16.8,剩余部分的面积为272π,则r的值是()A.3.2B.2.4C.1.6D.0.87.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个B.8个C.9个D.12个8.一块矩形菜地的面积是120m2,如果它的长减少2m,菜地就变成正方形,则原菜地的长是()A.10B.12C.13D.149.为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9B.10C.11D.1210.如图,把长40cm,宽30cm的长方形纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm (纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A.3cm B.4cm C.4.8cm D.5cm11.某楼盘准备以每平方米16000元的均价对外销售,由于受有关房地产的新政策影响,购房者持币观望.开发商为促进销售,对价格进行了连续两次下调,结果以每平方米14440元的均价开盘销售,则平均每次下调的百分率为()A.5%B.8%C.10%D.11%12.如图,在△ABC中,△ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P 也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟二.填空题(共5小题)13.我国南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步).问阔及长各几步?若设阔(宽)为x步,则所列方程为.14.运动会入场式上,某班队列为m行n列的矩形方阵.当队伍行进到表演区时,队列进行变形,行数增大2,列数减小3,恰好组成正方形方阵,则该班同学有人.15.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.16.一张长方形的会议桌,长3米,宽2米,有一块台布的面积是桌面面积的1.5倍,并且铺在桌面上时,各边垂下的长度相同,则台布各边垂下的长度是米.(结果保留根号)17.如图,市中心广场有一块长50m,宽30m的矩形场地ABCD,现计划修建同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种植草坪要使草坪部分的总面积为1000m2,则人行道的宽为m.三.解答题(共5小题)18.今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10个,问应将每个口罩涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?19.如图1,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.20.如图所示,在Rt△ABC中,△B=90°,AB=6cm,BC=8cm,点P由点A出发,沿AB 边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间距离是cm?21.适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.22.为了满足市场上的口罩需求,某厂购进A、B两种口罩生产设备若干台,已知购买A 种口罩生产设备共花费360万元,购买B种口罩生产设备共花费480万元.购买的两种设备数量相同,且两种口罩生产设备的单价和为140万元.(1)求A、B两种口罩生产设备的单价;(2)已知该厂每生产一盒口罩需要各种成本40元,如果按照每盒50元的价格进行销售,每天可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每天减少20盒,要保证每天销售口罩盈利6000元,且规避过高涨价风险,则每盒口罩可涨价多少元?参考答案1-5:DDACC 6-10:CCBBD 11-12:AB13、x(x+12)=86414、3615、5016、17、518、应将每个口罩涨价2元时,才能让顾客得到实惠的同时每天利润为480元.19、:(1)纸盒底面长方形的长为17cm,宽为14cm.(2)若纸盒的底面积是150cm2,纸盒的高为5cm.20、21、(1)0.2或0.5;(2)该文具店每天卖2B铅笔获取的利润不可以达到50元.22、:(1A种口罩生产设备的单价为60万元,则B种口罩生产设备的单价为80万元;(2)每盒口罩可涨价5元.。
人教版九年级上册第21章《一元二次方程》实际应用同步练习(三)基础题训练(一):限时30分钟1.暑假是旅游旺季,为吸引游客,某旅游公司推出两条“精品路线”﹣﹣“亲子游”和“夏令营”.(1)7月份,“亲子游”和“夏令营”活动的价格分别为8000元/人和12000元/人.其中,参加“夏令营”活动的游客人数为“亲子游”活动游客人数的2倍少300人,且“夏令营”线路的旅游总收入不低于“亲子游”线路旅游总收入的一半,问:参加“亲子游”线路的旅游人数至少有多少人?(2)到了8月份,该旅游公司实行降价促销活动,“亲子游”和“夏令营”线路的价格分别下降%和a%(a<20),旅游人数在7月份对应最小值的基础上分别上升3a%和5a%,当月旅游总收入达到256.32万元,求a.2.阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则这个矩形是给定矩形的“加倍”矩形.如图,矩形A1B1C1D1是矩形ABCD的“加倍”矩形.解决问题:(1)当矩形的长和宽分别为3,2时,它是否存在“加倍”矩形?若存在,求出“加倍”矩形的长与宽,若不存在,请说明理由.(2)边长为a的正方形存在“加倍”正方形吗?请做出判断,并说明理由3.甘肃是全国马铃薯主产区之一,定西又是甘肃马铃薯最大主产区.经过多年发展,定西在马铃薯种植基地建设,良种工程、优质新品种用与试验、仓储体系、合作经济组织、外销加工及市场扶植等方面取得了突出成绩,鲜薯及薯制品走销全国20多个省市区,并远销东南亚、俄罗斯等国家和地区.某种植户2016年投资20万元种植马铃薯,到2018年三年共累计投资95万元,若在这两年内每年投资的增长率相同.(1)求该种植户每年投资的增长率;(2)按这样的投资增长率,请你预测2019年该种植户投资多少元种植马铃薯.4.践行“低碳生活,绿色出行”理念,自行车成为人们喜爱的交通工具.其品牌共享自行车在慈溪的投放量自2017年起逐月增加,据统计,该品牌共享自行车1月份投放了640辆,3月份投放了1000辆.(1)若该品牌共享自行车前4个月的投放量的月平均增长率相同,则4月份投放了多少辆?(2)寒假里小明骑“共享单车”去离家2000米的慈溪银泰影视城观看电影,到了影视城发现假期优惠门票忘带了,于是骑车立即返回,已知返回的平均速度是来影视城时的平均速度的2倍,且途中时间少花了5分钟.求小明去影视城的平均速度?5.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?基础题训练(二):限时30分钟6.2017年的中央一号文件《中共中央、国务院关于深入推进农业供给侧结构性改革加快培育农业农村发展新动能的若干意见》明确把深入推进农业供给侧结构性改革作为新的历史阶段农业农村工作主线,某农业公司市场调研发现,新疆阿克苏冰糖心苹果、香梨特别畅销,于是决定购进大批糖心苹果和香梨进行网上销售.3月份糖心苹果每件的售价是香梨每件售价的1.5倍,3月某顾客花780元购买糖心苹果件数是花200元购买香梨件数的2倍还多3件,根据统计3月份每周可分别卖出香梨和糖心苹果300件和800件.(1)求香梨和糖心苹果每件售价分别为多少元?(2)到了四月份,进入了香梨销售的旺季,苹果的销售淡季,公司打算提高香梨的销售价格,梨每件涨价2a%,而每周的销量比三月每周销量增加2a%;糖心苹果每件降价a%,每周的销量比三月份增加(a+10)%,四月份一周总销售额为69120元,求a的值.7.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和14.4万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.7万件,那么该公司现有的22名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?8.如图,有一块长为21m、宽为10m的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道,且人行通道的宽度不能超过3米.(1)如果两块绿地的面积之和为90m2,求人行通道的宽度;(2)能否改变人行通道的宽度,使得每块绿地的宽与长之比等于3:5,请说明理由.9.某水果经销商上月份销售一种新上市的水果平均售价为10元/千克,月销售量为1000千克.经过市场调查,若将该种水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间满足一次函数关系y=kx+b,且当x=5时,y=4000;当x=7时,y=2000.(1)求y与x之间的函数关系式;(2)已知该种水果上月份的成本价为5元/千克,当本月成本价为4元/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?(利润=售价﹣成本)10.名闻遐迩的采花毛尖明前茶,成本每斤400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:x(元/斤)450 500 600y(斤)350 300 200(1)请根据表中的数据求出y与x之间的函数关系式;(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.参考答案1.解:(1)设参加“亲子游”线路的游客人数为x人,则参加“夏令营”活动的游客人数为(2x﹣300)人,由题意得12000(2x﹣300)≥×8000x解得x≥180,∴参加“亲子游”线路的旅游人数至少有180人;(2)由(1)可知,参加“夏令营”活动的游客人数的最小值为60人,由题意得0.8(1﹣)×180(1+3a%)+1.2(1﹣a%)×60(1+5a%)=256.32 设a%=t,整理得:50t2﹣25t+2=0解得t=0.4(舍去)或t=0.1,∴a=10.2.(1)解:存在;设“加倍”矩形的一边为x,则另一边为(10﹣x)则:x(10﹣x)=12 (3分)解之得:x1=5+,x2=5﹣,∴10﹣x1=5﹣;10﹣x2=5+;答:“加倍”矩形的长为5+,宽为5﹣;(2)不存在.因为两个正方形是相似图形,当它们的周长比为2时,则面积比必定是4,所以不存在.3.解:(1)设这两年该该种植户每年投资的年平均增长率为x,则2017年种植投资为20(1+x)万元,2018年种植投资为20(1+x)2万元,根题意得:20+20(1+x)+20(1+x)2=95,解得:x=﹣3.5(舍去)或x=0.5=50%.∴该种植户每年投资的增长率为50%;(2)2019年该种植户投资额为:20(1+50%)3=67.5(万元).4.解:(1)设月平均增长率为x,依题意,得:640(1+x)2=1000,解得:x1=﹣2.25(舍去),x2=0.25=25%,∴1000(1+x)=1250.答:4月份投放了1250辆.(2)设去影视城时的平均速度为y米/分钟,则返回时的平均速度为y米/分钟,依题意,得:﹣=5,解得:y=200,经检验,y=200是所列分式方程的解,且符合题意.答:小明去影视城的平均速度为200米/分钟.5.解:(1)设通道的宽为x米,根据题意得:(52﹣2x)(28﹣2x)=640解得:x=34(舍去)或x=6,答:甬道的宽为6米;(2)设月租金上涨a元,停车场的月租金收入为14400元,根据题意得:(200+a)(64﹣)=14400整理,得a2﹣440a+16000=0解得:a1=400,a2=40由于是惠民工程,所以a=40符合题意.答:每个车位的月租金上涨40元时,停车场的月租金收入为14400元.6.解:(1)香梨和糖心苹果每件售价分别为x元和1.5x元,根据题意得,=2×+3,解得:x=40,经检验:x=40是原方程的解,∴1.5x=60,答:香梨和糖心苹果每件售价分别为40元和60元;(2)根据题意得,40(1+2a%)[300(1+2a%)]+60(1﹣a%){800[1+(a+10)%]}=69120,解得:a=10.7.解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得:10(1+x)2=14.4,解得x1=0.2,x2=﹣2.2(不合题意舍去),∴x=0.2=20%.答:该快递公司投递总件数的月平均增长率为20%;(2)今年4月份的快递投递任务是14.4×(1+20%)=17.28(万件).∵平均每人每月最多可投递0.7万件,∴22名快递投递业务员能完成的快递投递任务是:0.7×22=15.4<17.28,∴该公司现有的22名快递投递业务员不能完成今年4月份的快递投递任务,∴需要增加业务员(17.28﹣15.4)÷0.7≈2.7≈3(人).答:该公司现有的22名快递投递业务员不能完成今年4月份的快递投递任务,至少需要增加3名业务员.8.解:(1)设人行通道的宽度为x米,则两块矩形绿地的长为(21﹣3x)(米),宽为(10﹣2x)(米),根据题意得:(21﹣3x)(10﹣2x)=90,解得:x1=10(舍去),x2=2,答:人行通道的宽度为2米;(2)设人行通道的宽为y米时,每块绿地的宽与长之比等于3:5,根据题意得:(10﹣2y):=3:5,解得:y=,∵>3,∴不能改变人行横道的宽度使得每块绿地的宽与长之比等于3:5.9.解:(1)由已知得,解得,∴y=﹣1000x+9000;(2)由题意可得1000(10﹣5)(1+20%)=(﹣1000x+9000)(x﹣4),整理得:x2﹣13x+42=0,解x1=6,x2=7(舍去).答:该种水果价格每千克应调低至6元.10.解:(1)设y与x之间的函数关系式为y=kx+b,根据题意,得:,解得:,则y=﹣x+800;(2)设总利润为w,w=(x﹣400)(﹣x+800)=﹣x2+1200x﹣320000,令w=30000得:30000=﹣x2+1200x﹣320000,解得:x=500或x=700,∵a=﹣1<0,∴500≤x≤700时w不小于30000,∵x﹣400≤400×40%,∴x≤560,∴500≤x≤560.。
2020年秋季人教版数学九年级上册同步练习21.3 实际问题与一元二次方程一.传播问题1.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程()A.1+x=225B.1+x2=225C.(1+x)2=225D.1+(1+x2)=2252.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()A.14B.15C.16D.253.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.74.有一人患了流感,假如平均一个人传染了x个人,经过两轮感染后共有121人患了流感,依题意可列方程为.5.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了个人.6.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?二.握手问题1.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1260B.2x(x+1)=1260C.x(x﹣1)=1260D.x(x﹣1)=1260×22.某单位要组织篮球邀请赛,每两队之间都要赛一场且只赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,根据题意,可列方程()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=153.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个B.8个C.9个D.12个4.元旦期间,九年(1)班数学研究小组的同学互送新年贺卡,如果研究小组有x名学生,共送出132张贺卡,那么可列出方程为.5.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.三.增长问题1.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%2.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=63.某校坚持对学生进行近视眼的防治,近视学生人数逐年减少.据统计,今年的近视学生人数是前年近视学生人数的75%,那么这两年平均每年近视学生人数降低的百分率是多少?设平均每年降低的百分率为x,根据题意列方程得()A.1﹣x2=75%B.(1+x)2=75%C.1﹣2x=75%D.(1﹣x)2=75% 4.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元.设平均每次下调的百分率为x,则可列方程为.5.某市继续加大对教育经费的投入,2018年投入2500万元,2020年预计投入3600万元,则该市投入教育经费的年平均增长率为.6.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?四.利润问题1.某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x元,则可列方程为()A.(40+x)(600﹣10x)=10000 B.(40+x)(600+10x)=10000C.x[600﹣10(x﹣40)]=10000D.x[600+10(x﹣40)]=100002.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满:当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.设房价定为x元,宾馆当天利润为8640元.则可列方程()A.(180+x﹣20)(50﹣)=8640B.(x+180)(50﹣)﹣50×20=8640 C.x(50﹣)﹣50×20=8640D.(x﹣20)(50﹣)=86403.某商场在销售一种糖果时发现,如果以20元/kg的单价销售,则每天可售出100kg,如果销售单价每增加0.5元,则每天销售量会减少2kg.该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x元/kg,依题意可列方程为()A.(20+x)(100﹣2x)=1800B.C.D.x[100﹣2(x﹣20)]=18004.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件衬衫每降价1元,商场平均每天可多销出2件.若商场每天要盈利1200元,设每件衬衫应降价x 元.请你帮助商场算一算,满足x的方程是..5.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价元.6.某一皮衣专卖店销售某款皮衣,其进价为每件750元,经市场调查发现,按每件1100元出售,平均每天可售出30件,每件降价50元,平均每天的销售量可增加10件,皮衣专卖店若想要平均每天获利12000元,则每件皮衣定价为多少元?(1)以下是小明和小红的两种不同设法,请帮忙填完整:小明:设每件皮衣降价x元,由题意,可列方程:.小红:设每件皮衣定价为y元,由题意,可列方程:.(2)请写出一种完整的解答过程.五.面积问题1.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=6002.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=323.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为375平方米的矩形临时仓库,仓库一边靠墙,另三边用总长为55米的栅栏围成,若设榣栏AB的长为x米,则下列各方程中,符合题意的是()A.x(55﹣x)=375B.x(55﹣2x)=375C.x(55﹣2x)=375D.x(55﹣x)=3754.学校打算用长16m的篱笆围成一个长方形的生物园饲养小动物,生物园的一面靠墙(如图),面积是30m2,求生物园的长和宽.设生物园的宽(与墙相邻的一边)为xm,则列出的方程为.5.如图,某小区规划在一个长34m、宽22m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成m.6.学校有一块长14米,宽10米的矩形空地,准备将其规划,设计图案如图,阴影应为绿化区(四块绿化区为全等的矩形),空白区为路面,且四周出口一样宽广且宽度不小于2米,不大于5米,路面造价为每平方米200元,绿化区为每平方米150元,设绿化区的长边长为x米.(1)用x表示绿化区短边的长为米,x的取值范围为.(2)学校计划投资25000元用于此项工程建设,求绿化区的长边长.参考答案一.传播问题1.解:设1人平均感染x人,依题意可列方程:(1+x)2=225.故选:C.2.解:设平均每天一人传染了x人,根据题意得:1+x+(1+x)×x=225,(1+x)2=225,解得:x1=14,x2=﹣16(舍去).答:平均每天一人传染了14人.故选:A.3.解:依题意,得:1+x+x2=43,整理,得:x2+x﹣42=0,解得:x1=6,x2=﹣7(不合题意,舍去).故选:C.4.解:依题意,得:1+x+x(1+x)=121.故答案为:1+x+x(1+x)=121.5.解:设每轮传染中平均一个人传染了x个人,根据题意,得(1+x)2=1691+x=±13x1=12,x2=﹣14(舍去).答:每轮传染中平均一个人传染了12个人.故答案为:12.6.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.二.握手问题1.解:依题意,得:x(x﹣1)=1260.故选:C.2.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选:D.3.解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故选:C.4.解:设研究小组有x名学生,可列出方程为:x(x﹣1)=132.故答案为:x(x﹣1)=132.5.解:设共有x家公司参加了这次会议,根据题意,得x(x﹣1)=28整理,得x2﹣x﹣56=0解得x1=8,x2=﹣7(不合题意,舍去)答:共有8家公司参加了这次会议.故答案是:8.三.增长问题1.解:设全市5G用户数年平均增长率为x,则2020年底全市5G用户数为2(1+x)万户,2021年底全市5G用户数为2(1+x)2万户,依题意,得:2+2(1+x)+2(1+x)2=8.72,整理,得:x2+3x﹣1.36=0,解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去).故选:C.2.解:依题意,得:1.5×4(1+x)2=17.34,即6(1+x)2=17.34.故选:A.3.解:依题意,得:(1﹣x)2=75%.故选:D.4.解:设平均每次降价的百分率是x,根据题意列方程得,6500(1﹣x)2=5265.故答案为:6500(1﹣x)2=5265.5.解:设该市投入教育经费的年平均增长率为x,依题意,得:2500(1+x)2=3600,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.6.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.四.利润问题1.解:售价上涨x元后,该商场平均每月可售出(600﹣10x)个台灯,依题意,得:(40+x)(600﹣10x)=10000,故选:A.2.解:设房价定为x元,由题意得:(x﹣20)(50﹣)=8640.故选:D.3.解:由题意可得,x(100﹣)=1800,故选:C.4.解:设每件衬衫应降价x元,根据题意得出:(20+2x)(40﹣x)=1200故答案为:(20+2x)(40﹣x)=1200.5.解:设每件服装应降价x元,根据题意,得:(44﹣x)(40+5x)=2400解方程得x=4或x=32,∵在降价幅度不超过10元的情况下,∴x=32不合题意舍去,答:每件服装应降价4元.故答案是:4.6.解:(1)小明:设每件皮衣降价x元,则平均每天的销售量为(30+x÷50×10)件,依题意,得:(1100﹣x﹣750)(30+x÷50×10)=12000;小红:设每件皮衣定价为y元,则平均每天的销售量为(30+×10)件,依题意,得:(y﹣750)(30+)=12000.故答案为:(1100﹣x﹣750)(30+x÷50×10)=12000;(y﹣750)(30+)=12000.(2)选择小明的的设法,则(1100﹣x﹣750)(30+x÷50×10)=12000,整理,得:x2﹣200x+7500=0,解得:x1=50,x2=150,∴1100﹣x=1050或950.答:每件皮衣定价为1050元或950元.选择小红的设法,则(y﹣750)(30+)=12000,整理,得:y2﹣2000y+997500=0,解得:y1=1050,y2=950.答:每件皮衣定价为1050元或950元.五.面积问题1.解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.2.解:设剪去的小正方形边长是xcm,则做成的纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32.故选:D.3.解:设榣栏AB的长为x米,则AD=BC=米,根据题意可得,x(55﹣x)=375,故选:A.4.解:设宽为x m,则长为(16﹣2x)m.由题意,得x(16﹣2x)=30,故答案为:x(16﹣2x)=30.5.解:设通道的宽应设计成xm,则种植花草的部分可合成长(34﹣2x)m,宽(22﹣x)m 的矩形,依题意,得:(34﹣2x)(22﹣x)=100×6,整理,得:x2﹣39x+74=0,解得:x1=2,x2=37(不合题意,舍去).故答案为:2.6.解:(1)路面宽为(14﹣2x)米,则绿化区短边的长为[10﹣(14﹣2x)]÷2=(x﹣2)米,依题意得2≤14﹣2x≤5,解得≤x≤6;(2)设绿化区的长边长为x米.由题意列方程得150×4x(x﹣2)+200[14×10﹣4x(x﹣2)]=25000,整理得x2﹣2x﹣15=0,解得x1=5,x2=﹣3(不合题意,舍去).答:绿化区的长边长为5米.故答案为:(x﹣2),≤x≤6.。
实际问题与一元二次方程(增长率类问题)同步练习题一、单选题1.如图,在ABC 中,90B ∠=︒,AB =6cm ,BC =7cm .点P 从点B 开始沿边BA 向点A 以2cm/s 的速度移动,同时点Q 从点C 开始沿边CB 向点B 以1cm/s 的速度移动,当其中一点到达终点时,另一点随即停止.当四边形APQC 的面积为211cm 时,点P 的运动时间为( )A .1sB .1s 或2.5sC .2sD .2s 或5s2.如图所示,A ,B ,C ,D 为矩形的四个顶点,AB =16cm ,AD =8cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以3cm/s 的速度向B 移动,一直到达B 为止;点Q 以2cm/s 的速度向D 移动.当P ,Q 两点从出发开始几秒时,点P 和点Q 的距离是10cm .(若一点到达终点,另一点也随之停止运动)( )A .2s 或235sB .1s 或225sC .225sD .2s 或225s 3.如图,在ABC ∆中,90ABC ∠=︒,8AB =cm ,7BC =cm ,动点P ,Q 分别从点A ,B 同时开始移动(移动方向如图所示),点P 的速度为1cm/s ,点Q 的速度为2cm/s ,点Q 移动到点C 后停止,点P 也随之停止运动,若使PBQ ∆的面积为15cm 2,则点P 运动的时间是( )A .3.5sB .5sC .4sD .3s4.如图,△ABC 中,△C =90°,AC =8cm ,BC =4cm ,一动点P 从C 出发沿着CB 方向以1cm/s 的速度向B 运动,另一动点Q 从A 出发沿着AC 方向以2cm/s 的速度向C 运动,P ,Q 两点同时出发,运动时间为t (s ).当t 为( )秒时,△PCQ 的面积是△ABC 面积的14?A .1.5B .2C .3或者1.5D .以上答案都不对5.如图1,矩形ABCD 中,点E 为BC 的中点,点P 沿BC 从点B 运动到点C ,设B ,P 两点间的距离为x ,PA PE y -=,图2是点P 运动时y 随x 变化的关系图象,则BC 的长为( )A .4B .5C .6D .76.在平面直角坐标系中,一次函数4y x =--的图像上有一点P ,过点P 分别向坐标轴作垂线段,若两垂线段与坐标轴围成面积为5的矩形,则符合条件的点P 个数为 ( )A .2B .3C .4D .无数个7.如图,在ABC ∆中,5040 90AC m BC m C ==∠=︒,,,点P 从点A 开始沿AC 边向点C 以2/m s 的速度匀速移动,同时另一点Q 由C 点开始以3/m s 的速度沿着射线CB 匀速移动,当PCQ ∆的面积等于2300m 时运动时间为( )A .10秒B .5秒C .20秒D .5秒或20秒8.如图,将边长为12 cm 的正方形ABCD 沿其对角线AC 剪开,再把ABC 沿着AD 方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为32 cm 2,则它移动的距离AA′等于( )A .4 cmB .8 cmC .6 cmD .4 cm 或8 cm二、填空题 9.如图,在Rt △ABC 中,△C =90°,AC =8cm ,BC =2cm ,点P 在边AC 上,以2cm/s 的速度从点A 向点C 移动,点Q 在边CB 上,以1cm/s 的速度从点C 向点B 移动.点P 、Q 同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,当△PQC 的面积为3cm 2时,P 、Q 运动的时间是_____秒.10.如图,在△ABC 中,AB =6cm ,BC =7cm ,△ABC =30°,点P 从A 点出发,沿射线AB 方向以1cm/s 的速度移动,点Q 从B 点出发,沿射线BC 方向以2cm/s 的速度移动.如果P 、Q 两点同时出发,问:经过_________________秒后△PBQ 的面积等于4cm 2.11.如图,在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 沿边AB 向点B 以1cm/s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2cm/s 的速度移动,设运动的时间为t 秒,有一点到终点运动即停止,当t =___时,S △DPQ =28cm 2.12.如图,在Rt ABC 中,50m AC =,40m CB =,90C ∠=︒,点P 从点A 开始沿AC 边向点C 以2m /s 的速度移动,同时另一个点Q 从点C 开始沿CB 以3m /s 的速度移动,当△PCQ 的面积等于450m 2时,经过的时间是____.13.如图,将边长为4的正方形ABCD 沿对角线AC 剪开,再把△ABC 沿着AD 方向平移得到△A ′B ′C ′,若两个三角形重叠部分的面积为3,则它移动的距离AA ′等于 ___;移动的距离AA ′等于 ___时,两个三角形重叠部分面积最大.14.如图,已知AB △BC ,AB =12cm ,BC =8cm .一动点N 从C 点出发沿CB 方向以1c m/s 的速度向B 点运动,同时另一动点M 由点A 沿AB 方向以2c m/s 的速度也向B 点运动,其中一点到达B 点时另一点也随之停止,当△MNB 的面积为24cm 2时运动的时间t 为______秒.15.如图,长方形ABCD 中,6cm AB =,2cm AD =,动点P 、Q 分别从点A 、C 同时出发,点P 以2厘米/秒的速度向终点B 移动,点Q 以1厘米/秒的速度向D 移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t 秒,当t =________时,以点P 、Q 、D 为顶点的三角形是等腰三角形.16.如图,在Rt△ABC 中,△C =90°,BC =6cm ,AC =8cm ,点P 、Q 同时由A 、B 两点出发分别沿AC 、BC 方向向点C 匀速运动,其速度均为2cm/s ,_____s 后,△PCQ 的面积是△ABC 面积的一半.三、解答题17.如图,ABC 中,90C =∠,8AC cm =,4BC cm =,一动点P 从点C 出发沿着CB 方向以1cm s 的速度运动,另一动点Q 从A 出发沿着AC 边以2cm s 的速度运动,P ,Q 两点同时出发,运动时间为()t s .(1)若PCQ △的面积是△ABC 面积的14,求t 的值? (2)PCQ △的面积能否为△ABC 面积的一半?若能,求出t 的值;若不能,说明理由.18.如图所示,在△ABC 中,90,5,7B AB cm BC cm ∠=︒==,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿着BC 边向点C 以2/cm s 的速度移动.(1)如果P Q 、分别从A B 、同时出发,那么几秒后,PBQ △的面积等于24cm ?(2)小明在解答上述问题时,求得28PBQ S cm ∆=?请你判断一下,他做得对吗?并说明理由 .19.如图,Rt ABC ∆中,△ACB =90°,AC =6cm ,BC =8cm ,点P 从点A 出发,以每秒1cm 的速度沿AC运动;同时点Q 从点C 出发,以每秒2cm 的速度沿CB 运动,当Q 到达点B 时,点P 同时停止运动. (1)运动几秒时PCQ ∆的面积为5cm 2?(2)运动几秒时PCQ ∆中PQ=6 cm ?(3)PCQ ∆的面积能否等于10cm 2?若能,求出运动时间,若不能,说明理由.20.如图,在Rt △ACB 中,90C ∠=︒,30AC cm =,21BC cm =,动点P 从点C 出发,沿CA 方向运动,同时动点Q 从点B 出发,沿BC 方向运动,点P ,点Q 的运动速度均为1/cm s .当运动时间为多少秒时,两点相距15cm?21.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,设运动的时间为t秒,有一点到终点运动即停止.问:是否存在这样的时刻,使S△DPQ=28cm2?若存在,请求出t的值;若不存在,请说明理由.。
人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案一、选择题1.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x 名,据题意可列方程为()A.x(x+1)=253B.x(x−1)=253C.12x(x+1)=253D.12x(x−1)=2532.某小区内的一家快递驿站第一天共收到225件快递,第三天共收到324件快递,设该快递驿站收件量的日平均增长率为x,则下列方程正确的是()A.225(1+x2)=324B.225(1+x)2=324C.225(1+2x)=324D.225+225(1+x)=3243.有一个人患流感,经过两轮传染后共有64个人患流感.设每轮传染中平均一个人传染x个人,则第三轮传染后共有()个人患流感。
A.7 B.8 C.448 D.5124.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.主干,支干和小分支的总数是157,则每个支干长出多少个小分支?设每个支干长出x个小分支,所列方程是()A.x2=157B.(1+x)2=157C.1+x+x2=157D.x+x2=1575.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“健身杯”足球比赛,赛制为单循环形式(每两个队之间赛一场),现计划安排21场比赛,则邀请的参赛队数是()A.5 B.6 C.7 D.86.如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则所列方程正确的为()A.(30−2x)(40−2x)=600B.(30+2x)(40+2x)=600C.30×40−2×30x−2×40x=600D.30×40+2×30x+2×40x=6007.某公司年报显示,该公司2023年的利润为6600万元,受市场波动影响,2023年利润增长率为2022年利润增长率的一半,若该公司2021年的利润为5000万元,则该公司2023年利润增长率为()A.5%B.10%C.15%D.20%8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x−1)x=6210B.3(x−1)=6210C.(3x−1)x=6210D.3x=6210二、填空题9.10月8号到校前,帅童收到学校的一条短信通知发给若干同学,每个收到的同学又给相同数量的同学转发了这条短信,此时收到这条短信的同学共有157人,帅童给个同学发了短信10.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,设每只病鸡传染健康鸡的只数为x只,则可列方程为.11.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,连续两次降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为.12.如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点,容易看出,10是三角形点阵中前4行的点数和,则300个点是前行的点数和.13.如图,某小区要在长为16m,宽为12m的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为m.三、解答题14.西瓜经营户以3元/千克的价格购进一批小型西瓜,以4元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克这种小型西瓜的售价降低多少元?15.现今网购已经成为消费的新常态,某快递公司今年8月份的投递快递总件数为10万件,由于改进分拣技术,增加投递业务人员,10月份的投递快递总件数达到12.1万件,假设该公司每个月的投递快递总件数平均增长率相同.(1)求该公司的投递快递总件数月平均增长率;(2)如果继续保持上面的月平均增长率,平均每个业务员每月最多可投递快递0.7万件,那么20名投递业务员能否完成今年11月份的快递投递任务?说明理由.16.每年暑假是游泳旺季,今年我市某商店抓住商机,销售某款游泳服.6月份平均每天售出100件,每件盈利40元.为了扩大销售、增加盈利,7月份该店准备采取降价措施,经过市场调研,发现销售单价每降低1元,平均每天可多售出10件.(1)若降价5元,求平均每天的销售数量;(2)当每件游泳服降价多少元时,该商店每天销售利润为6000元?参考答案1.D2.B3.D4.C5.C6.A7.B8.A9.1210.(1+x)2=16911.20%12.2413.214.解:设应将每千克这种小型西瓜的售价降低x元.)−24=200根据题意,得(4−3−x)(200+40x0.1原式可化为:50x2−25x+3=0,解这个方程,得x1=0.2,x2=0.3.∵为了促销,故x=0.2不符合题意,舍去,∴x=0.3.答:应将每千克这种小型西瓜的售价降低0.3元.15.(1)解:设该公司的投递快递总件数月平均增长率为x依题意得:10(1+x)2=12.1解得:x1=﹣2.1(不符合题意,舍去),x2=0.1=10%答:该公司的投递快递总件数月平均增长率为10%;(2)解:该公司现有的20名投递业务员能完成今年11月份的快递投递任务,理由如下:由题意可知,11月份的快递投递总件数:12.1×(1+10%)=13.31 (万件)∵0.7×20=14(万件),14>13.31∴该公司现有的20名投递业务员能完成今年11月份的快递投递任务.16.(1)解:∵销售单价每降低1元,平均每天可多售出10件,降价5元∴平均每天可多售出5×10=50(件)∴若降价5元,平均每天的销售数量为100+50=150(件).(2)解:设每件商品降价x元,则每件盈利(40−x)元,平均每天可售出(100+10x)件∵商店每天销售利润为6000元∴(40−x)(100+10x)=6000解得:x1=10,x2=20答:每件游泳服降价10元或20元时,该商店每天销售利润为6000元.。
21.3 实际问题与一元二次方程同步练习基础巩固练习一:限时35分钟1.地铁东城某服装店销售一批衬衣,每件进价250元,开始以每件400元的价格销售,每星期能卖出20件,后来因库存积压,决定降价销售,经过两次降价后每件售价为324元,每星期能卖出172件.(1)已知两次降价的百分率相同,求每次降价的百分率;(2)喜欢研究数学的店长在降价的过程中发现,适当的降价可增加销售又可增加收入,且每件衬衣售价每降低1元,销售量会增加2件,若店长想要每星期获利11000元,为了让顾客得到更大的实惠,应把售价定为多少元?2.小可同学在去年暑假的社会调查实践活动中,对本市一果脯制品厂进行采访,获得了如下信息:①该厂一月份果脯的加工量为a吨;②该厂三月份的加工量比一月份增长了44%;③该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;④六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了4.668吨;⑤该厂第一季度共加工果脯18.2吨.利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a的值;(3)该厂第二季度的总加工量.3.水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若以每千克能盈利17元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润7500元,同时又要使顾客得到实惠,则每千克应涨价多少元?(3)现需按毛利的10%交纳各种税费,人工贵每日按销售量每千克支出1.5元,水电房租费每日300元,若剩下的每天总纯利润要达到6000元,则每千克涨价应为多少?4.目前,某镇正在为小城市建设做着不懈努力,镇政府决定在新城区政府大楼前建设一块个长a米,宽b米的长方形草坪,并计划在该草坪场上修筑宽都为2米的两条互相垂直的人行道(如图).(1)用含a,b的代数式表示两条人行道的总面积;(2)若已知a:b=3:2,并且四块草坪的面积之和为2204平方米,试求原长方形的长与宽各为多少米?。
22.3实际问题与一元二次方程(第三课时)
◆随堂检测
1、一个两位数等于它的个位数的平方,且个位数字比十位数字大3,•则这个两位数为( ) A .25 B .36 C .25或36 D .-25或-36
2、一个多边形有9条对角线,则这个多边形有多少条边( ) A 、6 B 、7 C 、8 D 、9
3、为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( ) A .2
2025x = B .20(1)25x +=
C .2
20(1)25x += D .2
20(1)20(1)25x x +++=
4、某辆汽车在公路上行驶,它行驶的路程s (m )和时间t (s )•之间的关系为:•s=2
103t t +,那么行驶200m 需要多长时间?
(分析:这是一个加速运动,根据已知的路程求时间.因此,只要把s=200•代入求关于t 的一元二次方程即可.)
◆典例分析
一辆汽车以20m/s 的速度行驶,司机发现前方路面有情况,•紧急刹车后汽车又滑行25m 后停车. (1)从刹车到停车用了多少时间? (2)从刹车到停车平均每秒车速减少多少?
(3)刹车后汽车滑行到15m 时约用了多少时间(精确到0.1s )? 分析:本题涉及到物理学中的运动知识,具体分析如下:
(1)刚刹车时时速还是20m/s ,以后逐渐减少,停车时时速为0.•因为刹车以后,其速度的减少都是受摩擦力而造成的,所以可以理解是匀速的,因此,其平均速度为
200
2
+=10m/s ,那么根据:路程=速度×时间,便可求出所求的时间.(2)刚要刹车时车速为20m/s ,停车车速为0,车速减少值为20-0=20,因为车速减少值20,是在从刹车到停车所用的时间内完成的,所以20除以从刹车到停车的时间即可.(3)设刹车后汽车滑行到15m 时约用除以xs .•由于平均每秒减少车速已从上题求出,所以便可求出滑行到15米的车速,从而可求出刹车到滑行到15m 的平均速度,再根据:路程=速度×时间,便可求出x 的值. 解:(1)从刹车到停车所用的路程是25m ;
从刹车到停车的平均车速是
200
2
+=10(m/s ). 那么从刹车到停车所用的时间是
25
10
=2.5(s ). (2)从刹车到停车车速的减少值是20-0=20. 从刹车到停车每秒平均车速减少值是
20
2.5
=8(m/s ). (3)设刹车后汽车滑行到15m 时约用了x s ,这时车速为(20-8x )m/s. 则这段路程内的平均车速为
20(208)
2
x +-=(20-4x )m/s.
∴x (20-4x )=15,整理得:2
420150x x -+=, 解方程:得x
=
52
±,∴1x ≈4.08(不合题意,舍去),2x ≈0.9(s ). ∴刹车后汽车滑行到15m 时约用了0.9s.
◆课下作业
●拓展提高
1、为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为2
10m 提高到2
12.1m ,若每年的年增长率相同,则年增长率为( ) A .9% B .10% C .11% D .12%
2、如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s•的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,•P 、Q 都从B 点同时出发,几秒后△PBQ 的面积等于8cm 2
?
3、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售
P
A
B
Q
C
出2件.
(1)若商场平均每天赢利1200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天赢利最多?
4、有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器: (1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?
(2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?
●体验中考
1、(2009年,甘肃定西)在实数范围内定义运算“⊕”,其法则为:2
2
a b a b ⊕=-,求方程(4⊕3)⊕24
x =的解.
(点拨:本题是新定义运算,将一元二次方程的求解问题应用到了新定义运算的领域,具有一定的综合性.)
2、(2009年,湖州)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.
(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案. (提示:本题综合了二元一次方程及不等式的有关知识解决问题.)
参考答案: ◆随堂检测
1、C . 设这个两位数的十位数字为x ,则个位数字为3x +. 依题意得:2
103(3)x x x ++=+
解得:122,3x x ==.∴这个两位数为25或36.故选C. 2、A . 设这个多边形有n 条边. 依题意,得:
(3)
92
n n -=, 解得:126,3n n ==-(不合题意,舍去).∴这个多边形有6条边.故选A. 3、C.
4、解:当s=200时,2
103200t t +=, 整理,得2
3102000t t +-=,解得:1220
,103
t t ==-(不合题意,舍去). ∴t =
20
3
(s ) 答:行驶200m 需20
3
s . ◆课下作业 ●拓展提高
1、B. 设年增长率x ,可列方程()2
10112.1x +=,解得10.110%x ==,2 2.1x =-(不合题意,舍去),所以年增长率10%,故选B.
2、解:设x 秒后△PBQ 的面积等于8cm 2
.
这时PB=x ,BQ=2x 依题意,得:
1
282
x x ⋅=,
解得x =±,即12x x ==-
∵移动时间不能是负值,∴2x =-x =.
答:PBQ 的面积等于8cm 2
.
3、解:(1)设每件衬衫应降价x 元. 则依题意,得:(40-x )(20+2x )=1200,
整理,得2
302000x x -+=,解得:1210,20x x ==.
∴若商场平均每天赢利1200元,每件衬衫应降价10元或20元. (2)设每件衬衫降价x 元时,商场平均每天赢利最多为y ,
则y=(40-x )(20+2x )=2
2
2608002(30)800x x x x -++=--+2
2(15)1250x =--+ ∵2
2(15)0x --≤,∴x =15时,赢利最多,此时y=1250元. ∴每件衬衫降价15元时,商场平均每天赢利最多.
4、解:(1)在甲公司购买6台图形计算器需要用6(800206)4080⨯-⨯=(元);在乙公司购买需要用75%80063600⨯⨯=(元)4080<(元)
.应去乙公司购买.(2)设该单位买x 台,若在甲公司购买则需要花费(80020)x x -元;若在乙公司购买则需要花费75%800600x x ⨯=元. ①若该单位是在甲公司花费7500元购买的图形计算器, 则有(80020)x x -7500=,解之得1525x x ==,.
当15x =时,每台单价为8002015500440-⨯=>,符合题意.
当25x =时,每台单价为8002025300440-⨯=<,不符合题意,舍去.
②若该单位是在乙公司花费7500元购买的图形计算器,则有6007500x =,解之得12.5x =,不符合题意,舍去.
故该单位是在甲公司购买的图形计算器,买了15台.
●体验中考
1、解:∵22a b a b ⊕=-,
∴2222(43)(43)77x x x x ⊕⊕=-⊕=⊕=-. ∴22724x -=.∴225x =.∴5x =±. 2、解:(1)设家庭轿车拥有量的年平均增长率为x . 则依题意得:()2
641100x +=, 解得:11254x =
=%,29
4
x =-(不合题意,舍去). ∴()100125%125+=.
答:该小区到2009年底家庭轿车将达到125辆. (2)设该小区可建室内车位a 个,露天车位b 个.
则:0.50.1152 2.5a b a b a +=⎧⎨⎩
①≤≤②
由①得:b =150-5a 代入②得:20a ≤≤
150
7
, a 是正整数,∴a =20或21.
当20a =时50b =,当21a =时45b =.
∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.。